Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplemental materials

First-principles investigation of in-plane anisotropies in XYTe₄ monolayers with

X = Hf, Zr, Ti and Y = Si, Ge

Degao Xu, Jianing Tan, Huamin Hu, Gang Ouyang*

Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of

Ministry of Education, Key Laboratory for Matter Microstructure and Function of

Hunan Province, Hunan Normal University, Changsha 410081, China

*Corresponding author. E-mail: gangouy@hunnu.edu.cn

Figure S1. Potential average of (a) HfSiTe₄ and (b) TiGeTe₄ monolayer. (c) Band decomposed partial charge density of HfSiTe₄ and TiGeTe₄ at the Γ -centered of 0.002 e Å⁻³ isosurface level. Transition metal atoms are turned blue for better visibility.

Figure S2

Figure S2. Projected density of states (in arb. unit) of (a) HfGeTe₄, showing that the dominant states at the VBM are Te *p*-states and CBM are Hf *d*-states, respectively. (b) Phonon band dispersions of HfGeTe₄ monolayer. (c) Atom-dependent projected electronic band structures for HfGeTe₄ within the scheme of DFT-PBE. (d) The electronic band structures of HfGeTe₄ in the frame work of DFT-PBE and SOC.

Figure S3. (a) Phonon band dispersions of $TiSiTe_4$ monolayer. (b) The variation of energy with respect to the time at 300 K for $TiSiTe_4$ monolayer, the insets show the snapshots of atomic configurations at the end of *ab initio* molecular dynamics (AIMD) simulations.

Figure S4

Figure S4. Orientation-dependent in-plane stiffness, Poisson's ratio and shear modulus of (a) HfSiTe₄, (b) ZrSiTe₄, and (c) TiSiTe₄ monolayers.

Figure S5

Figure S5. Orientation-dependent in-plane stiffness, Poisson's ratio and shear modulus of (a) HfGeTe₄ and (b) TiGeTe₄ monolayers. (c) Orientation-dependent linear-elastic constants of XGeTe₄ (X = Hf, Zr or Ti).

Figure S6

Figure S6. Imaginary and real parts of dielectric function of XYTe₄ as a function of photon frequencies, ionic contribution on the left (a) and electron contribution on the right (b).