Supplementary Information:
 Carboxylate Binding to Two Ions

Mark J. Stevens ${ }^{*, \dagger}$ and Susan L. B. Rempe ${ }^{*, \ddagger}$
\dagger Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185
\ddagger Center for Biological and Engineering Sciences, Sandia National Laboratories, Albuquerque, NM, 87185
E-mail: msteve@sandia.gov; slrempe@sandia.gov

Additional Geometries

In Fig. S1 the configuration for $n=3$ that puts two Na atoms in 4 -fold coordination by the O atoms is shown. This structure was created by starting with the optimized structure for a single Na and two acetates with has the single Na in a 4 -fold coordination. The midpoint between the two O atoms of the bottom acetate is moved to the origin and the acetate is rotated 90 degrees. The top acetate and Na atom are copied via a mirror image in the z-plane (i.e. $\mathrm{z} \rightarrow-\mathrm{z}$). In this way the O atoms and both Na atoms are in the tetrahedral coordination that is optimal for the single Na with two acetates. For this structure $\Delta G=-303 \mathrm{kcal} / \mathrm{mol}$ which is much higher than the $-341 \mathrm{kcal} / \mathrm{mol}$ of the optimal structural.

The $n=4$ structure for Na is similar to that for K and Cs , but has 13 -fold coordinated ion and 1 4-fold coordinated. In Figure S2, which shows the geometry of the Na case with 4 acetates, the O atom labeled 10 in the figure is the key difference. For both Na and K 10 binds to cation atom 16 , but for K it also binds to other cation, atom 1. For Na the

Figure S1: Configuration for two Na atoms (blue) and 3 acetate with both Na atoms having 4 fold coordination with the O atoms.

Figure S2: Optimized configuration for four acetates $(n=4)$ for Na. Labels are used for distances in Table S4.

1:10 distance is $3.599 \AA$ compared to $2.240 \AA$ and $2.283 \AA$ for the $1: 11$ and $10: 16$ distances, respectively. For the K and $\mathrm{Cs} n=4$ cases, the atoms $1,29,16$ and 10 almost form a square (it is a coplanar rectangle). In contrast, for Na atoms $1,29,16,10,11$ form a pentagon. For the Na case, a rotation of the ligand containing O atoms 10 and 11, will transform the structure into a structure equivalent to the K structure. However, as stated in the main text, this structure has a higher free energy.

Data Tables

Table S1: Free energies (ΔG in $\mathrm{kcal} / \mathrm{mol}$) for formation of ion-ligand complexes composed of two monovalent ions and n acetate ligands in a low dielectric environment $(\epsilon=1)$

n	Li	Na	K	Cs
1	-210.1	-173.9	-148.1	-92.1
2	-362.9	-307.0	-261.7	-152.8
3	-397.0	-343.1	-295.0	-147.0
4	-359.0	-309.8	-264.6	-89.1

Table S2: Distances (in \AA) between atom pairs of types A:B in optimized structures for $n=1$. X represents cation. Indices are given in Fig. 1.

indices	A	B	Li	Na	K	Cs
$1: 9$	X	X	5.253	5.992	6.680	7.552
$1: 4$	X	O	1.696	2.054	2.401	2.839
$3: 9$	X	O	1.695	2.054	2.399	2.839
$2: 3$	C	O	1.266	1.265	1.265	1.264
$2: 4$	C	O	1.264	1.265	1.264	1.265
$2: 5$	C	C	1.510	1.520	1.525	1.532

Table S3: Distances (in \AA) between atom pairs of types A:B in optimized structures for $n=2$. X represents cation. Indices are given in Fig. 2.

indices	A	B	Li	Na	K	Cs
$1: 9$	X	X	2.794	3.130	3.797	4.575
$1: 4$	X	O	1.767	2.153	2.517	2.967
$1: 11$	X	O	1.808	2.239	2.604	3.047
$1: 12$	X	O	2.859	2.410	2.745	3.228
$2: 3$	C	O	1.288	1.283	1.258	1.278
$2: 4$	C	O	1.255	1.259	1.282	1.258
$2: 5$	C	C	1.511	1.519	1.525	1.532
$9: 3$	X	O	1.909	2.239	2.604	3.047
$9: 4$	X	O	2.142	2.410	2.745	3.228
$9: 12$	X	O	1.809	2.153	2.517	2.967
$10: 11$	C	O	1.271	1.259	1.258	1.258
$10: 12$	C	O	1.269	1.283	1.282	1.278
$10: 13$	C	C	1.516	1.519	1.525	1.532

Table S4: Distances (in \AA) between atom pairs of types A:B in optimized structures for $n=3$. X represents cation. Indices are given in Fig. 3.

indices	A	B	Li	Na	K	Cs
$1: 16$	X	X	5.025	3.286	3.883	4.628
$1: 3$	X	O	1.972	2.351	2.695	3.157
$1: 4$	X	O	1.973	2.302	2.665	3.114
$1: 11$	X	O	1.829	2.303	2.666	3.114
$1: 10$	X	O		2.351	2.696	3.157
$3: 16$	X	O		2.289	2.672	3.143
$16: 10$	X	O	1.803	2.289	2.676	3.143
$16: 18$	X	O	1.970	2.333	2.684	3.141
$16: 19$	X	O	1.970	2.333	2.684	3.141
$2: 3$	C	O	1.270	1.272	1.273	1.272
$2: 4$	C	O	1.270	1.265	1.263	1.263
$2: 5$	C	C	1.526	1.527	1.532	1.537
$9: 10$	C	O	1.262	1.272	1.273	1.272
$9: 11$	C	O	1.261	1.265	1.263	1.263
$9: 12$	C	C	1.529	1.527	1.532	1.537
$17: 18$	C	O	1.271	1.267	1.267	1.266
$17: 19$	C	O	1.270	1.267	1.267	1.266
$17: 20$	C	C	1.525	1.535	1.539	1.543

Table S5: Distances (in \AA) between atom pairs of types A:B in optimized structures for $n=4$. X represents cation. Indices are given in Fig. 4.

indices	A	B	Li	Na	K	Cs
$1: 16$	X	X	3.919	3.822	4.111	4.914
$1: 3$	X	O	1.871	2.178	2.559	3.021
$1: 11$	X	O	1.894	2.240	2.761	3.216
$1: 29$	X	O	1.904	2.245	2.662	3.109
$1: 10$	X	O		3.597	2.840	3.346
$16: 10$	X	O	1.893	2.283	2.662	3.106
$16: 19$	X	O	1.872	2.207	2.559	3.022
$16: 25$	X	O	1.904	2.407	2.760	3.338
$16: 29$	X	O		2.490	2.841	3.217
$2: 3$	C	O	1.275	1.271	1.271	1.269
$2: 4$	C	O	1.252	1.252	1.254	1.255
$2: 5$	C	C	1.545	1.549	1.550	1.552
$9: 10$	C	O	1.262	1.258	1.271	1.270
$9: 11$	C	O	1.261	1.266	1.260	1.260
$9: 12$	C	C	1.539	1.541	1.539	1.543
$17: 18$	C	O	1.253	1.254	1.254	1.255
$17: 19$	C	O	1.274	1.269	1.271	1.269
$17: 20$	C	C	1.545	1.550	1.550	1.552
$26: 25$	C	O	1.261	1.257	1.260	1.260
$26: 29$	C	O	1.261	1.274	1.271	1.270
$26: 27$	C	C	1.539	1.535	1.539	1.543

${ }^{a}$ top structure in Fig. 4, lowest G.
${ }^{b}$ bottom structure in Fig. 4.

