Supporting Information

Deep insights into the viscosity of Deep Eutectic Solvents by XGBoost-based model plus SHapley Additive exPlanation

Dingyi Shi‡,a, Fengyi Zhou‡,b, Wenbo Mu,c,d, Cheng Linge,*, Tiancheng Mub, Gangqiang Yu*, Ruiqi Lia,*

a College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. Email: lir@buct.edu.cn

b Department of Chemistry, Renmin University of China, Beijing 100872, China. tcmu@ruc.edu.cn

c Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA. mu.176@buckeyemail.osu.edu

d Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China. Email: yugq@bjut.edu.cn

e China Overseas International Center, Advanced Micro Devices, Inc. (AMD), Beijing 100101, China. Email: lingc@amd.com

Table S1. Summary of the reported laboratory-measured viscosity for diverse deep eutectic solvents in the literature

<table>
<thead>
<tr>
<th>DES</th>
<th>Composition</th>
<th>Ratio</th>
<th>Temperature</th>
<th>Viscosity</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES 1</td>
<td>ChCl:Ethylene glycol</td>
<td>1:2</td>
<td>20-80</td>
<td>4.3-60.9</td>
<td>1</td>
</tr>
<tr>
<td>DES 2</td>
<td>ChCl:Glycerol</td>
<td>1:2</td>
<td>10-90</td>
<td>11.4031-1003.94</td>
<td>2, 3</td>
</tr>
<tr>
<td>DES 3</td>
<td>ChCl:1,2-Propanediol</td>
<td>1:2</td>
<td>25-65</td>
<td>22.37-122.3028</td>
<td>2</td>
</tr>
<tr>
<td>DES 4</td>
<td>ChCl:Malonic acid</td>
<td>1:1</td>
<td>20-75</td>
<td>10.14-2016</td>
<td>4</td>
</tr>
<tr>
<td>DES 5</td>
<td>ChCl:Glutaric acid</td>
<td>1:1</td>
<td>20-80</td>
<td>9.323-2968</td>
<td>2, 4</td>
</tr>
<tr>
<td>DES 6</td>
<td>ChCl:Urea</td>
<td>1:2</td>
<td>20-80</td>
<td>13.6-1685.8</td>
<td>1</td>
</tr>
<tr>
<td>DES 7</td>
<td>Tetramethylammonium chloride:Ethylene glycol</td>
<td>1:3</td>
<td>25-65</td>
<td>8.3058-26.12</td>
<td>2</td>
</tr>
<tr>
<td>DES 9</td>
<td>Tetrabutylammonium chloride:Ethylene glycol</td>
<td>1:2</td>
<td>25-65</td>
<td>12.499-61.159</td>
<td>2</td>
</tr>
<tr>
<td>DES10</td>
<td>[BMIM][PF₆]:N-Methylacetamide</td>
<td>1:2</td>
<td>25-65</td>
<td>5.396-17.306</td>
<td>2</td>
</tr>
<tr>
<td>DES 11</td>
<td>[HMIM][PF₆]:N-Methylacetamide</td>
<td>1:2</td>
<td>25-65</td>
<td>6.4785-23.456</td>
<td>2</td>
</tr>
<tr>
<td>DES</td>
<td>Compound Description</td>
<td>Ratio</td>
<td>Temperature Range</td>
<td>Viscosity (cP)</td>
<td>Ref.</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------</td>
<td>------------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>DES 12</td>
<td>[OMIM][PF₆]:N-Methylacetamide</td>
<td>1:2</td>
<td>25-65</td>
<td>8.2708-35.488</td>
<td>2</td>
</tr>
<tr>
<td>DES 13</td>
<td>Tetramethylammonium acetate:Ethylene glycol</td>
<td>1:2</td>
