Supporting Information

The Reaction between the Bromine Atom and the Water Trimer: High Level Theoretical Studies

Guoliang Li,*^a Ying Yao,^a Yan Lin,^a Yan Meng,^a Yaoming Xie,^b and Henry F. Schaefer III*^b

 ^aKey Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Center for Computational Quantum Chemistry, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
^bDepartment of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia, 30602, USA

e-mails: ccq@uga.edu and glli@scnu.edu.cn

Figure S1. Three pathways of the water trimer reaction $Br + (H_2O)_3 \rightarrow HBr + (H_2O)_2OH$ with the MPW1K/cc-pVTZ(-PP) method.

Table S1. Harmonic vibrational frequencies and zero-point energies for the stationary points of the $Br + (H_2O)_3 \rightarrow HBr + (H_2O)_2OH$ reaction obtained at the CCSD(T)/cc-pVTZ(-PP) level of theory.

Table S2. Cartesian coordinates for optimized stationary points in pathway (a) of the Br + $(H_2O)_3 \rightarrow$ HBr + $(H_2O)_2OH$ reaction at the MPW1K/cc-pVTZ(-PP) level of theory.

Table S3. Cartesian coordinates for optimized stationary points in pathway (b) of the Br + $(H_2O)_3 \rightarrow$ HBr + $(H_2O)_2OH$ reaction at the MPW1K/cc-pVTZ(-PP) level of theory.

Table S4. Cartesian coordinates for optimized stationary points in pathway (c) of the Br + $(H_2O)_3 \rightarrow$ HBr + $(H_2O)_2OH$ reaction at the MPW1K/cc-pVTZ(-PP) level of theory.

Table S5. Cartesian coordinates for optimized stationary points in pathway (a) of the Br + $(H_2O)_3 \rightarrow$ HBr + $(H_2O)_2OH$ reaction at the CCSD(T)/cc-pVDZ(-PP) level of theory.

Table S6. Cartesian coordinates for optimized stationary points in pathway (a) of the Br + $(H_2O)_3 \rightarrow$ HBr + $(H_2O)_2OH$ reaction at the CCSD(T)/cc-pVTZ(-PP) level of theory.

Complete Gaussian 16 reference.

Figure S1 Three pathways of the water *trimer* reaction $Br + (H_2O)_3 \rightarrow HBr + (H_2O)_2OH$ with the MPW1K/cc-pVTZ(-PP) method. All bond distances were given in angstroms.

Table S1. Harmonic vibrational frequencies (in cm^{-1}) and zero-point energies (ZPE, in kcal/mol) for the stationary points of the Br + $(H_2O)_3 \rightarrow HBr + (H_2O)_2OH$ reaction obtained at the CCSD(T)/cc-pVTZ(-PP) level of theory. Experimental results are also shown for comparison.

	ZPE	ΔΖΡΕ	Vibrational Frequencies		
(H ₂ O) ₃	46.46	0.00	188, 194, 202, 209, 228, 253, 360, 372, 471, 614, 689, 926, 1685, 1690, 1707, 3613, 3683, 3689, 3903, 3907, 3909		
Entrance Complex	46.67	+0.21	30, 60, 114, 179, 195, 231, 249, 259, 270, 384, 403, 462, 516, 771, 933, 1672, 1687, 1704, 3473, 3620, 3760, 3866, 3900, 3901		
Transition State	41.88	-4.58	650 <i>i</i> , 33, 76, 122, 210, 229, 279, 298, 313, 446, 533, 595, 716, 768, 879, 1040, 1200, 1672, 1701, 3108, 3546, 3736, 3898, 3899		
Exit Complex	42.90	-3.56	30, 54, 112, 145, 186, 227, 258, 278, 284, 402, 429, 491, 570, 629, 785, 954, 1673, 1699, 2275, 3357, 3602, 3766, 3901, 3906		
$(H_2O)_2OH$	37.85	-4.82	163, 196, 211, 230, 252, 291, 375, 534, 557, 668, 916, 1667, 1687, 3498, 3675, 3737, 3908, 3911		
HBr	3.79		2649		
Experiment					
Bonded OH in (H ₂ O) ₃			3533,ª 3544/3529, ^b 3528, ^c 3531.8±1.2, ^d 3516.7±2.3 ^d		
Free OH in (H ₂ O) ₃			3726, ^a 3717 ^b		
OH radical in (H ₂ O) ₂ OH			3365.2°		
HBr			2649°		

^a In gas phase from Ref. 40. ^b In liquid He from Ref. 40. ^c In solid Ne from Ref. 41. ^d From Ref. 42. ^c From Ref. 43.

