Electronic Supplementary Information

Kinetics and pressure-dependent $\mathbf{H O}_{x}$ yields of the reaction between Criegee intermediate $\mathrm{CH}_{2} \mathrm{OO}$ and HNO_{3}

Pei-Ling Luo*a
${ }^{\text {a }}$ Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
*E-mail: plluo@gate.sinica.edu.tw

Table of content

Note S1. Descriptions of adopted kinetic model and reaction rate coefficients.
Figure S1. Comparison of the $\mathrm{CH}_{2} \mathrm{OO}$ time traces recorded using different experimental methods.
Figure S2. Rate coefficients for the $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{I}$ reaction $\left(k_{3}\right)$ as a function of the total pressure.
Figure S3. Comparison of plots of k^{I} vs. $\left[\mathrm{HNO}_{3}\right]_{0}$ derived from model fit and single-exponential fit.
Figure S4. Comparison of the measured and simulated temporal profiles of the OH radical.
Figure S5. Comparison of the measured and simulated temporal profiles of the HO_{2} radical.
Figure S6. Comparison of temporal concentration profiles of (a) $\mathrm{CH}_{2} \mathrm{OO}$, (b) $\mathrm{CH}_{2} \mathrm{O}$, (c) OH , and (d) HO_{2} with and without HNO_{3} addition at 57.9 Torr.

Figure S7. Inverse of the fractional yield of the $\mathrm{OH}+\mathrm{CH}_{2}(\mathrm{O}) \mathrm{NO}_{3}$ product channel $\left(\mathrm{yoH}^{-1}\right)$ as a function of pressure.
Figure S8. Inverse of the fractional yield of the $\mathrm{NO}_{2}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2}$ product channel $\left(\mathrm{y}_{\mathrm{HO}}{ }^{-1}\right)$ as a function of pressure.

Table S1. The simplified model used for the kinetic study of the reaction $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3}$.
Table S2. Summary of experimental conditions and fitted rate coefficients k^{l}.
Table S3. Summary of experimental and computational results for the $k_{\text {CH2OO+HNO3 }}$.
Table S4. Global kinetic model and rate coefficients employed for simulation of temporal profiles.
Table S5. Summary of experimental conditions, obtained rate coefficients, and branching ratios.

References

Note S1. Descriptions of adopted kinetic model and reaction rate coefficients.

In kinetic studies, the simplified kinetic model (Table S 1) was employed to determine the rate coefficients of the reaction $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3}$. The simplified kinetic scheme takes into account key reaction paths including the formation and self-reaction of $\mathrm{CH}_{2} \mathrm{OO}$ as well as the $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{I}$ reaction. ${ }^{1-5}$ To fit the first-order rate coefficient $k^{1}\left(=k_{7} \times\left[\mathrm{HNO}_{3}\right]_{0}\right.$ in Table S1), all rate coefficients at values listed in Table S 1 were fixed and the initial concentrations $\left[\mathrm{CH}_{2} \mathrm{I}\right]_{0},\left[\mathrm{O}_{2}\right]_{0}$, and $\left[\mathrm{HNO}_{3}\right]_{0}$ were given. The root mean square error (RMSE) of each fitted residual was obtained to be $\sim 3 \%$ under wide variations in experimental conditions, indicating the adequacy of the adopted kinetic model.

To determine the branching ratios for the $\mathrm{OH}+\mathrm{CH}_{2}(\mathrm{O}) \mathrm{NO}_{3}$ and $\mathrm{NO}_{2}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2}$ product channels of the reaction $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3}$, the global kinetic model (Table S4) was used to simulate the temporal concentration profiles of $\mathrm{CH}_{2} \mathrm{OO}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{OH}$, and HO_{2}. The global kinetic model has been explored by quantitative analysis of the time traces of $\mathrm{CH}_{2} \mathrm{OO}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{OH}$ and HO_{2} radicals recorded under varied experimental conditions with and without the addition of $\mathrm{SO}_{2} .^{2}$ The global kinetic scheme takes into account the reaction pathways related to the formation of the OH and HO_{2} radicals that could be formed from decomposition of initially energized and vibrationally excited Criegee intermediates. To investigate the reaction $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3}$, only the pathways of $\mathrm{CH}_{2} \mathrm{OO}+$ SO_{2} in the previous work were replaced to the pathways of $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3}$. Additionally, to simplify the model, only three product channels of the reaction $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3}$ were listed in the model:

$$
\begin{aligned}
& \mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3} \rightarrow \mathrm{OH}+\mathrm{CH}_{2}(\mathrm{O}) \mathrm{NO}_{3} \quad\left(R_{7 \mathrm{a}}\right) \\
& \mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2} \quad\left(R_{7 \mathrm{~b}}\right) \\
& \mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3} \rightarrow \text { other products } \quad\left(R_{7 \mathrm{c}}\right)
\end{aligned}
$$

in which the branching ratios for the $\mathrm{OH}+\mathrm{CH}_{2}(\mathrm{O}) \mathrm{NO}_{3}$ and $\mathrm{NO}_{2}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2}$ product channels are уон and уног, respectively, and the branching ratio for other products is $1-$ уон - уног. In addition, the rate coefficients of the reaction vibrationally excited $\mathrm{CH}_{2} \mathrm{OO}^{\#}+\mathrm{HNO}_{3}\left(R_{11 \mathrm{a}-11 \mathrm{c}}\right)$ were set as same as that of the reaction $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3}\left(R_{7 \mathrm{a}}-7 \mathrm{c}\right)$.