<td>25-65</td>
<td>11.43-42.437</td>
<td>2</td>
</tr>
<tr>
<td>DES 14</td>
<td>Tetraethylammonium bromide:Ethylene glycol</td>
<td>1:2</td>
<td>25-65</td>
<td>8.5566-28.84</td>
<td>2</td>
</tr>
<tr>
<td>DES 15</td>
<td>[BMIM][CF₃SO₃]:N-Methylacetamide</td>
<td>1:2</td>
<td>25-65</td>
<td>5.1486-16.332</td>
<td>2</td>
</tr>
<tr>
<td>DES 16</td>
<td>[BMIM][Ac]:N-Methylacetamide</td>
<td>1:2</td>
<td>25-65</td>
<td>8.5325-36.361</td>
<td>2</td>
</tr>
<tr>
<td>DES 18</td>
<td>Benzytrimethylammonium chloride:Ethylene glycol</td>
<td>1:2</td>
<td>25-65</td>
<td>19.568-106.31</td>
<td>2</td>
</tr>
<tr>
<td>DES 19</td>
<td>Allyltrimethylammonium chloride:Ethylene glycol</td>
<td>1:2</td>
<td>25-65</td>
<td>3.6863-11.319</td>
<td>2</td>
</tr>
<tr>
<td>DES 20</td>
<td>ZnCl₂:Ethylene glycol</td>
<td>1:2</td>
<td>25-65</td>
<td>34.206-274.75</td>
<td>2</td>
</tr>
<tr>
<td>DES 21</td>
<td>ZnCl₂:Acetamide</td>
<td>1:3</td>
<td>25-65</td>
<td>36.519-602.51</td>
<td>2</td>
</tr>
<tr>
<td>DES 22</td>
<td>FeCl₃·6H₂O:Ethylene glycol</td>
<td>2:1</td>
<td>25-65</td>
<td>3.85743-28.07838</td>
<td>2</td>
</tr>
<tr>
<td>DES 23</td>
<td>Lithium bis(trifluoromethanesulphonyl)imidide:N-Methylacetamide</td>
<td>1:4</td>
<td>25-65</td>
<td>17.687-80.548</td>
<td>H</td>
</tr>
<tr>
<td>DES 24</td>
<td>Lithium bis(trifluoromethanesulphonyl)imidide:N-Methylacetamide</td>
<td>1:2</td>
<td>25-65</td>
<td>53.258-372.35</td>
<td>2</td>
</tr>
<tr>
<td>DES 25</td>
<td>ChCl:Ethylene glycol</td>
<td>1:2.00</td>
<td>20-60</td>
<td>15.31-60.00</td>
<td>5</td>
</tr>
<tr>
<td>DES 26</td>
<td>ChCl:Ethylene glycol</td>
<td>1:2.99</td>
<td>20-60</td>
<td>10.47-37.35</td>
<td>5</td>
</tr>
<tr>
<td>DES 27</td>
<td>ChCl:Ethylene glycol</td>
<td>1:3.99</td>
<td>20-60</td>
<td>9.01-31.80</td>
<td>5</td>
</tr>
<tr>
<td>DES 28</td>
<td>ChCl:Ethylene glycol</td>
<td>1:4.99</td>
<td>20-60</td>
<td>7.50-28.49</td>
<td>5</td>
</tr>
<tr>
<td>DES 29</td>
<td>ChCl:Ethylene glycol</td>
<td>1:1.59</td>
<td>20-60</td>
<td>6.91-25.56</td>
<td>5</td>
</tr>
<tr>
<td>DES 30</td>
<td>ChCl:1,2-Propanediol</td>
<td>1:2.99</td>
<td>20-60</td>
<td>17.11-94.05</td>
<td>5</td>
</tr>
<tr>
<td>DES 31</td>
<td>ChCl:1,2-Propanediol</td>
<td>1:4.00</td>
<td>20-60</td>
<td>14.43-80.19</td>
<td>5</td>
</tr>
<tr>
<td>DES 32</td>
<td>ChCl:1,2-Propanediol</td>
<td>1:4.97</td>
<td>20-60</td>
<td>13.04-73.34</td>
<td>5</td>
</tr>
<tr>
<td>DES 33</td>
<td>ChCl:1,2-Propanediol</td>
<td>1:5.97</td>
<td>20-60</td>
<td>12.21-70.57</td>
<td>5</td>
</tr>
<tr>
<td>DES 34</td>
<td>ChCl:1,3-Propanediol</td>
<td>1:3.01</td>
<td>20-60</td>
<td>16.88-69.74</td>
<td>5</td>
</tr>
<tr>
<td>DES 35</td>
<td>ChCl:1,3-Propanediol</td>