Table S2. Cartesian coordinates (in Å) for optimized stationary points in pathway (a) of the Br + $(H_2O)_3 \rightarrow HBr + (H_2O)_2OH$ reaction, as shown in Figure S1 and Figure 1, obtained at the MPW1K/cc-pVTZ(-PP) level of theory.

uud-(H₂O)₃, in Å

0 1 0,0.2973653142,0.7447415337,-0.141269676 H,0.077234833,0.6208494016,0.7743246814 H,1.0474808588,0.162329631,-0.3158292958 0,2.1669429919,2.4961115369,-1.1813094804 H,1.3527864973,2.1637343813,-0.7840553349 H,2.4665837078,3.2024870649,-0.621560374 0,2.799396646,-0.1648077755,-0.8592898722 H,2.8681295377,0.777530389,-1.0579689104 H,2.9451677129,-0.6152350913,-1.6830653029

Enterance Complex, in Å

0 2 O,0,0,0,0 H,0,0,0,95273 H,0.9420413669,0,-0.2690898391 O,2.5612991915,2.7023031103,-1.4517156281 H,1.6240327565,2.8256357628,-1.28583154 H,3.0030011285,3.3374338231,-0.8985561049 O,2.5664811284,0.0839073585,-0.7272513288 H,2.7098127405,1.0002754046,-1.0093133002 H,2.8112325811,-0.4632228616,-1.4647412367 Br,-0.6400739007,2.3884131431,-0.3345165171

Transition State, in Å

0 2

O,-0.0079945675,0.000639368,0.0077430607 H,-0.0235312569,-0.0214881473,1.3390099644 H,0.9744428129,0.0102040335,-0.2336782595 O,3.3640106009,0.18077158,2.0800855446 H,2.5202357627,0.3344303274,2.5167958642 H,3.7433310499,-0.5750623575,2.5153651613 O,2.5172680833,-0.0004078387,-0.445786581 H,2.9423839062,0.0421824204,0.4313561352 H,2.9024138326,0.6886343865,-0.9752448215 Br,0.1063515158,0.365469899,2.855961228

Exit Complex, in Å

0 2

O,-0.0000095566,0.0000361683,-0.0000080045 H,-0.0000010887,-0.0000080782,1.6550964605 H,0.9667311645,0.0000114439,-0.2339059483 O,3.4199367259,0.0865454852,2.1834326869 H,2.5882117889,0.1856367704,2.6515566343 H,3.8285759769,-0.6880859324,2.5545280701 O,2.6046622209,-0.0111887119,-0.3990932744 H,3.0038029885,0.0211029738,0.485295672 H,3.0354091472,0.6561082071,-0.9203844877 Br,0.1287953346,0.0486221293,3.1202155551

ud-(H₂O)₂OH, in Å $0 \quad 2$

 $\begin{array}{l} \text{O}, 0.195142335, 0.2083715694, -0.0484520945\\ \text{H}, -0.1019051642, -0.2141410142, 0.7663837464\\ \text{H}, 0.9710892866, -0.2623113864, -0.3294134349\\ \text{O}, -0.5553236426, -0.1081958361, 2.57257675\\ \text{H}, -0.4169679725, 0.8425889894, 2.5653494144\\ \text{H}, -1.433486602, -0.2455128399, 2.9084534231\\ \text{O}, 0.1669055015, 2.4540280054, 1.4997418571\\ \text{H}, 0.2774685537, 1.8098320639, 0.7689781584\\ \end{array}$

HBr, in Å

0 1 H,0.,0.,0.04429631 Br,0.,0.,1.45570369 **Table S3.** Cartesian coordinates (in Å) for optimized stationary points in pathway (b) of the Br + $(H_2O)_3 \rightarrow HBr + (H_2O)_2OH$ reaction, as shown in Figure S1 and Figure 1, obtained at the MPW1K/cc-pVTZ(-PP) level of theory.