In the reaction system, the OH radicals might be reacted away mainly with the precursor $\mathrm{CH}_{2} \mathrm{I}_{2}$ or the product I_{2} and NMHP. Due to lack of the accurate rate coefficients of these reactions, the overall decay rate $\left(k_{18}\right)$ of the OH radicals was obtained by fitting the time trace with a single exponentialdecay function, as shown in Fig. S4(a). Afterwards, the уон could be obtained by fitting the time traces using the global kinetic model with the fixed overall decay rate (k_{18}). Considering an uncertainty of 10% on obtained concentrations of the OH radicals, the yoн would be varied by $\sim 20 \%$, as shown in Figs. S4(b).

With the addition of HNO_{3}, the HO_{2} radicals can be quickly generated and followed by a slow decay through the underlying reaction pathways $\left(R_{19}-R_{21}\right)$. Because the overall decay rates $\left(10^{1} \sim 10^{2} \mathrm{~s}^{-1}\right)$ are much smaller than the formation rates $\left(10^{4} \sim 10^{5} \mathrm{~s}^{-1}\right)$, the $\mathrm{y}_{\mathrm{HO} 2}$ could be determined by simulating the time traces with the kinetic model excluding the loss pathways of $\mathrm{HO}_{2}\left(R_{19}-R_{21}\right)$. Considering an uncertainty of 10% on obtained concentrations of the HO_{2} radicals, the уног would be varied by $\sim 10 \%$,
as shown in Figs. S5(a). Afterwards, the additional loss rate (k_{21}) for the HO_{2} radicals can be obtained by fitting the measured traces with the global kinetic model and the fixed уног, as shown in Fig. S5(b).

In the absence of HNO_{3}, about $90 \% \mathrm{CH}_{2} \mathrm{OO}$ would be reacted to form $\mathrm{CH}_{2} \mathrm{O}$ via self-reaction of $\mathrm{CH}_{2} \mathrm{OO}$ and the reaction $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{I}$. In the experiments, the formation rates of $\mathrm{CH}_{2} \mathrm{O}$ increase, but the yields of $\mathrm{CH}_{2} \mathrm{O}$ decrease with the addition of HNO_{3}, indicating that a part of $\mathrm{CH}_{2} \mathrm{O}$ could be generated from the reaction $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3}$, but the fractional yields of the $\mathrm{CH}_{2} \mathrm{O}$ product channel of the reaction $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3}$ might be lower comparing to that of the reactions $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{CH}_{2} \mathrm{OO}$ and $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{I}$. The temporal concentration profile of $\mathrm{CH}_{2} \mathrm{O}$ can be also fitted with kinetic model to derive the branching ratio (уног) for the $\mathrm{NO}_{2}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2}$ product channel and the derived уног is consistent with the value obtained by analyzing the time trace of HO_{2} radicals.

Figure S1. Comparison of the $\mathrm{CH}_{2} \mathrm{OO}$ time traces recorded with different methods. The black trace measured by employing time-resolved dual-comb spectroscopy (TR-DCS) and the red trace measured by using the CW laser mode.

Figure S2. Rate coefficients for the $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{I}$ reaction $\left(k_{3}\right)$ as a function of the total pressure. The k_{3} can be obtained by fitting the measured time traces of $\mathrm{CH}_{2} \mathrm{OO}$ using the kinetic model (Table S1) with input of initial concentrations of $\mathrm{CH}_{2} \mathrm{I}, \mathrm{I}$, and O_{2}, in which the rate coefficients at values listed in Table S1, except the k_{3}, were fixed while fitting the time traces. The blue curve derived by fitting the determined k_{3} in this work with the Lindemann's equation, $k_{3}=\left\{k_{3,0}[\mathrm{M}] \times k_{3, \infty}\right\} /\left\{k_{3,0}[\mathrm{M}]+k_{3, \infty}\right\}$. The rate coefficients in the low and high pressure limits, $k_{3,0}$ and $k_{3, \infty}$, are determined to be $(1.47 \pm 0.37) \times 10^{-28} \mathrm{~cm}^{6}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ and ($\left.4.2 \pm 0.4\right) \times 10^{-11} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$, respectively. The data points shown by the green triangle are reported by Mir et al. ${ }^{3}$

Figure S3. Comparison of plots of k^{I} vs. $\left[\mathrm{HNO}_{3}\right]_{0}$ derived from model fit and single-exponential fit. The data correspond to experimental set 1 listed in Table S2.