<td>1:4.00</td>
<td>20-60</td>
<td>14.66-61.31</td>
<td>5</td>
</tr>
<tr>
<td>DES 36</td>
<td>ChCl:1,3-Propanediol</td>
<td>1:4.97</td>
<td>20-60</td>
<td>13.25-57.14</td>
<td>5</td>
</tr>
<tr>
<td>DES 37</td>
<td>ChCl:1,3-Propanediol</td>
<td>1:5.97</td>
<td>20-60</td>
<td>12.83-53.95</td>
<td>5</td>
</tr>
<tr>
<td>DES 38</td>
<td>ChCl:1,4-Butanediol</td>
<td>1:3.03</td>
<td>20-60</td>
<td>23.6-112.88</td>
<td>5</td>
</tr>
<tr>
<td>DES 39</td>
<td>ChCl:1,4-Butanediol</td>
<td>1:3</td>
<td>30-70</td>
<td>15.7-60.64</td>
<td>6</td>
</tr>
<tr>
<td>DES 40</td>
<td>ChCl:1,4-Butanediol</td>
<td>1:3.99</td>
<td>20-60</td>
<td>20.75-99.69</td>
<td>5</td>
</tr>
<tr>
<td>DES</td>
<td>Compound Combination</td>
<td>Ratio</td>
<td>Temperature</td>
<td>Tg (°C)</td>
<td>Rg (°C)</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>DES41</td>
<td>ChCl:1,4-Butanediol</td>
<td>1:5.00</td>
<td>20-60</td>
<td>19.64-93.69</td>
<td>5</td>
</tr>
<tr>
<td>DES42</td>
<td>ChCl:1,4-Butanediol</td>
<td>1:6.01</td>
<td>20-60</td>
<td>18.98-91.44</td>
<td>5</td>
</tr>
<tr>
<td>DES43</td>
<td>ChCl:1,4-Butanediol</td>
<td>1:4</td>
<td>30-70</td>
<td>14-54.75</td>
<td>7</td>
</tr>
<tr>
<td>DES44</td>
<td>ChCl:2,3-Butanediol</td>
<td>1:4</td>
<td>30-70</td>
<td>11.89-71.79</td>
<td>7</td>
</tr>
<tr>
<td>DES45</td>
<td>ChCl:2,3-Butanediol</td>
<td>1:3</td>
<td>30-70</td>
<td>14.34-84.88</td>
<td>7</td>
</tr>
<tr>
<td>DES46</td>
<td>ChCl:1,3-Propanediol</td>
<td>1:4</td>
<td>30-70</td>
<td>10.26-34.75</td>
<td>7</td>
</tr>
<tr>
<td>DES47</td>
<td>ChCl:1,3-Propanediol</td>
<td>1:3</td>
<td>30-70</td>
<td>11.85-40.05</td>
<td>7</td>
</tr>
<tr>
<td>DES48</td>
<td>ChCl:Phenol</td>
<td>1:2</td>
<td>20-45</td>
<td>34.34-120.77</td>
<td>8</td>
</tr>
<tr>
<td>DES49</td>
<td>ChCl:Phenol</td>
<td>1:3</td>
<td>20-45</td>
<td>19.14-57.84</td>
<td>8</td>
</tr>
<tr>
<td>DES50</td>
<td>ChCl:Phenol</td>
<td>1:4</td>
<td>20-45</td>
<td>14.00-40.23</td>
<td>8</td>
</tr>
<tr>
<td>DES51</td>
<td>ChCl:Phenol</td>
<td>1:5</td>
<td>20-45</td>
<td>11.26-31.96</td>
<td>8</td>
</tr>
<tr>
<td>DES52</td>
<td>ChCl:Phenol</td>
<td>1:6</td>
<td>20-45</td>
<td>9.46-27.03</td>
<td>8</td>
</tr>
<tr>
<td>DES53</td>
<td>ChCl:O-cresol</td>
<td>1:2</td>
<td>25</td>
<td>207.41</td>
<td>8</td>
</tr>
<tr>
<td>DES54</td>
<td>ChCl:O-cresol</td>
<td>1:3</td>
<td>25</td>
<td>77.65</td>
<td>8</td>
</tr>
<tr>
<td>DES55</td>
<td>ChCl:O-cresol</td>
<td>1:3.91</td>
<td>25</td>
<td>46.95</td>
<td>8</td>
</tr>
<tr>
<td>DES56</td>
<td>ChCl:O-cresol</td>
<td>1:5</td>
<td>25</td>
<td>34.90</td>
<td>8</td>
</tr>
<tr>
<td>DES57</td>
<td>ChCl:O-cresol</td>
<td>1:6</td>
<td>25</td>
<td>27.82</td>
<td>8</td>
</tr>
