The Reaction between the Bromine Atom and the Water Trimer: High Level Theoretical Studies

Guoliang Li, *a Ying Yao, ${ }^{a}$ Yan Lin, ${ }^{a}$ Yan Meng, ${ }^{a}$
Yaoming Xie, ${ }^{\text {b }}$ and Henry F. Schaefer III* ${ }^{*}$
${ }^{a}$ Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Center for Computational Quantum Chemistry, School of Chemistry, South China Normal University, Guangzhou,510006, P. R. China
${ }^{b}$ Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia, 30602, USA
e-mails: ccq@uga.edu and glli@scnu.edu.cn

Figure S1. Three pathways of the water trimer reaction $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow \mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ with the MPW1K/cc-pVTZ(-PP) method.

Table S1. Harmonic vibrational frequencies and zero-point energies for the stationary points of the $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow \mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ reaction obtained at the $\mathrm{CCSD}(\mathrm{T}) /$ cc-pVTZ $(-\mathrm{PP})$ level of theory.

Table S2. Cartesian coordinates for optimized stationary points in pathway (a) of the $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow$ $\mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ reaction at the MPW1K/cc-pVTZ(-PP) level of theory.

Table S3. Cartesian coordinates for optimized stationary points in pathway (b) of the $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow$ $\mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ reaction at the MPW1K/cc-pVTZ(-PP) level of theory.

Table S4. Cartesian coordinates for optimized stationary points in pathway (c) of the $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow$ $\mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ reaction at the MPW1K/cc-pVTZ(-PP) level of theory.

Table S5. Cartesian coordinates for optimized stationary points in pathway (a) of the $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow$ $\mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ reaction at the $\mathrm{CCSD}(\mathrm{T}) /$ cc- $\mathrm{pVDZ}(-\mathrm{PP})$ level of theory.

Table S6. Cartesian coordinates for optimized stationary points in pathway (a) of the $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow$ $\mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ reaction at the $\mathrm{CCSD}(\mathrm{T}) /$ cc- $\mathrm{pVTZ}(-\mathrm{PP})$ level of theory.

Complete Gaussian 16 reference.

Figure S1 Three pathways of the water trimer reaction $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow \mathrm{HBr}+$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ with the MPW1K/cc-pVTZ(-PP) method. All bond distances were given in angstroms.

Table S1. Harmonic vibrational frequencies (in cm^{-1}) and zero-point energies (ZPE, in $\mathrm{kcal} / \mathrm{mol})$ for the stationary points of the $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow \mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ reaction obtained at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}(-\mathrm{PP})$ level of theory. Experimental results are also shown for comparison.

	ZPE	$\triangle \mathrm{ZPE}$	Vibrational Frequencies
$\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$	46.46	0.00	$\begin{gathered} 188,194,202,209,228,253,360,372,471,614,689,926,1685, \\ 1690,1707,3613,3683,3689,3903,3907,3909 \end{gathered}$
Entrance Complex	46.67	$+0.21$	$\begin{gathered} 30,60,114,179,195,231,249,259,270,384,403,462,516, \\ 771,933,1672,1687,1704,3473,3620,3760,3866,3900,3901 \end{gathered}$
Transition State	41.88	-4.58	$\begin{gathered} 650 i, 33,76,122,210,229,279,298,313,446,533,595,716 \\ 768,879,1040,1200,1672,1701,3108,3546,3736,3898,3899 \end{gathered}$
Exit Complex	42.90	-3.56	$30,54,112,145,186,227,258,278,284,402,429,491,570$, $629,785,954,1673,1699,2275,3357,3602,3766,3901,3906$
$\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$	37.85	-4.82	$\begin{gathered} 163,196,211,230,252,291,375,534,557,668,916,1667,1687, \\ 3498,3675,3737,3908,3911 \end{gathered}$
HBr	3.79		2649

Experiment

Bonded OH in	$3533,{ }^{\text {a }} 3544 / 3529,{ }^{\text {b }} 3528,{ }^{\text {c }} 3531.8 \pm 1.2,{ }^{\mathrm{d}} 3516.7 \pm 2.3^{\mathrm{d}}$
$\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$	
Free OH in	$3726,{ }^{\text {a }} 3717^{\mathrm{b}}$
$\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$	3365.2^{c}
OH radical in	2649^{e}
$\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$	
HBr	

${ }^{a}$ In gas phase from Ref. 40. ${ }^{\mathrm{b}}$ In liquid He from Ref. 40. ${ }^{\mathrm{c}}$ In solid Ne from Ref. 41.
${ }^{\mathrm{d}}$ From Ref. 42. ${ }^{\mathrm{e}}$ From Ref. 43.

