Supporting Information

Effects of polyacrylic acid molecular weight on V₂C-MXene nanocoating for obtaining ultralow friction and ultralow wear under ambient working environment

Xuan Yin,*^a Haohao Chen, ^a Lai Jiang, ^b Chang Liang, ^a Haosheng Pang, *^c Dameng Liu*^c and Bing Zhang ^a

^a College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
^b College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
^c State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
*Corresponding author: yinxuan@mail.buct.edu.cn (X.Y); hulk@mail.tsinghua.edu.cn (H.P); ldm@tsinghua.edu.cn (D.L.)

Figure S1. Friction curves of PLC film against steel ball or PLC-coated ball under 4 N.

Figure S2. Friction curves of the pristine V₂C-MXene under 4 N.