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Results and Discussion:
In our work, the Lorenz number is obtained based on the two band model:
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In the equations above the integral "F;" is defined by
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where L, is the L of light-hole band, Ly, is the L of heavy-hole band, 1 is the reduced



chemical potential calculated by n = Ey /k B T, a is the nonparabolic parameter obtained

kgT JE

by a = g, and "F" is the generalized Fermi function. For the second valence band,

we set a = 0 and replace n with n-Av in these equations, where Av = AE/k BT, AE is the
energy difference between the first and second valence band. The total L of the system can

be expressed:

Ltotal = (Sthlh + 6thhh )/ (81h + 8hh )
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Figure S1 (a) XRD patterns, (b) lattice parametes (c) average grain size and micro strain

of Sn | g3-y In y Te-x%AgCuTe.
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Figure S2. (a), (b) power factors as the function of temperature for Sn; o3 Te-x%AgCuTe

and Sn g3.yIn,Te-1%AgCuTe, respectively.
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Figure S3. ZT values as the function of temperature for Sn; o3 Te-x%AgCuTe.

Figure S4. (a) SEM images of Sn; o3Te-5%AgCuTe sample. (al)-(a4) Elemental energy
dispersive spectroscopy (EDS) mapping of the Sn; g3Te-5%AgCuTe sample.
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Figure S5 (a) SEM images of Sn; o;Ing 0, Te-1%AgCuTe sample. (al-a5) Elemental energy
dispersive spectroscopy (EDS) mapping of the Sn; ¢1Ing o, Te-1%AgCuTe sample. (b) TEM
image of the Sn p;Ing o Te-1%AgCuTe. (c) HRTEM image of Sn; gIng o Te-1%AgCuTe;
(d) the IFFT image of the blue rectangle in plot (¢)



