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Fig. S1 The optimized lattice constants for 2H- and 1T-NbSe2 (a) and NbS2 (b) monolayers within 

PBE with different U values.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2022



S2

Fig. S2 The structural phase transition diagrams of (a) NbSe2 and NbS2 (b) within LDA with 

different U values. The total energy difference per formula unit ΔE = E1T-E2H.

  

Fig. S3 The structural phase transition diagrams of (a) NbSe2 and NbS2 (b) within PBE with 

different U values. The Gibbs free energy difference per formula unit ΔG = G1T-G2H.
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Fig. S4 The structural phase transition diagrams of (a) NbSe2 and NbS2 (b) within LDA with 

different U values. The Gibbs free energy difference per formula unit ΔG = G1T-G2H.

Fig. S5 The spin structures of 2H-NbX2 (X=Se, S) with FM (a) and AFM (b) states and 1T-NbX2 

with FM (c) and AFM (d) states.
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Fig. S6 The strain-dependent total energy per formula unit (a) and Nb atomic magnetic moment (b) 

in the FM and AFM states within PBE+U (Ueff=4.0 eV) for NbSe2 monolayer.

Fig. S7 The spin density within PBE+U (Ueff=4.0 eV) for NbSe2 monolayer in the 2H (a,b) and 1T 

(c,d) phases. (a, c) and (b,d) represent without and with 15% tensile strain, respectively. The pink 

and blue isosurfaces represent the positive and negative spin densities (0.012 e/Å2) respectively.
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Fig. S8 Tensile strain effect on spin-polarized band structures for 2H-NbS2 monolayer within 

PBE+U. The Fermi level is indicated by the blue dashed line.

Fig. S9 Spin-dependent partial density of states (DOS) within PBE and PBE+U (Ueff=4.0 eV) for 

2H-NbSe2 monolayer with tensile strain. 
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Fig. S10 Spin-dependent partial density of states (DOS) within PBE and PBE+U (Ueff=4.0 eV) for 

1T-NbSe2 monolayer with tensile strain. 

Fig. S11 Tensile strain effect on spin-polarized band structures for 1T-NbS2 monolayer with 
PBE+U (Ueff=0, 4 eV).
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Fig. S12 Spin-polarized band structures with hybrid Heyd-Scuseria-Ernzerhof functional and 

PBE+U (Ueff= 4.0 eV) for NbSe2 and NbS2 monolayers in 2H and 1T phases.

Fig. S13 Spin-polarized band structures for 2H-NbSe2 bulk within PBE+U (U=0, 1, 2, 3, 4 eV).
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Fig. S14 Spin-polarized band structures for 2H-NbSe2 monolayer within PBE+U (U=0, 1, 2, 3, 4 

eV).

Fig. S15 Spin-polarized band structures for 2H-NbS2 bulk within PBE+U (U=0, 1, 2, 3, 4 eV).
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Fig. S16 Spin-polarized band structures for 2H-NbS2 monolayer within PBE+U (U=0, 1, 2, 3, 4 

eV).