<tr>
<td>DES58</td>
<td>Betaine:Lactic acid</td>
<td>1:2</td>
<td>20.21-69.66</td>
<td>70-1210</td>
<td>6</td>
</tr>
<tr>
<td>DES59</td>
<td>Histidine:Lactic acid</td>
<td>1:9</td>
<td>20.21-69.66</td>
<td>90-2130</td>
<td>6</td>
</tr>
<tr>
<td>DES60</td>
<td>Betaine:DL-Malic Acid</td>
<td>2:1</td>
<td>20.21-69.66</td>
<td>680-27310</td>
<td>6</td>
</tr>
<tr>
<td>DES61</td>
<td>Ethylamine hydrochloride:Urea</td>
<td>1:0.5</td>
<td>40-80</td>
<td>34.8-97.8</td>
<td>9</td>
</tr>
<tr>
<td>DES62</td>
<td>Ethylamine hydrochloride:Urea</td>
<td>1:1</td>
<td>40-80</td>
<td>34.8-197.7</td>
<td>9</td>
</tr>
<tr>
<td>DES63</td>
<td>Ethylamine hydrochloride:Urea</td>
<td>1:2</td>
<td>40-80</td>
<td>28.7-105.5</td>
<td>9</td>
</tr>
<tr>
<td>DES64</td>
<td>Betaine:Levulinic acid</td>
<td>1:7</td>
<td>25</td>
<td>117.7</td>
<td>10</td>
</tr>
<tr>
<td>DES65</td>
<td>ChCl:Levulinic acid</td>
<td>1:2</td>
<td>25-75</td>
<td>7.212-320.6</td>
<td>4, 11</td>
</tr>
<tr>
<td>DES66</td>
<td>ChCl:Glucose</td>
<td>1:1</td>
<td>50-100</td>
<td>216.83-34400</td>
<td>12, 13</td>
</tr>
<tr>
<td>DES67</td>
<td>ChCl:Fructose</td>
<td>1:1</td>
<td>50-100</td>
<td>199.59-5586.90</td>
<td>12</td>
</tr>
<tr>
<td>DES68</td>
<td>ChCl:Xylose</td>
<td>1:1</td>
<td>45-100</td>
<td>146.28-5999.90</td>
<td>12</td>
</tr>
<tr>
<td>DES69</td>
<td>ChCl: Mannose</td>
<td>1:1</td>
<td>60-100</td>
<td>356.01-6619.40</td>
<td>12</td>
</tr>
<tr>
<td>DES70</td>
<td>Allyltriphenylphosphonium bromide:Diethylene glycol</td>
<td>1:4</td>
<td>20-70</td>
<td>17.139-213.18</td>
<td>14</td>
</tr>
<tr>
<td>DES71</td>
<td>Allyltriphenylphosphonium bromide:Diethylene glycol</td>
<td>1:10</td>
<td>20-70</td>
<td>8.9700-70.916</td>
<td>14</td>
</tr>
<tr>
<td>DES72</td>
<td>Allyltriphenylphosphonium bromide:Diethylene glycol</td>
<td>1:16</td>
<td>20-70</td>
<td>7.870-57.19</td>
<td>14</td>
</tr>
<tr>
<td>DES73</td>
<td>Allyltriphenylphosphonium bromide:Triethylene glycol</td>
<td>1:4</td>
<td>20-70</td>
<td>19.402-233.75</td>
<td>14</td>
</tr>
<tr>
<td>DES74</td>
<td>Allyltriphenylphosphonium bromide:Triethylene glycol</td>
<td>1:10</td>
<td>20-70</td>
<td>11.402-95.287</td>
<td>14</td>
</tr>
<tr>
<td>No.</td>
<td>System</td>
<td>molar ratio</td>
<td>Phase range</td>
<td>Cubic growth area (nm)</td>
<td>Ref.</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>------</td>
</tr>
<tr>
<td>DES75</td>
<td>Allyltriphenylphosphonium bromide:Triethylene glycol</td>
<td>1:16</td>
<td>20-70</td>
<td>9.8905-76.6310</td>
<td>14</td>
</tr>
<tr>
<td>DES76</td>
<td>ChCl:Triethylene glycol</td>
<td>1:3</td>
<td>25-85</td>
<td>9.0-68.0</td>
<td>15</td>
</tr>
<tr>
<td>DES77</td>
<td>ChCl:Triethylene glycol</td>
