Supporting information for

"Structural, electronic phase transitions and thermal spin transport properties in 2D NbSe₂ and NbS₂: A first-principles study"

Yuqi Liu,^a Yulin Feng,^b Lei Hu,^a Xuming Wu,^c Shuang Qiao^d and Guoying Gao^{*a}

^aSchool of Physics and Wuhan National High Magnetic Field Center, Huazhong University of

Science and Technology, Wuhan 430074, China

^bCollege of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China

^cCollege of Physical Science and Technology, Lingnan Normal University, Zhanjiang 524048,

China

^dBeijing Computational Science Research Center, Beijing 100093, China

E-mail: guoying_gao@mail.hust.edu.cn

Fig. S1 The optimized lattice constants for 2H- and 1T-NbSe₂ (a) and NbS₂ (b) monolayers within PBE with different U values.

Fig. S2 The structural phase transition diagrams of (a) NbSe₂ and NbS₂ (b) within LDA with different U values. The total energy difference per formula unit $\Delta E = E_{1T}-E_{2H}$.

Fig. S3 The structural phase transition diagrams of (a) NbSe₂ and NbS₂ (b) within PBE with different U values. The Gibbs free energy difference per formula unit $\Delta G = G_{1T}-G_{2H}$.

Fig. S4 The structural phase transition diagrams of (a) NbSe₂ and NbS₂ (b) within LDA with different U values. The Gibbs free energy difference per formula unit $\Delta G = G_{1T}-G_{2H}$.

Fig. S5 The spin structures of 2H-Nb X_2 (X=Se, S) with FM (a) and AFM (b) states and 1T-Nb X_2 with FM (c) and AFM (d) states.

Fig. S6 The strain-dependent total energy per formula unit (a) and Nb atomic magnetic moment (b) in the FM and AFM states within PBE+U (U_{eff} =4.0 eV) for NbSe₂ monolayer.

Fig. S7 The spin density within PBE+U (U_{eff} =4.0 eV) for NbSe₂ monolayer in the 2H (a,b) and 1T (c,d) phases. (a, c) and (b,d) represent without and with 15% tensile strain, respectively. The pink and blue isosurfaces represent the positive and negative spin densities (0.012 e/Å²) respectively.

Fig. S8 Tensile strain effect on spin-polarized band structures for 2H-NbS₂ monolayer within PBE+U. The Fermi level is indicated by the blue dashed line.

Fig. S9 Spin-dependent partial density of states (DOS) within PBE and PBE+U (U_{eff} =4.0 eV) for 2H-NbSe₂ monolayer with tensile strain.

Fig. S10 Spin-dependent partial density of states (DOS) within PBE and PBE+U (U_{eff} =4.0 eV) for 1T-NbSe₂ monolayer with tensile strain.

Fig. S11 Tensile strain effect on spin-polarized band structures for $1T-NbS_2$ monolayer with PBE+U ($U_{eff}=0, 4 \text{ eV}$).

Fig. S12 Spin-polarized band structures with hybrid Heyd-Scuseria-Ernzerhof functional and PBE+U (U_{eff} = 4.0 eV) for NbSe₂ and NbS₂ monolayers in 2H and 1T phases.

Fig. S13 Spin-polarized band structures for 2H-NbSe₂ bulk within PBE+U (U=0, 1, 2, 3, 4 eV).

Fig. S14 Spin-polarized band structures for 2H-NbSe₂ monolayer within PBE+U (U=0, 1, 2, 3, 4 eV).

Fig. S15 Spin-polarized band structures for 2H-NbS₂ bulk within PBE+U (U=0, 1, 2, 3, 4 eV).

Fig. S16 Spin-polarized band structures for 2H-NbS₂ monolayer within PBE+U (U=0, 1, 2, 3, 4 eV).