Figure S4. Comparison of the measured and simulated temporal profiles of the OH radical. (a) An overall decay rate $\left(k_{18}\right)$ of $6800 \mathrm{~s}^{-1}$ was obtained by fitting the time trace with a single exponentialdecay function. (b) A comparison of the measured and simulated temporal profiles with the fixed k_{18} of $6800 \mathrm{~s}^{-1}$ and the уон $=3.2 \%, 2.6 \%$, and 3.8%. Here, the data correspond to the experiment 3 listed in Table S5.

Figure S5. Comparison of the measured and simulated temporal profiles of the HO_{2} radical. (a) A comparison of the measured and simulated temporal profiles excluding the loss pathways of HO_{2} ($R_{19}-R_{21}$) and setting the $\mathrm{yHO}_{\mathrm{HO}}=36.0 \%, 32.4 \%$, and 39.6%. (b) A comparison of the measured and fitted curve with global kinetic model listed in Table S4 with the fixed уног $=36.0 \%$. Here, the data correspond to the experiment 3 listed in Table S5.

Figure S6. Comparison of temporal concentration profiles of (a) $\mathrm{CH}_{2} \mathrm{OO}$, (b) $\mathrm{CH}_{2} \mathrm{O}$, (c) OH , and (d) HO_{2} with and without HNO_{3} addition at 57.9 Torr. The temporal resolution of the measured temporal profiles (black and red) is $12 \mu \mathrm{~s}$. The orange and blue curves represent the simulation profiles using the kinetic model shown in Table S4. Here, the data correspond to the experiments 4 and 5 listed in Table S5.

Figure S7. Inverse of the fractional yield of the $\mathrm{OH}+\mathrm{CH}_{2}(\mathrm{O}) \mathrm{NO}_{3}$ product channel $\left(\mathrm{yoH}^{-1}\right)$ as a function of pressure. The red line indicates a linear fitting curve with an intercept of (21 ± 6) and a slope of $(2.6 \pm 0.6) \times 10^{-17} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$.

Figure S8. Inverse of the fractional yield of the $\mathrm{NO}_{2}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2}$ product channel ($\mathrm{y}_{\mathrm{HO}}{ }^{-1}$) as a function of pressure. The red line indicates a linear fitting curve with an intercept of (2.0 ± 0.3) and a slope of (2.0 ± 0.3) $\times 10^{-18} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$.

Table S1. The simplified model used for the kinetic study of the reaction $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3}$.

	Reaction	Rate coefficient ${ }^{a}$	Ref.
$R_{1 \mathrm{a}}{ }^{\text {b }}$	$\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{OO}+\mathrm{I}$	$\begin{aligned} & \left\{1-0.4 /\left(1+1 \times 10^{-18}[\mathrm{M}]\right)\right\} \times 1.7 \times 10^{-12} \\ & /\left(1+1 \times 10^{-19}[\mathrm{M}]\right) \end{aligned}$	1,2
$R_{1 \mathrm{lb}{ }^{\text {b }} \text { b }}$	$\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2} \xrightarrow{+M} \mathrm{ICH}_{2} \mathrm{OO}$	$1.7 \times 10^{-12}-1.7 \times 10^{-12} /\left(1+1 \times 10^{-19}[\mathrm{M}]\right)$	1,2
$R_{1 \mathrm{c}}{ }^{\text {b }}$	$\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2} \rightarrow$ products	$1.7 \times 10^{-12}-\left(k_{1 \mathrm{a}}+k_{1 \mathrm{~b}}\right)$	1,2
R_{2}	$\mathrm{CH}_{2} \mathrm{OO}+\mathrm{CH}_{2} \mathrm{OO} \rightarrow 2 \mathrm{CH}_{2} \mathrm{O}+\mathrm{O}_{2}$	8.0×10^{-11}	3
R_{3}	$\mathrm{CH}_{2} \mathrm{OO}+\mathrm{I} \xrightarrow{+M}$ product	$\begin{aligned} & k_{3}=\left\{1.47 \times 10^{-28}[\mathrm{M}] \times 4.2 \times 10^{-11}\right\} \\ & /\left\{1.47 \times 10^{-28}[\mathrm{M}]+4.2 \times 10^{-11}\right\} \end{aligned}$	This work
R_{4}	$\mathrm{ICH}_{2} \mathrm{OO}+\mathrm{ICH}_{2} \mathrm{OO} \rightarrow 2 \mathrm{ICH}_{2} \mathrm{O}+\mathrm{O}_{2}$	9.0×10^{-11}	4
R_{5}	$\mathrm{ICH}_{2} \mathrm{OO}+\mathrm{I} \rightarrow \mathrm{ICH}_{2} \mathrm{O}+\mathrm{IO}$	3.5×10^{-11}	4
R_{6}	$\mathrm{IO}+\mathrm{IO} \rightarrow$ products	9.9×10^{-11}	5
R_{7}	$\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3} \rightarrow$ products	$k^{\mathrm{I}}=k_{7} \times\left[\mathrm{HNO}_{3}\right]_{0}$, fitted ${ }^{c}$	This work

${ }^{a}$ Rate coefficient in cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1},[\mathrm{M}]$ in molecule cm^{-3}.
${ }^{b} k_{1 \mathrm{a}}+k_{1 \mathrm{~b}}+k_{1 \mathrm{c}}=1.7 \times 10^{-12} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$.
${ }^{c} k_{7}$ represents the rate coefficients for the reaction $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3}, k_{\mathrm{CH} 2 \mathrm{OO}+\mathrm{HNO} 3}$.