<td>1:4</td>
<td>25-85</td>
<td>8.1-61.9</td>
<td>15</td>
</tr>
<tr>
<td>DES78</td>
<td>ChCl:Triethylene glycol</td>
<td>1:5</td>
<td>25-85</td>
<td>7.5-53.0</td>
<td>15</td>
</tr>
<tr>
<td>DES79</td>
<td>ChCl:Triethylene glycol</td>
<td>1:6</td>
<td>25-85</td>
<td>6.5-44.9</td>
<td>15</td>
</tr>
<tr>
<td>DES80</td>
<td>N,N-diethylethanolammonium chloride:Glycerol</td>
<td>1:2</td>
<td>25-70</td>
<td>42.5755-513.0930</td>
<td>16</td>
</tr>
<tr>
<td>DES81</td>
<td>N,N-diethylethanolammonium chloride:Ethylene glycol</td>
<td>1:2</td>
<td>25-70</td>
<td>9.9868-50.4466</td>
<td>16</td>
</tr>
<tr>
<td>DES82</td>
<td>ChCl:Imidazole</td>
<td>3:7</td>
<td>20-130</td>
<td>6.2-810.0</td>
<td>17</td>
</tr>
<tr>
<td>DES83</td>
<td>Tetraethylammonium bromide:Imidazole</td>
<td>3:7</td>
<td>60-130</td>
<td>4.0-22.5</td>
<td>17</td>
</tr>
<tr>
<td>DES84</td>
<td>ChCl:Xylitol</td>
<td>1:1</td>
<td>30-70</td>
<td>250-5230</td>
<td>13</td>
</tr>
<tr>
<td>DES85</td>
<td>ChCl:D-Sorbitol</td>
<td>1:1</td>
<td>30-70</td>
<td>480-12730</td>
<td>13</td>
</tr>
<tr>
<td>DES86</td>
<td>ChCl:Oxalic acid</td>
<td>1:1</td>
<td>20-75</td>
<td>10-8953</td>
<td>4</td>
</tr>
<tr>
<td>DES87</td>
<td>ChCl:Glycolic acid</td>
<td>1:1</td>
<td>20-80</td>
<td>7.845-779.4</td>
<td>4</td>
</tr>
<tr>
<td>DES88</td>
<td>ChCl:Levulinic acid</td>
<td>1:3</td>
<td>20-60</td>
<td>20.21-134.23</td>
<td>18</td>
</tr>
<tr>
<td>DES89</td>
<td>Acetylcholine chloride:Levulinic acid</td>
<td>1:3</td>
<td>20-60</td>
<td>21.47-164.52</td>
<td>18</td>
</tr>
<tr>
<td>DES90</td>
<td>Tetraethylammonium chloride:Levulinic acid</td>
<td>1:3</td>
<td>20-60</td>
<td>18.71-130.07</td>
<td>18</td>
</tr>
<tr>
<td>DES91</td>
<td>Tetraethylammonium chloride:Levulinic acid</td>
<td>1:3</td>
<td>20-60</td>
<td>19.74-148.95</td>
<td>18</td>
</tr>
<tr>
<td>DES92</td>
<td>Tetraethylammonium chloride:Levulinic acid</td>
<td>1:3</td>
<td>20-60</td>
<td>17.47-121.68</td>
<td>18</td>
</tr>
<tr>
<td>DES93</td>
<td>Tetraethylammonium chloride:Levulinic acid</td>
<td>1:3</td>
<td>20-60</td>
<td>33.85-376.50</td>
<td>18</td>
</tr>
<tr>
<td>DES94</td>
<td>Trimethylamine hydrochloride:Levulinic acid</td>
<td>1:3</td>
<td>20-60</td>
<td>12.70-74.02</td>
<td>18</td>
</tr>
<tr>
<td>DES95</td>
<td>Acetylcholine chloride:1,2,4-Triazole</td>
<td>1:1</td>
<td>30-90</td>
<td>8.37-304.69</td>
<td>19</td>
</tr>
<tr>
<td>DES96</td>
<td>Acetylcholine chloride:imidazole</td>
<td>1:1.5</td>
<td>30-90</td>
<td>11.69-233.69</td>
<td>19</td>
</tr>
<tr>
<td>DES97</td>
<td>Acetylcholine chloride:imidazole</td>
<td>1:2</td>
<td>30-90</td>
<td>4.17-103.33</td>
<td>19</td>
</tr>
<tr>
<td>DES98</td>
