Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplemental Information for "Spontaneous magnetic merons in half-metallic $Mn_2I_3Br_3$ monolayer with easy-plane anisotropy"

Zhong Shen,¹ Yufei Xue,¹ Zebin Wu,¹ and Changsheng Song^{1, 2, a)}

¹⁾ Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China

²⁾Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China

(Dated: 24 September 2022)

a)cssong@zstu.edu.cn

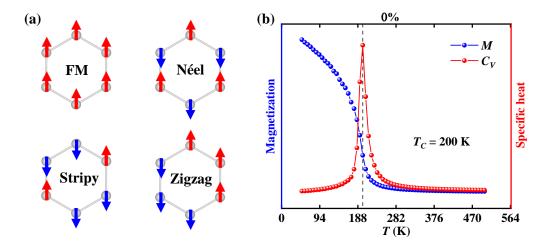


FIG. S1. (a) Schematic diagram of the four spin configurations used to extract the Heisenberg exchange coefficients J_1 , J_2 and J_3 . Red and blue arrows represent spin up (Z-direction) and down (-Z-direction), respectively. (b) Magnetic moment and specific heat capacity versus temperature of $Mn_2I_3Br_3$ monolayer.

To obtain the Heisenberg exchange coefficients J_1 , J_2 and J_3 , we choose four spin configurations named FM, $N\acute{e}el$, Stripy and Zigzag as shown in Fig. S1(a), with the energies being:

$$E_{FM} = -6J_1 - 12J_2 - 6J_3 + 4K(S^z)^2 + E_0,$$
 (S1)

$$E_{N\acute{e}el} = 6J_1 - 12J_2 + 6J_3 + 4K(S^z)^2 + E_0,$$
 (S2)

$$E_{Stripy} = 2J_1 + 4J_2 - 6J_3 + 4K(S^z)^2 + E_0,$$
 (S3)

$$E_{Zigzag} = -2J_1 + 4J_2 + 6J_3 + 4K(S^z)^2 + E_0,$$
 (S4)

where J_1 , J_2 , J_3 are the Heisenberg exchange coefficients of first, second and third nearest neighbor, respectively. K is the single ion anisotropy. S^z is the off-plane component of the normalized spin and E_0 is the spin-independent energy. When the magnetic parameters are obtained, we perform Monte Carlo simulations with the Metropolis algorithm to evaluate the T_C of $\text{Mn}_2\text{I}_3\text{Br}_3$ monolayer. As shown in Fig. S1(b), the T_C of intrinsic $\text{Mn}_2\text{I}_3\text{Br}_3$ monolayer is about 200 K. The T_C with different strains can be found in Fig. S2

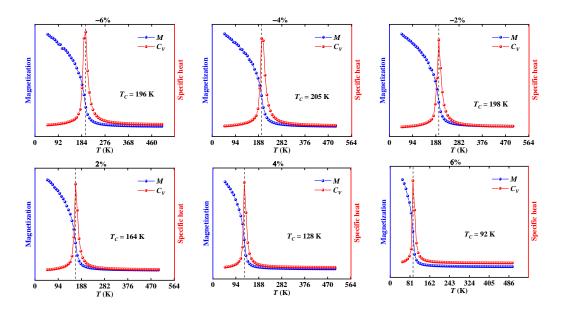


FIG. S2. Magnetic moment and specific heat capacity versus temperature of Mn₂I₃Br₃ monolayer with different biaxial strains.

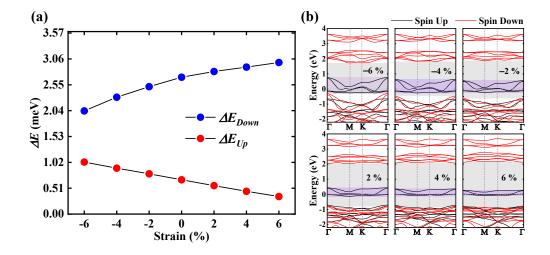


FIG. S3. (a) The band gap of spin down electrons (ΔE_{Down}) and band width of spin up electrons around fermi level (ΔE_{Up}), and (b) band structures of Mn₂I₃Br₃ with different strains.

As shown in Fig. S3(a), we illustrate the band gap of spin down electrons (ΔE_{Down}) and band width of spin up electrons around Fermi level (ΔE_{Up}) as functions of strains in Mn₂I₃Br₃ monolayer. The band structures of Mn₂I₃Br₃ with different strains are illustrated in Fig. S3(b) and ΔE_{Up} (ΔE_{Down}) is marked by the purple (gray) shaded areas. It's clearly

seen that the half-metallic feature can be further enhanced by tensile strain due to the more localized spin-up channel around Fermi level and larger band gap of the spin-down channel.

TABLE S1. The optimized lattice constant a, Heisenberg exchange coefficients (J_1, J_2, J_3) , in-plane $(d_{//})$ and off-plane (d_z) components of DMI, single ion anisotropy (K), the magnetic moments of Mn atoms and the T_C of Mn₂I₃Br₃ monolayer with different strains.

Strain (%)	-6	-4	-2	0	2	4	6
a (Å)	6.24	6.38	6.51	6.64	6.77	6.91	7.04
$J_1 \; (\mathrm{meV})$	-13.37	-16.16	-15.42	-14.28	-8.40	-4.57	-1.68
$J_2 \; (\mathrm{meV})$	-1.05	-1.36	-2.10	-2.60	-3.46	-3.38	-3.04
$J_3 \; (\text{meV})$	-7.43	-5.74	-4.33	-3.85	-2.23	-1.51	-0.98
$d_{//}~(\mathrm{meV})$	1.68	1.91	2.38	3.00	3.71	3.99	3.83
$d_z \; (\text{meV})$	1.07	1.20	1.46	1.81	2.19	2.31	2.18
K (meV)	-13.15	-12.47	-10.88	-9.95	-10.02	-9.33	-7.75
$M_{Mn} \; (\mu_B)$	4.00	4.01	4.01	4.02	4.04	4.07	4.12
T_C (K)	196	205	198	200	164	128	93