Electronic Supplementary Material (ESI):

Decoration of defective graphene with MoS_2 enabling enhanced anchoring and catalytic conversion of polysulfides for lithium-sulfur

batteries: A first-principles study

Yanan Li,^a Yuanyuan Pan,^{*b} Yao Cong,^a Yifan Zhu,^a Haosong Liu,^a Yi Wan,^a Yazhen Yao,^a Peibin Ding,^a Mingbo Wu,^a and Han Hu^{*a}

^aState Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China E-mail: hhu@upc.edu.cn

^bCollege of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco Textiles Qingdao University, Qingdao 266071, China

E-mail: panyy@qdu.edu.cn

	Li ₂ S ₈ *			Li ₂ S ₆ *			Li ₂ S ₄ *		
	E _{DFT} (eV)	ZPE –	<i>G</i> (eV)	E _{DFT} (eV)	ZPE –	<i>G</i> (eV)	E _{DFT} (eV)	ZPE –	G (eV)
	TΔS (eV)			TΔS (eV)			TΔS (eV)		
PG/MoS ₂	-861.32	-0.06	-861.38	-852.90	-0.07	-852.97	-844.03	-0.05	-844.08
SWG/MoS ₂	-856.52	-0.07	-856.59	-848.12	-0.07	-848.19	-839.29	-0.04	-839.33
SVG/MoS ₂	-844.59	-0.09	-844.68	-836.22	-0.07	-836.29	-827.46	-0.06	-827.52
DVG/MoS ₂	-833.59	-0.07	-833.66	-825.20	-0.08	-825.28	-816.39	-0.07	-816.46
RDVG/MoS ₂	-834.37	-0.07	-834.44	-825.93	-0.11	-826.04	-817.18	-0.07	-817.25
PG/MoS ₂	-861.54	-0.05	-861.59	-852.98	-0.05	-853.03	-844.48	-0.01	-844.49
(MoS ₂ side)									
	Li ₂ S ₂ *			Li ₂ S*			S ₈ *		
	E _{DFT} (eV)	ZPE –	<i>G</i> (eV)	E _{DFT} (eV)	ZPE –	<i>G</i> (eV)	E _{DFT} (eV)	ZPE –	G (eV)
	ΤΔS (eV)		TΔS (eV)			TΔS (eV)			
PG/MoS ₂	-834.83	-0.07	-834.90	-829.67	-0.06	-829.73	-884.78	-0.06	-854.84
SWG/MoS ₂	-830.30	-0.07	-830.37	-824.96	-0.03	-824.99	-850.01	-0.09	-850.10
SVG/MoS ₂	-818.81	0.03	-818.78	-815.01	0.07	-814.94	-837.71	-0.07	-837.78
DVG/MoS₂									
	-807.78	0.04	-807.74	-802.79	0.04	-802.75	-826.81	-0.06	-826.87
RDVG/MoS₂	-807.78 -808.54	0.04 -0.06	-807.74 -808.60	-802.79 -803.37	0.04 -0.06	-802.75 -803.43	-826.81 -827.72	-0.06 -0.06	-826.87 -827.78
RDVG/MoS ₂ PG/MoS ₂	-807.78 -808.54 -835.34	0.04 -0.06 -0.02	-807.74 -808.60 -835.36	-802.79 -803.37 -830.35	0.04 -0.06 -0.05	-802.75 -803.43 -830.40	-826.81 -827.72 -854.78	-0.06 -0.06 -0.06	-826.87 -827.78 -854.84

Table S1 The EDFT, ZPE – $T\Delta S$ and G values of S_8 and Li_2S_n adsorbed on the different heterostructures.

Table S2 Calculated the binding energy	(Eb (eV) for heterostructures	with S_8/Li_2S_n .
--	-------------------------------	----------------------

	Li ₂ S	Li ₂ S ₂	Li ₂ S ₄	Li ₂ S ₆	Li ₂ S ₈	S ₈
PG/MoS ₂	0.73	0.75	0.60	0.82	0.90	0.76
SWG/MoS ₂	0.82	1.02	0.62	0.84	0.90	0.79
SVG/MoS ₂	3.10	1.76	1.07	1.16	1.20	0.72
DVG/MoS ₂	1.76	1.61	0.87	1.02	1.08	0.69
RDVG/MoS ₂	1.49	1.52	0.81	0.90	1.00	0.76
PG/MoS ₂ (MoS ₂ side)	1.41	1.26	1.06	0.89	1.12	0.76

Fig. S1(a) Charge density difference and (b) planar-averaged electron density difference $\Delta \rho(z)$ for PG/MoS₂. The electron accumulation (depletion) region is shown in blue (fuchsia). The value of the isosurface is set to 0.0001 e/Bhhr³.

Fig. S2 Band structures of the free-standing PG, SWG, SVG, DVG, RDVG, and heterostructures of PG/MoS₂, SWG/MoS₂, SVG/MoS₂, DVG/MoS₂, and RDVG/MoS₂, respectively. Gray and blue lines represent the band structure of the heterostructures systems and projected to the PG/DG, respectively. The Fermi level is set at zero represented by the red dashed lines.

Fig. S3 Partial density of states (PDOS) of the free-standing MoS_2 molecular layer.

Fig. S4 Optimized structures of Li_2S_n/S_8 adsorbed on (a) the graphene side and (f) the MoS₂ side of the PG/MoS₂ eterostructure, (b) the SWG/MoS₂, (c) the SVG/MoS₂, (d) the DVG/MoS₂, and (e) the RDVG/MoS₂ heterostructures.

 $\label{eq:Fig.S5} \textbf{Fig.S5} \ The \ comparison \ of \ the \ binding \ energy \ on \ primitive \ graphene \ side \ and \ MoS_2 \ sides \ of \ the \ PG/MoS_2 \ heterostructure.$

Fig. S6 The comparison of the binding energy on freestanding MoS₂ monolayer, MoS₂ sides of the PG/MoS₂ heterostructure, and MoS₂ sides of the SVG/MoS₂ heterostructure.

Fig. S7 Configuration of Li_2S_n (n = 4, 6, and 8) anchored on DOL and DME.