uud-(H	[₂ O) ₃ ,	in	Å
--------	----------------------------------	----	---

0 1 0,0.2973653142,0.7447415337,-0.141269676 H,0.077234833,0.6208494016,0.7743246814 H,1.0474808588,0.162329631,-0.3158292958 0,2.1669429919,2.4961115369,-1.1813094804 H,1.3527864973,2.1637343813,-0.7840553349 H,2.4665837078,3.2024870649,-0.621560374 0,2.799396646,-0.1648077755,-0.8592898722 H,2.8681295377,0.777530389,-1.0579689104 H,2.9451677129,-0.6152350913,-1.6830653029

Enterance Complex, in Å

0 2 O,0.,0.,0. H,0.,0.,0.95249 H,0.939465273,0.,-0.2756147393 O,2.0393705943,2.3080664512,-2.4202047236 H,1.2707044413,2.5776846711,-1.9129855119 H,1.7234964373,2.1726226727,-3.3071646935 O,2.5098276792,0.088158139,-0.9209143136 H,2.4724966162,0.8470988327,-1.5229675561 H,3.264166991,0.2311249667,-0.3614210706 Br,-0.6109705486,2.4054471303,-0.2882979255

Transition State, in Å

0 2

O,-0.0168370579,-0.019497235,0.0076885358 H,-0.0344347814,-0.033424082,1.3236320501 H,0.9681890396,-0.0202068102,-0.2282032935 O,3.3478515588,0.3673868747,2.0730381011 H,2.5011144612,0.3110230149,2.5276997533 H,3.71810293,1.2057925008,2.3275265182 O,2.512932934,0.0137654187,-0.4365824712 H,2.9314250122,0.1532889926,0.4341895443 H,2.9444961645,-0.7327030024,-0.8363616762 Br,0.090176204,0.341008274,2.8535881986

Exit Complex, in Å

0 2

O,-0.0000191458,0.0001233627,-0.0000197984 H,0.0000253107,0.0000051227,1.6550791036 H,0.9667192275,0.000072593,-0.2339270247 O,3.4199854725,-0.086686389,2.1833738458 H,2.5882694352,-0.1858340464,2.6515022878 H,3.8285578398,0.687985139,2.5544606896 O,2.6046582845,0.0111010202,-0.3991405643 H,3.0038151448,-0.0212178921,0.4852400761 H,3.0353236986,-0.6562499502,-0.9204296835 Br,0.1288516163,-0.0487686229,3.1201921542

ud-(H₂O)₂OH, in Å $0 \quad 2$

O,-0.195142335,-0.2083715694,0.0484520945 H,0.1019051642,0.2141410142,-0.7663837464 H,-0.9710892866,0.2623113864,0.3294134349 O,0.5553236426,0.1081958361,-2.57257675 H,0.4169679725,-0.8425889894,-2.5653494144 H,1.433486602,0.2455128399,-2.9084534231 O,-0.1669055015,-2.4540280054,-1.4997418571 H,-0.2774685537,-1.8098320639,-0.7689781584

HBr, in Å

0 1 H,0.,0.,0.04429631 Br,0.,0.,1.45570369 **Table S4.** Cartesian coordinates (in Å) for optimized stationary points in pathway (c) of the Br + $(H_2O)_3 \rightarrow HBr + (H_2O)_2OH$ reaction, as shown in Figure S1 and Figure 1, obtained at the MPW1K/cc-pVTZ(-PP) level of theory.

uud-(H₂O)₃, in Å

0 1 0,0.2973653142,0.7447415337,-0.141269676 H,0.077234833,0.6208494016,0.7743246814 H,1.0474808588,0.162329631,-0.3158292958 0,2.1669429919,2.4961115369,-1.1813094804 H,1.3527864973,2.1637343813,-0.7840553349 H,2.4665837078,3.2024870649,-0.621560374 0,2.799396646,-0.1648077755,-0.8592898722 H,2.8681295377,0.777530389,-1.0579689104 H,2.9451677129,-0.6152350913,-1.6830653029

Enterance Complex, in Å

0 2

 $\begin{array}{l} \text{O}, -0.0000048347, 0.00007598, 0.0000067431} \\ \text{H}, 0.0000414572, 0.0000205896, -0.9528341333} \\ \text{H}, -0.9422877026, -0.0000008979, 0.2665215687} \\ \text{O}, -2.502956267, -2.6605485834, 1.614195852} \\ \text{H}, -1.6449777833, -2.836873304, 1.2216537652} \\ \text{H}, -2.3985756566, -2.8540637794, 2.5394168946} \\ \text{O}, -2.5708069458, -0.088886083, 0.7089414567} \\ \text{H}, -2.7001301961, -0.9682584708, 1.0944500084} \\ \text{H}, -2.8914458054, 0.5393240589, 1.3451717992} \\ \text{Br}, 0.6269569946, -2.3998355545, 0.2960995078} \end{array}$