Table S2. Cartesian coordinates (in \AA) for optimized stationary points in pathway (a) of the $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow \mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ reaction, as shown in Figure S 1 and Figure 1, obtained at the MPW1K/cc-pVTZ(-PP) level of theory.

uud-($\left.\mathrm{H}_{2} \mathrm{O}\right)_{3}$, in \AA	$u d-\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$, in \AA
01	02
O,0.2973653142,0.7447415337,-0.141269676	O,0.195142335,0.2083715694,-0.0484520945
H,0.077234833,0.6208494016,0.7743246814	H,-0.1019051642,-0.2141410142,0.7663837464
H,1.0474808588,0.162329631,-0.3158292958	H,0.9710892866,-0.2623113864,-0.3294134349
O,2.1669429919,2.4961115369,-1.1813094804	O,-0.5553236426,-0.1081958361,2.57257675
H,1.3527864973,2.1637343813,-0.7840553349	H,-0.4169679725,0.8425889894,2.5653494144
H,2.4665837078,3.2024870649,-0.621560374	H,-1.433486602,-0.2455128399,2.9084534231
O,2.799396646,-0.1648077755,-0.8592898722	O,0.1669055015,2.4540280054,1.4997418571
H,2.8681295377,0.777530389,-1.0579689104	H,0.2774685537, 1.8098320639,0.7689781584
H,2.9451677129,-0.6152350913,-1.6830653029	
Enterance Complex, in \AA	$\mathbf{H B r}$, in \AA
02	01
O,0.,0., 0 .	H,0.,0.,0.04429631
H,0.,0.,0.95273	Br,0.,0.,1.45570369
H,0.9420413669,0.,-0.2690898391	
O,2.5612991915,2.7023031103,-1.4517156281	
H,1.6240327565,2.8256357628,-1.28583154	
H,3.0030011285,3.3374338231,-0.8985561049	
O,2.5664811284,0.0839073585,-0.7272513288	
H,2.7098127405,1.0002754046,-1.0093133002	
H,2.8112325811,-0.4632228616,-1.4647412367	
$\mathrm{Br},-0.6400739007,2.3884131431,-0.3345165171$	
Transition State, in \AA	
02	
O,-0.0079945675,0.000639368,0.0077430607	
Н,-0.0235312569,-0.0214881473,1.3390099644	
H,0.9744428129,0.0102040335,-0.2336782595	
O,3.3640106009,0.18077158,2.0800855446	
H,2.5202357627,0.3344303274,2.5167958642	
H,3.7433310499,-0.5750623575,2.5153651613	
O,2.5172680833,-0.0004078387,-0.445786581	
H,2.9423839062,0.0421824204,0.4313561352	
H,2.9024138326,0.6886343865,-0.9752448215	
Br,0.1063515158,0.365469899,2.855961228	
Exit Complex, in \AA	
02	
O,-0.0000095566,0.0000361683,-0.0000080045	
Н,-0.0000010887,-0.0000080782, 1.6550964605	
H,0.9667311645,0.0000114439,-0.2339059483	
O,3.4199367259,0.0865454852,2.1834326869	
H,2.5882117889,0.1856367704,2.6515566343	
H,3.8285759769,-0.6880859324,2.5545280701	
O,2.6046622209,-0.0111887119,-0.3990932744	
H,3.0038029885,0.0211029738,0.485295672	
H,3.0354091472,0.6561082071,-0.9203844877	
Br,0.1287953346,0.0486221293,3.1202155551	

Table S3. Cartesian coordinates (in \AA) for optimized stationary points in pathway (b) of the $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow \mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ reaction, as shown in Figure S 1 and Figure 1, obtained at the MPW1K/cc-pVTZ(-PP) level of theory.
uиd- $\left(\mathbf{H}_{2} \mathbf{O}\right)_{3}$, in \AA
$0 \quad 1$
$\mathrm{O}, 0.2973653142,0.7447415337,-0.141269676$
$\mathrm{H}, 0.077234833,0.6208494016,0.7743246814$
$\mathrm{H}, 1.0474808588,0.162329631,-0.3158292958$
$\mathrm{O}, 2.1669429919,2.4961115369,-1.1813094804$
$\mathrm{H}, 1.3527864973,2.1637343813,-0.7840553349$
$\mathrm{H}, 2.4665837078,3.2024870649,-0.621560374$
$\mathrm{O}, 2.799396646,-0.1648077755,-0.8592898722$
$\mathrm{H}, 2.8681295377,0.777530389,-1.0579689104$
$\mathrm{H}, 2.9451677129,-0.6152350913,-1.6830653029$

