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Figure S1
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Figure S1. Potential average of (a) HfSiTes and (b) TiGeTes monolayer. (c) Band
decomposed partial charge density of HfSiTes; and TiGeTes at the I -centered of

0.002 ¢ A isosurface level. Transition metal atoms are turned blue for better

visibility.
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Figure S2
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Figure S2. Projected density of states (in arb. unit) of (a) HfGeTe4, showing that the

dominant states at the VBM are Te p-states and CBM are Hf d-states, respectively. (b)

Phonon band dispersions of HfGeTes, monolayer. (c) Atom-dependent projected

electronic band structures for HfGeTes within the scheme of DFT-PBE. (d) The

electronic band structures of HfGeTe, in the frame work of DFT-PBE and SOC.
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Figure S3. (a) Phonon band dispersions of TiSiTes monolayer. (b) The variation of
energy with respect to the time at 300 K for TiSiTe, monolayer, the insets show the
snapshots of atomic configurations at the end of ab initio molecular dynamics (AIMD)

simulations.
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Figure S4
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Figure S4. Orientation-dependent in-plane stiffness, Poisson's ratio and shear

modulus of (a) HfSiTes, (b) ZrSiTe4, and (c) TiSiTes monolayers.
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Figure S5
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Figure S5. Orientation-dependent in-plane stiffness, Poisson's ratio and shear
modulus of (a) HfGeTes, and (b) TiGeTes monolayers. (c) Orientation-dependent

linear-elastic constants of XGeTe4 (X = Hf, Zr or Ti).
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Figure S6
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Figure S6. Imaginary and real parts of dielectric function of XYTe4 as a function of
photon frequencies, ionic contribution on the left (a) and electron contribution on the

right (b).
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