Transition State, in Å

0 2

O,0.0058006281,0.0410198652,-0.0065968858 H,0.0214640095,0.0367311741,-1.3369291241 H,-0.9755863068,0.0176252253,0.2348487006 O,-3.3674830018,-0.3185396919,-2.0723143964 H,-2.515915362,-0.2796618161,-2.5189137775 H,-3.7959965796,-1.0977857354,-2.4087364449 O,-2.5186257652,-0.0007170614,0.4496250137 H,-2.95910156,-0.1410031111,-0.4084231616 H,-2.8967419197,-0.6138927529,1.0689307122 Br,-0.0993567508,-0.3804010621,-2.8469206825

Exit Complex, in Å

0 2

O,-0.0000083938,0.0000134759,-0.0000029967 H,0.0000001778,-0.0000380393,-1.6644219592 H,-0.9664868283,0.0000171612,0.2284302444 O,-3.3958668721,-0.5221267957,-2.1928316405 H,-2.6000747105,-0.2731981781,-2.667202209 H,-3.586361681,-1.4097755666,-2.4762032247 O,-2.6064748057,0.0138928778,0.3534865256 H,-3.0181656127,-0.2097635264,-0.4953748026 H,-3.1107546521,-0.4072875745,1.0385966628 Br,-0.129575803,-0.033911973,-3.1278273047

uu-(H₂O)₂OH, in Å $0 \quad 2$

O,-0.0166968205,-0.1409349551,0.0723053137 H,-0.0592244187,0.262280938,-0.8021173879 H,-0.8472101174,0.0365237897,0.4973983907 O,0.2890771233,0.1159337507,-2.6477504019 H,0.5364717188,-0.8070186355,-2.5485533781 H,-0.3021017442,0.1553118022,-3.3900972282 O,0.7233299134,-2.3757716081,-1.2985360426 H,0.4734868336,-1.7309846333,-0.6038901238

HBr, in Å

0 1 H,0.,0.,0.04429631 Br,0.,0.,1.45570369 **Table S5.** Cartesian coordinates (in Bohr) for optimized stationary points in pathway (a) of the Br + $(H_2O)_3 \rightarrow HBr + (H_2O)_2OH$ reaction, as shown in Figure 1, obtained at the CCSD(T)/cc-pVDZ(-PP) level of theory.

uud-(H₂O)₃, in Bohr

0 1

O,-2.57756438,1.62979841,-0.11187444 H,-3.36036450,1.88148465,1.52036232 H,-2.23016354,-0.18763709,-0.10804916 O,2.70489029,1.39960166,-0.09845909 H,0.97088909,2.03720930,-0.19000541 H,3.30632743,2.08850654,1.48372189 O,-0.13029905,-3.03770681,0.12448214 H,1.26945573,-1.82835523,0.14995884 H,0.09104168,-3.85937417,-1.49346469

Enterance Complex, in Bohr 0 2

O,0.69284309,-3.55737554,-0.32962020 H,0.39028600,-4.28755878,1.32333849 H,2.40028644,-2.82937928,-0.13952655 O,3.61973610,3.54232321,-0.23746869 H,1.88677064,3.07414746,-0.62373585 H,3.43374137,4.42575893,1.35387835 O,5.33967585,-1.38597339,0.31289872 H,4.95549956,0.42300665,0.20180501 H,6.44585630,-1.65239495,-1.11803995 Br -2.20547125,0.29476458,0.03877709

Transition State, in Bohr

0 2

O,1.28192613,3.85247825,-0.16307325 H,-0.41105951,2.10144715,-0.60316335 H,2.90256388,2.81833625,-0.02067603 O,3.24071500,-3.70047061,-0.03828466 H,1.49100649,-3.21317279,0.25973093 H,3.14921288,-4.51182994,-1.67559153 O,5.31465520,1.01063117,0.06774452 H,4.74466824,-0.75941716,-0.05408348 H,6.24378299,1.04620892,1.64230616 Br -2.22519492,-0.20347837,0.03284591