Table S2 Summary of experimental conditions and fitted rate coefficients k^{I}.

Set	Expt.	$\begin{gathered} {\left[\mathrm{CH}_{2} \mathrm{I}_{0}\right.} \\ / 10^{12 c} \end{gathered}$	$\begin{gathered} {\left[\mathrm{CH}_{2} \mathrm{OOO}\right]_{0}} \\ / 10^{12 \mathrm{c}} \end{gathered}$	$\begin{gathered} {\left[\mathrm{O}_{2}\right]} \\ / 10^{17 c} \end{gathered}$	$\begin{gathered} P_{\mathrm{T}} \\ / \text { Torr } \end{gathered}$	$\begin{gathered} {\left[\mathrm{HNO}_{3}\right]_{0}{ }^{d}} \\ / 10^{14 c} \end{gathered}$	$\begin{gathered} k^{I e} \\ / 10^{4} \mathrm{~s}^{-1} \end{gathered}$
$1^{\text {a }}$	1	7.0	4.8	4.1	13.7	5.00	9.31
	2	7.0	4.8	4.1	13.7	4.04	7.75
	3	7.0	4.8	4.1	13.7	3.25	5.92
	4	7.0	4.8	4.1	13.7	2.51	4.89
	5	7.0	4.8	4.1	13.7	1.72	3.36
	6	7.0	4.8	4.1	13.7	1.19	2.23
	7	7.0	4.8	4.1	13.7	0.80	1.57
	8	7.0	4.8	4.1	13.7	0.51	0.91
$2^{\text {a }}$	9	4.5	3.0	2.6	8.7	3.27	6.48
	10	4.5	3.0	2.6	8.7	2.77	5.65
	11	4.5	3.0	2.6	8.7	2.20	4.11
	12	4.5	3.0	2.6	8.7	1.66	3.27
	13	4.5	3.0	2.6	8.7	1.27	2.48
	14	4.5	3.0	2.6	8.7	0.77	1.58
	15	4.5	3.0	2.6	8.7	0.49	0.94
$3{ }^{\text {a }}$	16	7.1	4.8	3.4	12.2	3.73	7.16
	17	7.1	4.8	3.4	12.2	4.10	7.61
	18	7.1	4.8	3.4	12.2	2.50	4.65
	19	7.1	4.8	3.4	12.2	2.11	4.21
	20	7.1	4.8	3.4	12.2	1.41	2.57
	21	7.1	4.8	3.4	12.2	0.86	1.61
$4^{\text {a }}$	22	8.9	6.3	3.6	19.9	2.61	5.03
	23	8.9	6.3	3.6	19.9	2.15	4.00
	24	8.9	6.3	3.6	19.9	1.63	3.04
	25	8.9	6.3	3.6	19.9	1.11	2.30
	26	8.9	6.3	3.6	19.9	0.58	1.20
$5^{\text {a }}$	27	9.6	6.9	3.1	27.4	3.18	6.50
	28	9.6	6.9	3.1	27.4	2.62	5.22
	29	9.6	6.9	3.1	27.4	2.14	3.99
	30	9.6	6.9	3.1	27.4	1.76	3.28
	31	9.6	6.9	3.1	27.4	1.34	2.62
	32	9.6	6.9	3.1	27.4	0.92	1.85
6^{a}	33	11.2	8.2	3.4	36.9	3.24	6.48
	34	11.2	8.2	3.4	36.9	2.65	5.18
	35	11.2	8.2	3.4	36.9	2.20	4.34