Enterance Complex, in \AA
$0 \quad 2$
O,0.,0.,0.
H,0.,0.,0.95249
Н, $0.939465273,0 .,-0.2756147393$
O,2.0393705943,2.3080664512,-2.4202047236
H,1.2707044413,2.5776846711,-1.9129855119
H,1.7234964373,2.1726226727,-3.3071646935
O,2.5098276792,0.088158139,-0.9209143136
H,2.4724966162,0.8470988327,-1.5229675561
H,3.264166991,0.2311249667,-0.3614210706
$\mathrm{Br},-0.6109705486,2.4054471303,-0.2882979255$

Transition State, in \AA

$0 \quad 2$
O,-0.0168370579,-0.019497235,0.0076885358
$\mathrm{H},-0.0344347814,-0.033424082,1.3236320501$
H, $0.9681890396,-0.0202068102,-0.2282032935$
O,3.3478515588,0.3673868747,2.0730381011
H,2.5011144612,0.3110230149,2.5276997533
H,3.71810293,1.2057925008,2.3275265182
O,2.512932934,0.0137654187,-0.4365824712
H,2.9314250122,0.1532889926,0.4341895443
H,2.9444961645,-0.7327030024,-0.8363616762
$\mathrm{Br}, 0.090176204,0.341008274,2.8535881986$

Exit Complex, in \AA

$0 \quad 2$
O,-0.0000191458,0.0001233627,-0.0000197984
H,0.0000253107,0.0000051227,1.6550791036
H,0.9667192275,0.000072593,-0.2339270247
O,3.4199854725,-0.086686389,2.1833738458
H,2.5882694352,-0.1858340464,2.6515022878
H,3.8285578398,0.687985139,2.5544606896
O,2.6046582845,0.0111010202,-0.3991405643
H,3.0038151448,-0.0212178921,0.4852400761
H,3.0353236986,-0.6562499502,-0.9204296835
Br,0.1288516163,-0.0487686229,3.1201921542

$u d-\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$, in \AA

$0 \quad 2$
O,-0.195142335,-0.2083715694,0.0484520945
H,0.1019051642,0.2141410142,-0.7663837464
H,-0.9710892866,0.2623113864,0.3294134349 O,0.5553236426,0.1081958361,-2.57257675
H, $0.4169679725,-0.8425889894,-2.5653494144$ H, 1.433486602,0.2455128399,-2.9084534231
O,-0.1669055015,-2.4540280054,-1.4997418571
H,-0.2774685537,-1.8098320639,-0.7689781584

HBr , in \AA

01
H,0.,0.,0.04429631
Br,0.,0.,1.45570369

Table S4. Cartesian coordinates (in \AA) for optimized stationary points in pathway (c) of the $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow \mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ reaction, as shown in Figure S 1 and Figure 1, obtained at the MPW1K/cc-pVTZ(-PP) level of theory.
uud-($\left.\mathbf{H}_{2} \mathbf{O}\right)_{3}$, in \AA
$0 \quad 1$
$\mathrm{O}, 0.2973653142,0.7447415337,-0.141269676$
$\mathrm{H}, 0.077234833,0.6208494016,0.7743246814$
$\mathrm{H}, 1.0474808588,0.162329631,-0.3158292958$
$\mathrm{O}, 2.1669429919,2.4961115369,-1.1813094804$
$\mathrm{H}, 1.3527864973,2.1637343813,-0.7840553349$
$\mathrm{H}, 2.4665837078,3.2024870649,-0.621560374$
$\mathrm{O}, 2.799396646,-0.1648077755,-0.8592898722$
$\mathrm{H}, 2.8681295377,0.777530389,-1.0579689104$
$\mathrm{H}, 2.9451677129,-0.6152350913,-1.6830653029$

