Supporting information

Enhanced thermoelectric performance of In-doped and AgCuTe-alloyed SnTe through band engineering and endotaxial nanostructures

Panpan Peng, ^a Chao Wang, ^{*a} Lanwei Li, ^a Shuyao Li, ^a Jing Chen, ^{*b} Pengya Fan, ^a Rui Du, ^a Haotian Si, ^a Zhenxiang Cheng ^c and Jianli Wang^{*a, c}

 ^a Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng, 475004, China; E-mail: wangchao@vip.henu.edu.cn
^b Department of Technology and Physics, Zhengzhou University of Light Industry,

Zhengzhou, 450002, China; E-mail: wulicj@126.com

^c Institute for Superconducting and Electronic Materials, Innovation Campus,

University of Wollongong, Squires Way, North Wollongong, Australia; E-mail: jianli@uow.edu.au

Results and Discussion:

In our work, the Lorenz number is obtained based on the two band model:

$$\mathbf{L}_{1h} = \left(\frac{\kappa_B}{e}\right)^2 \left[\frac{{}^2F_{-2}^1\left(\eta,\alpha\right)}{{}^0F_{-2}^1\left(\eta,\alpha\right)} - \left(\frac{{}^1F_{-2}^1\left(\eta,\alpha\right)}{{}^0F_{-2}^1\left(\eta,\alpha\right)}\right)^2\right],\tag{1}$$

and

$$L_{hh} = \left(\frac{\kappa_{B}}{e}\right)^{2} \left[\frac{{}^{2}F_{-2}^{1}\left(\eta - \Delta\nu, 0\right)}{{}^{0}F_{-2}^{1}\left(\eta - \Delta\nu, 0\right)} - \left(\frac{{}^{1}F_{-2}^{1}\left(\eta - \Delta\nu, 0\right)}{{}^{0}F_{-2}^{1}\left(\eta - \Delta\nu, 0\right)}\right)^{2}\right], \quad (2)$$

In the equations above the integral ${}^{n}F_{l}^{m}$ is defined by

$${}^{n}F_{l}^{m} = \int_{0}^{\infty} -\frac{\partial f}{\partial \varepsilon}\varepsilon^{n} \left(\varepsilon + \alpha\varepsilon^{2}\right)^{m} \left[\left(1 + 2\alpha\varepsilon\right)^{2} + 2\right]^{\frac{l}{2}} d\varepsilon,$$

where L_{lh} is the L of light-hole band, L_{hh} is the L of heavy-hole band, η is the reduced

chemical potential calculated by $\eta = {}^{E} f / {}^{K} {}^{B} T$, α is the nonparabolic parameter obtained by $\alpha = {}^{K} {}^{B} T / {}^{E} g$, and ${}^{n} F_{l}^{m}$ is the generalized Fermi function. For the second valence band, we set $\alpha = 0$ and replace η with $\eta - \Delta v$ in these equations, where $\Delta v = \Delta E / {}^{K} {}^{B} T$, ΔE is the energy difference between the first and second valence band. The total L of the system can be expressed:

$$\mathbf{L}_{\text{total}} = \left(\delta_{1h} \mathbf{L}_{1h} + \delta_{hh} \mathbf{L}_{hh} \right) / \left(\delta_{1h} + \delta_{hh} \right).$$

Figure S1 (a) XRD patterns, (b) lattice parametes (c) average grain size and micro strain of Sn $_{1.03-y}$ In _y Te-x%AgCuTe.

Figure S2. (a), (b) power factors as the function of temperature for $Sn_{1.03}$ Te-x%AgCuTe and $Sn_{1.03-y}In_y$ Te-1%AgCuTe, respectively.

Figure S3. ZT values as the function of temperature for $Sn_{1.03}$ Te-x%AgCuTe.

Figure S4. (a) SEM images of $Sn_{1.03}$ Te-5%AgCuTe sample. (a1)-(a4) Elemental energy dispersive spectroscopy (EDS) mapping of the $Sn_{1.03}$ Te-5%AgCuTe sample.

Figure S5 (a) SEM images of $Sn_{1.01}In_{0.02}$ Te-1%AgCuTe sample. (a1-a5) Elemental energy dispersive spectroscopy (EDS) mapping of the $Sn_{1.01}In_{0.02}$ Te-1%AgCuTe sample. (b) TEM image of the $Sn_{1.02}In_{0.01}$ Te-1%AgCuTe. (c) HRTEM image of $Sn_{1.02}In_{0.01}$ Te-1%AgCuTe; (d) the IFFT image of the blue rectangle in plot (c)