	36	11.2	8.2	3.4	36.9	1.77	3.56
	37	11.2	8.2	3.4	36.9	1.34	2.90
$7{ }^{\text {a }}$	38	6.5	4.6	3.6	58.6	3.32	6.29
	39	6.5	4.6	3.6	58.6	2.53	4.91
	40	6.5	4.6	3.6	58.6	1.75	3.27
	41	6.5	4.6	3.6	58.6	1.16	2.26
$8^{\text {a }}$	42	7.1	5.0	3.5	45.2	3.43	6.33
	43	7.1	5.0	3.5	45.2	2.49	4.73
	44	7.1	5.0	3.5	45.2	1.85	3.48
	45	7.1	5.0	3.5	45.2	1.33	2.75
	46	7.1	5.0	3.5	45.2	0.97	1.90
$9^{\text {a }}$	47	6.8	4.5	2.6	9.2	2.00	3.96
	48	6.8	4.5	2.6	9.2	2.70	5.28
	49	6.8	4.5	2.6	9.2	2.30	4.39
	50	6.8	4.5	2.6	9.2	1.57	2.95
	51	6.8	4.5	2.6	9.2	0.59	1.19
10^{b}	52	6.8	4.5	2.6	9.2	2.03	4.07
	53	6.8	4.5	2.6	9.2	2.51	4.61
	54	6.8	4.5	2.6	9.2	0.83	1.59
	55	6.8	4.5	2.6	9.2	1.21	2.26
11^{b}	56	10.8	7.1	1.6	6.3	2.32	4.32
	57	10.8	7.1	1.6	6.3	3.42	6.51
	58	10.8	7.1	1.6	6.3	4.49	8.62
	59	10.8	7.1	1.6	6.3	1.37	2.49
	60	10.8	7.1	1.6	6.3	0.92	1.71
	61	10.8	7.1	1.6	6.3	4.27	8.14
	62	10.8	7.1	1.6	6.3	2.96	5.50

${ }^{a}$ For the experiments, the $\mathrm{CH}_{2} \mathrm{OO}$ line at $1271.795 \mathrm{~cm}^{-1}$ was probed.
${ }^{b}$ For the experiments, the $\mathrm{CH}_{2} \mathrm{OO}$ line at $1237.622 \mathrm{~cm}^{-1}$ was probed.
${ }^{c}$ in unit of molecule cm^{-3}.
${ }^{d}$ The mixing ratio of the gaseous HNO_{3} in the bath gas $\mathrm{O}_{2} / \mathrm{N}_{2}$ before injection into the reactor was determined using UV absorption spectra and the absorption cross section of HNO_{3} in region 200-210 $\mathrm{nm} .{ }^{6}$ The $\left[\mathrm{HNO}_{3}\right]_{0}$ in the reactor was estimated by the ratio of its flow rate to the total flow rate and the total pressure. Considering the errors of UV absorption cross section of HNO_{3} at $200-210 \mathrm{~nm}$ (5 $\%$), the flow rates (3%), temperature (1%), and pressure (1%), an overall uncertainty of $\left[\mathrm{HNO}_{3}\right]_{0}$ was estimated the to be 6%.
${ }^{e}$ The k^{I} obtained by fitting of $\mathrm{CH}_{2} \mathrm{OO}$ traces with the kinetic model listed in Table S1.

Table S3 Summary of experimental and computational results for the $k_{\text {CH2OO+HNO3 }}$.

Study	Temperature / T	Pressure / Torr	$\begin{aligned} & {\left[\mathrm{CH}_{2} \mathrm{OOO}\right]_{0}} \\ & / 10^{13 a} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{HNO}_{3}\right]_{0}} \\ & / 10^{13 a} \end{aligned}$	$\begin{aligned} & k_{\text {CH2OO+HNO3 }} \\ & / 10^{-10 b} \end{aligned}$
This work	296	6.3-58.6	0.30-0.82	4.9-50.0	1.9 ± 0.2
Foreman et al., 2016 ${ }^{7}$	295	27-35	1-2	8-23	5.4 ± 1.0
Chung et al., $2022{ }^{8}$	298	40-70	>7	150-590	2.4 ± 0.4
Yang et al., $2022{ }^{9}$	298	7.7-399.0	0.03-0.14	0.8-24.2	1.51 ± 0.45
Raghunath et al., $2017{ }^{10}$	295	20-760			5.1
Vereecken, $2017{ }^{11}$	250-350	760			2.5

${ }^{a}$ in unit of molecule cm^{-3}.
${ }^{b}$ in cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$.

Table S4. Global kinetic model and rate coefficients employed for simulation of temporal profiles.