<td>Acetylcholine chloride:imidazole</td>
<td>1:3</td>
<td>30-90</td>
<td>17.68-335.98</td>
<td>19</td>
</tr>
<tr>
<td>DES99</td>
<td>Benzyltripropylammonium chloride:Phenol</td>
<td>1:3</td>
<td>20-70</td>
<td>20.4-638.4</td>
<td>20</td>
</tr>
<tr>
<td>DES100</td>
<td>Benzyltripropylammonium chloride:Ethylene glycol</td>
<td>1:3</td>
<td>20-70</td>
<td>22.2-327.9</td>
<td>20</td>
</tr>
<tr>
<td>DES101</td>
<td>Benzyltripropylammonium chloride:Lactic acid</td>
<td>1:3</td>
<td>30-70</td>
<td>81.3-2276.7</td>
<td>20</td>
</tr>
<tr>
<td>DES102</td>
<td>Benzyltripropylammonium chloride:Glycerol</td>
<td>1:3</td>
<td>30-70</td>
<td>97-1890.5</td>
<td>20</td>
</tr>
<tr>
<td>DES103</td>
<td>Methyltriphenylphosphonium bromide : Glycerol</td>
<td>1:1.75</td>
<td>45-95</td>
<td>36.9-887.1</td>
<td>21</td>
</tr>
<tr>
<td>DES104</td>
<td>Methyltriphenylphosphonium bromide:Ethylene glycol</td>
<td>1:4</td>
<td>5-75</td>
<td>1.8-345</td>
<td>21</td>
</tr>
<tr>
<td>DES105</td>
<td>Methyltriphenylphosphonium</td>
<td>1:8</td>
<td>5-85</td>
<td>0.9-657.7</td>
<td>21</td>
</tr>
<tr>
<td>Model</td>
<td>Representation</td>
<td>Data set</td>
<td>MSE</td>
<td>R^2</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support Vector Regression</td>
<td>BP</td>
<td>Training set</td>
<td>1.9014</td>
<td>0.2765</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>2.6443</td>
<td>0.1328</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP _ W_{H_2O}</td>
<td>Training set</td>
<td>1.8144</td>
<td>0.3093</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>2.6169</td>
<td>0.1418</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP _ MF</td>
<td>Training set</td>
<td>0.5222</td>
<td>0.8012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>0.6595</td>
<td>0.7837</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP _ W_{H_2O} _ MF</td>
<td>Training set</td>
<td>0.0877</td>
<td>0.9666</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>0.2121</td>
<td>0.9304</td>
</tr>
<tr>
<td></td>
<td>Random Forest</td>
<td>BP</td>
<td>Training set</td>
<td>1.6629</td>
<td>0.3670</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>2.4072</td>
<td>0.2105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP _ W_{H_2O}</td>
<td>Training set</td>
<td>0.2712</td>
<td>0.8968</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>0.6854</td>
<td>0.7752</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP _ MF</td>
<td>Training set</td>
<td>0.4999</td>
<td>0.8097</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>0.6885</td>
<td>0.7742</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP _ W_{H_2O} _ MF</td>
<td>Training set</td>
<td>0.0191</td>