Enterance Complex, in \AA

$0 \quad 2$
O,-0.0000048347,0.000007598,0.0000067431
$\mathrm{H}, 0.0000414572,0.0000205896,-0.9528341333$
H,-0.9422877026,-0.0000008979, 0.2665215687
О,-2.502956267,-2.6605485834,1.614195852
H,-1.6449777833,-2.836873304,1.2216537652
Н,-2.3985756566,-2.8540637794,2.5394168946
O,-2.5708069458,-0.088886083,0.7089414567
Н, $-2.7001301961,-0.9682584708,1.0944500084$
Н,-2.8914458054,0.5393240589,1.3451717992
$\mathrm{Br}, 0.6269569946,-2.3998355545,0.2960995078$

Transition State, in \AA

$0 \quad 2$
O,0.0058006281,0.0410198652,-0.0065968858
$\mathrm{H}, 0.0214640095,0.0367311741,-1.3369291241$
Н,-0.9755863068,0.0176252253,0.2348487006
O,-3.3674830018,-0.3185396919,-2.0723143964
Н,-2.515915362,-0.2796618161,-2.5189137775
H,-3.7959965796,-1.0977857354,-2.4087364449
О,-2.5186257652,-0.0007170614,0.4496250137
H,-2.95910156,-0.1410031111,-0.4084231616
Н, $-2.8967419197,-0.6138927529,1.0689307122$
$\mathrm{Br},-0.0993567508,-0.3804010621,-2.8469206825$

Exit Complex, in \AA

$0 \quad 2$

O,-0.0000083938,0.0000134759,-0.0000029967
H, $0.0000001778,-0.0000380393,-1.6644219592$
Н,-0.9664868283,0.0000171612,0.2284302444
O,-3.3958668721,-0.5221267957,-2.1928316405
Н,-2.6000747105,-0.2731981781,-2.667202209
Н,-3.586361681,-1.4097755666,-2.4762032247
O,-2.6064748057,0.0138928778,0.3534865256
Н, $-3.0181656127,-0.2097635264,-0.4953748026$
Н,-3.1107546521,-0.4072875745,1.0385966628
Br,-0.129575803,-0.033911973,-3.1278273047

$u u-\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$, in \AA

$0 \quad 2$
O,-0.0166968205,-0.1409349551,0.0723053137
Н,-0.0592244187,0.262280938,-0.8021173879
Н,-0.8472101174,0.0365237897,0.4973983907
O,0.2890771233,0.1159337507,-2.6477504019
H,0.5364717188,-0.8070186355,-2.5485533781
H,-0.3021017442,0.1553118022,-3.3900972282
O,0.7233299134,-2.3757716081,-1.2985360426
H,0.4734868336,-1.7309846333,-0.6038901238

HBr , in \AA

$0 \quad 1$
H,0.,0.,0.04429631
Br,0.,0.,1.45570369

Table S5. Cartesian coordinates (in Bohr) for optimized stationary points in pathway (a) of the $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow \mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ reaction, as shown in Figure 1, obtained at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVDZ}(-\mathrm{PP})$ level of theory.

```
uud-(H2O)
0 1
O,-2.57756438,1.62979841,-0.11187444
H,-3.36036450,1.88148465,1.52036232
H,-2.23016354,-0.18763709,-0.10804916
O,2.70489029,1.39960166,-0.09845909
H,0.97088909,2.03720930,-0.19000541
H,3.30632743,2.08850654,1.48372189
O,-0.13029905,-3.03770681,0.12448214
H,1.26945573,-1.82835523,0.14995884
H,0.09104168,-3.85937417,-1.49346469
Enterance Complex, in Bohr
0 2
O,0.69284309,-3.55737554,-0.32962020
H,0.39028600,-4.28755878,1.32333849
H,2.40028644,-2.82937928,-0.13952655
O,3.61973610,3.54232321,-0.23746869
H,1.88677064,3.07414746,-0.62373585
H,3.43374137,4.42575893,1.35387835
O,5.33967585,-1.38597339,0.31289872
H,4.95549956,0.42300665,0.20180501
H,6.44585630,-1.65239495,-1.11803995
Br -2.20547125,0.29476458,0.03877709
```


Transition State, in Bohr

```
\(0 \quad 2\)
O,1.28192613,3.85247825,-0.16307325
H,-0.41105951,2.10144715,-0.60316335
H,2.90256388,2.81833625,-0.02067603
O,3.24071500,-3.70047061,-0.03828466
H,1.49100649,-3.21317279,0.25973093
H,3.14921288,-4.51182994,-1.67559153
O,5.31465520,1.01063117,0.06774452
H,4.74466824,-0.75941716,-0.05408348
H,6.24378299,1.04620892,1.64230616
\(\mathrm{Br}-2.22519492,-0.20347837,0.03284591\)
```