	Reaction	Rate coefficient ${ }^{a}$	Ref.
$R_{1 \mathrm{a}}{ }^{\text {c }}$	$\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{OO}+\mathrm{I}$	$\left\{1-0.4 /\left(1+1 \times 10^{-18}[\mathrm{M}]\right)\right\} \times 1.7 \times 10^{-12}$	1,2
		$/\left(1+1 \times 10^{-19}[\mathrm{M}]\right)$	
$R_{1 \mathrm{~b}}{ }^{\text {c }}$	$\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2} \xrightarrow{+M} \mathrm{ICH}_{2} \mathrm{OO}$	$1.7 \times 10^{-12}-1.7 \times 10^{-12} /\left(1+1 \times 10^{-19}[\mathrm{M}]\right)$	1,2
$R_{1 \mathrm{cI}}{ }^{\text {c }}$	$\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{OO}^{\#}+\mathrm{I}$	1.2×10^{-13}	2
$R_{\text {1cII }}{ }^{\text {c }}$	$\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2} \rightarrow \mathrm{OH}^{\#}+\mathrm{HCO}^{\#}+\mathrm{I}$	$k_{1 \mathrm{cII}}$	d
$R_{1 \mathrm{cIII}}{ }^{\text {c }}$	$\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}+\mathrm{CO}_{2}+\mathrm{I}$	$k_{1 \text { cIII }}$	d
$R_{1 \mathrm{clV}}{ }^{c}$	$\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2} \rightarrow$ products +I	$1.7 \times 10^{-12}-\left(k_{1 \mathrm{a}}+k_{1 \mathrm{~b}}+k_{1 \mathrm{cl}}+k_{1 \mathrm{cII}}+k_{\text {1cIII }}\right)$	d
R_{2}	$\mathrm{CH}_{2} \mathrm{OO}+\mathrm{CH}_{2} \mathrm{OO} \rightarrow 2 \mathrm{CH}_{2} \mathrm{O}+\mathrm{O}_{2}$	8.0×10^{-11}	3
$R_{3 \mathrm{a}}$	$\mathrm{CH}_{2} \mathrm{OO}+\mathrm{I} \xrightarrow{+\mathrm{M}} \mathrm{CH}_{2} \mathrm{O}^{\#}+\mathrm{IO}$	$0.56 \times k_{3}$	d
$R_{3 \mathrm{~b}}$	$\mathrm{CH}_{2} \mathrm{OO}+\mathrm{I} \xrightarrow{+M} \mathrm{ICH}_{2} \mathrm{OO}$	$0.44 \times k_{3}$	d
R_{4}	$\mathrm{ICH}_{2} \mathrm{OO}+\mathrm{ICH}_{2} \mathrm{OO} \rightarrow 2 \mathrm{ICH}_{2} \mathrm{O}+\mathrm{O}_{2}$	9.0×10^{-11}	4
R_{5}	$\mathrm{ICH}_{2} \mathrm{OO}+\mathrm{I} \rightarrow \mathrm{ICH}_{2} \mathrm{O}+\mathrm{IO}$	3.5×10^{-11}	4
R_{6}	$\mathrm{IO}+\mathrm{IO} \rightarrow$ products	9.9×10^{-11}	5
$R_{7 \mathrm{a}}$	$\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3} \rightarrow \mathrm{OH}+\mathrm{CH}_{2}(\mathrm{O}) \mathrm{NO}_{3}$	УOH $\times k_{7}$	d
$R_{7 \mathrm{~b}}$	$\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2}$	уНОО $\times k_{7}$	d
$R_{7 \mathrm{c}}$	$\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3} \rightarrow$ other products	$\left(1-\right.$ уон $^{-}$уно2 $) \times \mathrm{k}_{7}$	d
R_{8}	$\mathrm{CH}_{2} \mathrm{OO}+\mathrm{CH}_{2} \mathrm{OO}^{\#} \rightarrow 2 \mathrm{CH}_{2} \mathrm{O}^{\#}+\mathrm{O}_{2}$	8.0×10^{-11}	2
R_{9}	$\mathrm{CH}_{2} \mathrm{OO}^{\#}+\mathrm{CH}_{2} \mathrm{OO}^{\#} \rightarrow 2 \mathrm{CH}_{2} \mathrm{O}^{\#}+\mathrm{O}_{2}$	8.0×10^{-11}	2
$R_{10 \mathrm{a}}$	$\mathrm{CH}_{2} \mathrm{OO}^{\#}+\mathrm{I} \xrightarrow{+M} \mathrm{CH}_{2} \mathrm{O}^{\#}+\mathrm{IO}$	set as same as $k_{3 \mathrm{a}}$	2
$R_{10 \mathrm{~b}}$	$\mathrm{CH}_{2} \mathrm{OO}^{\#}+\mathrm{I} \xrightarrow{+M} \mathrm{ICH}_{2} \mathrm{OO}$	set as same as $k_{3 \mathrm{~b}}$	2
$R_{11 \mathrm{a}}$	$\mathrm{CH}_{2} \mathrm{OO}^{\#}+\mathrm{HNO}_{3} \rightarrow \mathrm{OH}+\mathrm{CH}_{2}(\mathrm{O}) \mathrm{NO}_{3}$	set as same as $k_{7 \mathrm{l}}$	d
$R_{1 \mathrm{lb}}$	$\mathrm{CH}_{2} \mathrm{OO}^{\#}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2}$	set as same as $k_{7 \mathrm{~b}}$	d
$R_{11 \mathrm{c}}$	$\mathrm{CH}_{2} \mathrm{OO}^{\#}+\mathrm{HNO}_{3} \rightarrow$ products	set as same as $k_{7 \mathrm{c}}$	d
$R_{12 \mathrm{a}}$	$\mathrm{CH}_{2} \mathrm{OO}^{\#} \rightarrow \mathrm{OH}+\mathrm{HCO}$	$2000{ }^{\text {b }}$	2

$R_{12 \mathrm{~b}}$	$\mathrm{CH}_{2} \mathrm{OO}^{\#} \rightarrow 2 \mathrm{H}+\mathrm{CO}_{2}$	500^{b}	2
$R_{12 \mathrm{c}}$	$\mathrm{CH}_{2} \mathrm{OO}^{\#} \rightarrow$ products	200^{b}	2
R_{13}	$\mathrm{OH}^{\#} \xrightarrow{+M} \mathrm{OH}$	$2.5 \times 10^{4 b}$	12
R_{14}	$\mathrm{HCO}^{\#} \xrightarrow{+M} \mathrm{HCO}$	$3.0 \times 10^{4 b}$	13
R_{15}	$\mathrm{CH}_{2} \mathrm{O}^{\#} \xrightarrow{+M} \mathrm{CH}_{2} \mathrm{O}$	5000^{b}	2
R_{16}	$\mathrm{H}+\mathrm{O}_{2} \xrightarrow{+M} \mathrm{HO}_{2}$	7.0×10^{-14}	14
R_{17}	$\mathrm{HCO}+\mathrm{O}_{2} \rightarrow \mathrm{HO}_{2}+\mathrm{CO}$	5.5×10^{-12}	15
R_{18}	$\mathrm{OH}+$ others \rightarrow products $^{R_{19}}$	$\mathrm{HO}_{2}+\mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$	k_{18} fitted ${ }^{b}$
R_{20}	$\mathrm{HO}_{2}+\mathrm{IO}_{\rightarrow} \mathrm{O}_{2}+\mathrm{HIO}$	1.7×10^{-12}	d
R_{21}	$\mathrm{HO}_{2}+$ others \rightarrow products	8.4×10^{-11}	16

${ }^{a}$ Rate coefficient in cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$, unless specified, [M] in molecule cm^{-3}.
${ }^{b}$ Rate coefficient in s^{-1}.
${ }^{c} k_{1 \mathrm{a}}+k_{\mathrm{lb}}+k_{1 \mathrm{cII}}+k_{\mathrm{ccII}}+k_{\mathrm{lcIII}}+k_{\mathrm{lcIV}}=1.7 \times 10^{-12} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$.
${ }^{d}$ The values obtained in this work.

Table 55 Summary of experimental conditions, obtained rate coefficients, and branching ratios.

Expt.	$\begin{gathered} {\left[\mathrm{CH}_{2} \mathrm{I}\right]_{0}} \\ \\ / 10^{13 a} \end{gathered}$	$\begin{gathered} {\left[\mathrm{HNO}_{3}\right]_{0}} \\ / 10^{13 a} \end{gathered}$	$\begin{gathered} {\left[\mathrm{O}_{2}\right]} \\ / 10^{17 a} \end{gathered}$	$\begin{gathered} P_{\mathrm{T}} \\ \text { /Torr } \end{gathered}$	$\begin{gathered} k_{\text {1cII }} \\ / 10^{-14 \mathrm{~b}} \end{gathered}$	$\begin{gathered} k_{1 \mathrm{cIII}} \\ / 10^{-14 b} \end{gathered}$	$\begin{gathered} k_{18} \\ / 10^{3 c} \end{gathered}$	$\begin{gathered} k_{21} \\ / 10^{2 c} \end{gathered}$	уоH d	уНО2 ${ }^{\text {d }}$
1	3.8	0.0	2.0	12.5	4.0	1.8	5.3	2.6	-	-
2	3.8	7.2	2.0	12.5	4.0	1.8	6.8	0.5	0.032	0.360
3	3.8	14.7	2.0	12.5	4.0	1.8	6.8	0.5	0.032	0.360
4	4.5	0.0	2.3	57.9	3.0	1.4	6.2	2.6	-	-
5	4.5	11.7	2.3	57.9	3.0	1.4	8.0	2.5	0.015	0.175
6	4.3	0.0	1.8	21.5	3.8	1.7	5.4	2.6	-	-
7	4.3	9.6	1.8	21.5	3.8	1.7	6.9	1.0	0.025	0.300
8	4.3	0.0	2.0	31.2	3.5	1.6	5.6	2.6	-	-
9	4.3	9.4	2.0	31.2	3.5	1.6	7.2	1.6	0.020	0.260
10	4.5	0.0	2.1	42.5	3.3	1.5	5.8	2.6	-	-
12	4.5	8.9	2.1	42.5	3.3	1.5	7.5	2.2	0.017	0.215
13	3.0	0.0	1.9	11.7	4.0	1.8	5.3	2.6	-	-
14	3.0	9.1	1.9	11.7	4.0	1.8	6.8	0.5	0.033	0.365
15	3.0	5.4	1.9	11.7	4.0	1.8	6.8	0.5	0.033	0.365
16	3.0	0.0	2.3	59.8	3.0	1.4	6.2	2.6	-	-
17	3.0	6.5	2.3	59.8	3.0	1.4	8.0	2.5	0.014	0.170

${ }^{a}$ in unit of molecule cm^{-3}.
${ }^{b}$ in unit of cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$.
${ }^{c}$ in unit of s^{-1}.
${ }^{d}$ The уон and уно2 represent the branching ratios for the $\mathrm{OH}+\mathrm{CH}_{2}(\mathrm{O}) \mathrm{NO}_{3}$ and $\mathrm{NO}_{2}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2}$ product channels, respectively, in the $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{HNO}_{3}$ reaction.