Exit Complex, in Bohr

0 2 O,2.14017185,-4.02235737,-0.02190925 H,-0.51603406,-1.86233884,0.03701665 H,3.63036490,-2.85668391,0.02727305 O,3.00631890,3.90245684,-0.10709834 H,1.30395743,3.29738634,-0.43253366 H,2.82139984,4.73455924,1.51168413 O,5.84637805,-0.50017221,0.12092972 H,4.96994558,1.13278355,0.08002013 H,6.99757606,-0.39032664,-1.29387093 Br -2.47328459,0.07388520,0.00253637

ud-(H_2O)₂OH, in Bohr 0 2

O,2.08916373,-2.41146961,-0.00624496 O,-3.04310421,-0.47601863,-0.10960786 O,1.12498437,2.72389333,0.11737253 H,2.22639939,-0.53836559,0.04356213 H,-1.66746174,-1.70040548,-0.16012168 H,-3.89854951,-0.89545470,1.45035572 H,-0.61727423,2.10478569,0.11022133 H,1.24229538,3.62581003,-1.46813654

HBr, in Bohr

0 1

- H,-0.0000000,0.0000000,2.66119360
- Br 0.00000000,0.00000000,-0.03398472

Table S6. Cartesian coordinates (in Bohr) for optimized stationary points in pathway (a) of the Br + $(H_2O)_3 \rightarrow HBr + (H_2O)_2OH$ reaction, as shown in Figure 1, obtained at the CCSD(T)/cc-pVTZ(-PP) level of theory.

uud-(H₂O)₃, in Bohr

0 1

O,-2.65261793,1.50032150,-0.10633497 H,-3.73963216,1.75797437,1.32120417 H,-2.24923826,-0.29155296,-0.06591336 O,2.62996378,1.52947819,-0.09357003 H,0.89232610,2.12158252,-0.04928732 H,3.43796005,2.34824833,1.30720704 O,0.02122954,-3.03590337,0.12076531 H,1.37796825,-1.79759531,0.10412966 H,0.30322555,-4.04178710,-1.36133603

Enterance Complex, in Bohr 0 2

O,0.77242142,-3.58041303,-0.15546373 H,0.48695690,-4.24733869,1.51143234 H,2.46416707,-2.82777252,-0.06567435 O,3.44574308,3.56510462,-0.12490149 H,1.70826003,3.03203793,-0.30837915 H,3.44491038,4.56381675,1.39088010 O,5.38109115,-1.27883136,0.15307129 H,4.95495272,0.51093413,0.08537282 H,6.49294888,-1.54579410,-1.25467034 Br -2.19523720,0.26885760,0.00844494

Transition State, in Bohr

0 2

O,1.38197776,3.80736748,-0.27151537 H,-0.43072483,1.98202457,-0.67552527 H,2.96897280,2.78642833,-0.04783137 O,3.14332645,-3.69212847,-0.11637107 H,1.41112340,-3.12978714,0.05549824 H,3.16635067,-4.60650174,-1.68424903 O,5.42476784,0.92092893,0.17177928 H,4.82389637,-0.82136327,0.03444264 H,6.36167376,0.98236847,1.72369660 Br -2.25036490,-0.17416261,0.05138516

Exit Complex, in Bohr

0 2 O,2.18561293,-3.97486798,0.02638329 H,-0.49051987,-1.84920807,0.06583094 H,3.64707832,-2.79701980,0.02694406 O,2.88248970,3.85719825,-0.07057802 H,1.20373716,3.16535719,-0.26330114 H,2.78873506,4.82661325,1.46138176 O,5.86092102,-0.42314941,0.06751678 H,4.97587578,1.19185081,0.01819207 H,7.09509278,-0.33189152,-1.25719329 Br -2.46050799,0.05590265,-0.00538904

ud-(H_2O)₂OH, in Bohr 0 2

O,2.05865745,-2.44944340,-0.00663349 O,-3.03637394,-0.43704961,-0.10463192 O,1.16039085,2.70740037,0.11271341 H,2.23137593,-0.59517469,-0.00805151 H,-1.71388891,-1.69973794,-0.03697262 H,-4.16675174,-0.87392300,1.24386732 H,-0.59219356,2.16460567,0.06392521 H,1.34228361,3.84656004,-1.28574921

HBr, in Bohr

0 1

- H,-0.0000000,0.0000000,2.64652073
- Br 0.00000000,0.0000000,-0.03379734

Complete Gaussian 16 reference

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, **2016**.