Exit Complex, in Bohr

```
\(0 \quad 2\)
O,2.14017185,-4.02235737,-0.02190925
Н, \(-0.51603406,-1.86233884,0.03701665\)
H,3.63036490,-2.85668391,0.02727305
O,3.00631890,3.90245684,-0.10709834
H,1.30395743,3.29738634,-0.43253366
H,2.82139984,4.73455924,1.51168413
O,5.84637805,-0.50017221,0.12092972
\(\mathrm{H}, 4.96994558,1.13278355,0.08002013\)
H,6.99757606,-0.39032664,-1.29387093
Br -2.47328459,0.07388520,0.00253637
```

Table S6. Cartesian coordinates (in Bohr) for optimized stationary points in pathway (a) of the $\mathrm{Br}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow \mathrm{HBr}+\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$ reaction, as shown in Figure 1, obtained at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}(-\mathrm{PP})$ level of theory.
uиd- $\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$, in Bohr
$0 \quad 1$
$\mathrm{O},-2.65261793,1.50032150,-0.10633497$
$\mathrm{H},-3.73963216,1.75797437,1.32120417$
$\mathrm{H},-2.24923826,-0.29155296,-0.06591336$
$\mathrm{O}, 2.62996378,1.52947819,-0.09357003$
$\mathrm{H}, 0.89232610,2.12158252,-0.04928732$
$\mathrm{H}, 3.43796005,2.34824833,1.30720704$
$\mathrm{O}, 0.02122954,-3.03590337,0.12076531$
$\mathrm{H}, 1.37796825,-1.79759531,0.10412966$
$\mathrm{H}, 0.30322555,-4.04178710,-1.36133603$

Enterance Complex, in Bohr

$0 \quad 2$
O,0.77242142,-3.58041303,-0.15546373
H,0.48695690,-4.24733869,1.51143234
H,2.46416707,-2.82777252,-0.06567435
O,3.44574308,3.56510462,-0.12490149
H,1.70826003,3.03203793,-0.30837915
H,3.44491038,4.56381675,1.39088010
O,5.38109115,-1.27883136,0.15307129
H,4.95495272,0.51093413,0.08537282
H,6.49294888,-1.54579410,-1.25467034
Br -2.19523720,0.26885760,0.00844494

Transition State, in Bohr

$0 \quad 2$
O,1.38197776,3.80736748,-0.27151537
H,-0.43072483,1.98202457,-0.67552527
H,2.96897280,2.78642833,-0.04783137
O,3.14332645,-3.69212847,-0.11637107
H,1.41112340,-3.12978714,0.05549824
H,3.16635067,-4.60650174,-1.68424903
O,5.42476784,0.92092893,0.17177928
H,4.82389637,-0.82136327,0.03444264
H,6.36167376,0.98236847,1.72369660
$\mathrm{Br}-2.25036490,-0.17416261,0.05138516$

Exit Complex, in Bohr

$0 \quad 2$
O,2.18561293,-3.97486798,0.02638329
H,-0.49051987,-1.84920807,0.06583094
H,3.64707832,-2.79701980,0.02694406
O,2.88248970,3.85719825,-0.07057802
H,1.20373716,3.16535719,-0.26330114
H,2.78873506,4.82661325,1.46138176
O,5.86092102,-0.42314941,0.06751678
H,4.97587578,1.19185081,0.01819207
H,7.09509278,-0.33189152,-1.25719329
Br -2.46050799,0.05590265,-0.00538904

$u d-\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OH}$, in Bohr

$0 \quad 2$
O,2.05865745,-2.44944340,-0.00663349
O,-3.03637394,-0.43704961,-0.10463192
O,1.16039085,2.70740037,0.11271341
H,2.23137593,-0.59517469,-0.00805151
Н,-1.71388891,-1.69973794,-0.03697262
Н,-4.16675174,-0.87392300,1.24386732
Н,-0.59219356,2.16460567,0.06392521
H, 1.34228361,3.84656004,-1.28574921

HBr , in Bohr

01
H,-0.00000000,0.00000000,2.64652073
Br 0.00000000,0.00000000,-0.03379734

Complete Gaussian 16 reference

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016.