References

(1) Ting, W.-L.; Chang, C.-H.; Lee, Y.-F.; Matsui, H.; Lee, Y.-P.; Lin, J. J.-M. Detailed mechanism of the $\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2}$ reaction: Yield and self-reaction of the simplest Criegee intermediate $\mathrm{CH}_{2} \mathrm{OO}$. The Journal of Chemical Physics 2014, 141, 104308.
(2) Luo, P.-L.; Chen, I-Y. Synchronized two-color time-resolved dual-comb spectroscopy for quantitative detection of HO_{x} radicals formed from Criegee intermediates. Anal. Chem. 2022, 94, 5752-5759.
(3) Mir, Z. S.; Lewis, T. R.; Onel, L.; Blitz, M. A.; Seakins, P. W.; Stone, D. $\mathrm{CH}_{2} \mathrm{OO}$ Criegee intermediate UV absorption cross-sections and kinetics of $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{CH}_{2} \mathrm{OO}$ and $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{I}$ as a function of pressure. Physical Chemistry Chemical Physics 2020, 22, 9448-9459.
(4) Gravestock, T. J.; Blitz, M. A.; Bloss, W. J.; Heard, D. E. A multidimensional study of the reaction $\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2}$: Products and atmospheric implications. ChemPhysChem 2010, 11, 3928-3941.
(5) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; and Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III - gas phase reactions of inorganic halogens. Atmospheric Chemistry and Physics 2007, 7, 981-1191.
(6) Sander, S. P.; Friedl, R. R.; Abbatt, J. P. D.; Barker, J. R.; Burkholder, J. B.; Golden, D. M.; Kolb, C. E.; Kurylo, M. J.; Moortgat, G. K.; Wine, P. H.; Huie, R. E.; Orkin, V. L. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies; Evaluation Number 17, JPL Publication 10-6; Jet Propulsion Laboratory: Pasadena, CA, 2011.
(7) Foreman, E. S.; Kapnas, K. M.; Murray, C. Angew. Chem., Int. Ed., 2016, 55, 10419-10422.
(8) Chung, C.-A.; Hsu, C.-W.; Lee, Y.-P. Infrared characterization of the products and rate coefficient of the reaction between Criegee Intermediate $\mathrm{CH}_{2} \mathrm{OO}$ and HNO_{3}. J. Phys. Chem. A 2022, 126, 5738-5750.
(9) Yang, J.-N.; Takahashi, K.; Lin, J.-M. Reaction kinetics of Criegee intermediates with nitric acid. J. Phys. Chem. A 2022, 126, 6160-6170.
(10) Raghunath, P.; Lee, Y.-P.; Lin, M. C. Computational chemical kinetics for the reaction of Criegee intermediate $\mathrm{CH}_{2} \mathrm{OO}$ with HNO_{3} and its catalytic conversion to OH and HCO . J. Phys. Chem. A 2017, 121, 3871-3878.
(11) Vereecken, L. The reaction of Criegee intermediates with acids and enols. Phys. Chem. Chem. Phys. 2017, 19, 28630-28640.
(12) D'Ottone, L.; Bauer, D.; Campuzano-Jost, P.; Fardy, M.; Hynes, A. J. Vibrational deactivation studies of $\mathrm{OH} \mathrm{X}^{2} \Pi(v=1-5)$ by N_{2} and O_{2}. Physical Chemistry Chemical Physics 2004, 6, 4276-4282.
(13) Langford, A. O.; Moore, C. B. Reaction and relaxation of vibrationally excited formyl radicals. The Journal of Chemical Physics 1984, 80, 4204-4210.
(14) Michael, J. V.; Su, M.-C.; Sutherland, J. W.; Carroll, J. J.; Wagner, A. F. Rate constants for $\mathrm{H}+\mathrm{O}_{2}+\mathrm{M}$ $\rightarrow \mathrm{HO}_{2}+\mathrm{M}$ in seven bath gases. The Journal of Physical Chemistry 2002, 106, 5297-5313.
(15) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F.; Kerr, J. A.; Rossi, M. J.; Troe, J. Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. Journal of Physical and Chemical

Reference Data 1997, 26, 521-1011.
(16) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; and Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of $\mathrm{O}_{\mathrm{x}}, \mathrm{HO}_{\mathrm{x}}, \mathrm{NO}_{\mathrm{x}}$ and SO_{x} species. Atmospheric Chemistry and Physics 2004, 4, 1461-1738.