<td>0.9927</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>0.1199</td>
<td>0.9607</td>
</tr>
<tr>
<td></td>
<td>Neural Network</td>
<td>BP</td>
<td>Training set</td>
<td>2.2736</td>
<td>0.1346</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>2.9722</td>
<td>0.0253</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP _ W_{H_2O}</td>
<td>Training set</td>
<td>1.1609</td>
<td>0.5581</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>2.2798</td>
<td>0.2523</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP _ MF</td>
<td>Training set</td>
<td>0.3426</td>
<td>0.8696</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>0.6997</td>
<td>0.7705</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP _ W_{H_2O} _ MF</td>
<td>Training set</td>
<td>0.0312</td>
<td>0.9881</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>0.0658</td>
<td>0.9784</td>
</tr>
<tr>
<td></td>
<td>Extreme Gradient boosting</td>
<td>BP</td>
<td>Training set</td>
<td>1.6868</td>
<td>0.3579</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>2.3750</td>
<td>0.2211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP _ W_{H_2O}</td>
<td>Training set</td>
<td>0.2566</td>
<td>0.9023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>0.5547</td>
<td>0.8181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP _ MF</td>
<td>Training set</td>
<td>0.3487</td>
<td>0.8673</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>0.5666</td>
<td>0.8142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP _ W_{H_2O} _ MF</td>
<td>Training set</td>
<td>0.0002</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test set</td>
<td>0.0422</td>
<td>0.9861</td>
</tr>
</tbody>
</table>

Table S3. The ranges of the grid-search for each algorithm in training the models

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Hyperparameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Vector Regression</td>
<td>C</td>
<td>0.1, 0.2, 0.3, 1, 2, 3, 10, 20</td>
</tr>
<tr>
<td></td>
<td>gamma</td>
<td>1, 0.1, 0.01, 0.001</td>
</tr>
<tr>
<td>Random Forest</td>
<td>n_estimators</td>
<td>5, 10, 20, 50, 70, 100</td>
</tr>
<tr>
<td></td>
<td>max_depth</td>
<td>3, 5, 7, 9, 10, 20</td>
</tr>
<tr>
<td></td>
<td>max_features</td>
<td>0, 6, 0.7, 1</td>
</tr>
<tr>
<td>Extreme Gradient boosting</td>
<td>n_estimators</td>
<td>5, 10, 20, 50, 70, 100, 200</td>
</tr>
<tr>
<td></td>
<td>max_depth</td>
<td>5, 6, 7, 8</td>
</tr>
<tr>
<td></td>
<td>max_delta_step</td>
<td>1, 3, 5, 7</td>
</tr>
</tbody>
</table>
Fig. S1 The relationship between SHAP value and the NH2 group related substructure for DESs. DESs with (a) HBD_140, (b) HBD_410, and (c) HBD_1771 are highlighted in red.
Reference:

