Electronic Supplementary Information

Kinetics and pressure-dependent HO_x yields of the reaction between Criegee intermediate CH₂OO and HNO₃

Pei-Ling Luo*a

^aInstitute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan. *E-mail: plluo@gate.sinica.edu.tw

Table of content

Note S1. Descriptions of adopted kinetic model and reaction rate coefficients.

Figure S1. Comparison of the CH₂OO time traces recorded using different experimental methods.

Figure S2. Rate coefficients for the $CH_2OO + I$ reaction (k_3) as a function of the total pressure.

Figure S3. Comparison of plots of k^{I} vs. [HNO₃]₀ derived from model fit and single-exponential fit.

Figure S4. Comparison of the measured and simulated temporal profiles of the OH radical.

Figure S5. Comparison of the measured and simulated temporal profiles of the HO₂ radical.

Figure S6. Comparison of temporal concentration profiles of (a) CH₂OO, (b) CH₂O, (c) OH, and (d) HO₂ with and without HNO₃ addition at 57.9 Torr.

Figure S7. Inverse of the fractional yield of the $OH + CH_2(O)NO_3$ product channel (y_{OH}^{-1}) as a function of pressure.

Figure S8. Inverse of the fractional yield of the $NO_2 + CH_2O + HO_2$ product channel (y_{HO2}^{-1}) as a function of pressure.

Table S1. The simplified model used for the kinetic study of the reaction $CH_2OO + HNO_3$.

Table S2. Summary of experimental conditions and fitted rate coefficients k^{I} .

Table S3. Summary of experimental and computational results for the $k_{CH2OO+HNO3}$.

Table S4. Global kinetic model and rate coefficients employed for simulation of temporal profiles.

Table S5. Summary of experimental conditions, obtained rate coefficients, and branching ratios.**References**

Note S1. Descriptions of adopted kinetic model and reaction rate coefficients.

In kinetic studies, the simplified kinetic model (Table S1) was employed to determine the rate coefficients of the reaction $CH_2OO + HNO_3$. The simplified kinetic scheme takes into account key reaction paths including the formation and self-reaction of CH_2OO as well as the $CH_2OO + I$ reaction.^{1–5} To fit the first-order rate coefficient k^{I} (= $k_7 \times [HNO_3]_0$ in Table S1), all rate coefficients at values listed in Table S1 were fixed and the initial concentrations $[CH_2I]_0$, $[O_2]_0$, and $[HNO_3]_0$ were given. The root mean square error (RMSE) of each fitted residual was obtained to be ~3 % under wide variations in experimental conditions, indicating the adequacy of the adopted kinetic model.

To determine the branching ratios for the OH + $CH_2(O)NO_3$ and $NO_2 + CH_2O + HO_2$ product channels of the reaction $CH_2OO + HNO_3$, the global kinetic model (Table S4) was used to simulate the temporal concentration profiles of CH_2OO , CH_2O , OH, and HO_2 . The global kinetic model has been explored by quantitative analysis of the time traces of CH_2OO , CH_2O , OH and HO_2 radicals recorded under varied experimental conditions with and without the addition of SO_2 .² The global kinetic scheme takes into account the reaction pathways related to the formation of the OH and HO_2 radicals that could be formed from decomposition of initially energized and vibrationally excited Criegee intermediates. To investigate the reaction $CH_2OO + HNO_3$, only the pathways of $CH_2OO + SO_2$ in the previous work were replaced to the pathways of $CH_2OO + HNO_3$. Additionally, to simplify the model, only three product channels of the reaction $CH_2OO + HNO_3$ were listed in the model:

- $CH_2OO + HNO_3 \rightarrow OH + CH_2(O)NO_3$ (*R*_{7a})
- $CH_2OO + HNO_3 \rightarrow NO_2 + CH_2O + HO_2$ (*R*_{7b})

$$CH_2OO + HNO_3 \rightarrow other products$$
 (R_{7c})

in which the branching ratios for the OH + CH₂(O)NO₃ and NO₂ + CH₂O + HO₂ product channels are y_{OH} and y_{HO2} , respectively, and the branching ratio for other products is $1 - y_{OH} - y_{HO2}$. In addition, the rate coefficients of the reaction vibrationally excited CH₂OO[#] + HNO₃ ($R_{11a-11c}$) were set as same as that of the reaction CH₂OO + HNO₃ (R_{7a-7c}).

In the reaction system, the OH radicals might be reacted away mainly with the precursor CH_2I_2 or the product I_2 and NMHP. Due to lack of the accurate rate coefficients of these reactions, the overall decay rate (k_{18}) of the OH radicals was obtained by fitting the time trace with a single exponential-decay function, as shown in Fig. S4(a). Afterwards, the y_{OH} could be obtained by fitting the time traces using the global kinetic model with the fixed overall decay rate (k_{18}). Considering an uncertainty of 10% on obtained concentrations of the OH radicals, the y_{OH} would be varied by ~20%, as shown in Figs. S4(b).

With the addition of HNO₃, the HO₂ radicals can be quickly generated and followed by a slow decay through the underlying reaction pathways ($R_{19}-R_{21}$). Because the overall decay rates (10^{1} ~ 10^{2} s⁻¹) are much smaller than the formation rates (10^{4} ~ 10^{5} s⁻¹), the y_{HO2} could be determined by simulating the time traces with the kinetic model excluding the loss pathways of HO₂ ($R_{19}-R_{21}$). Considering an uncertainty of 10% on obtained concentrations of the HO₂ radicals, the y_{HO2} would be varied by ~ 10° ,

as shown in Figs. S5(a). Afterwards, the additional loss rate (k_{21}) for the HO₂ radicals can be obtained by fitting the measured traces with the global kinetic model and the fixed y_{HO2}, as shown in Fig. S5(b).

In the absence of HNO₃, about 90% CH₂OO would be reacted to form CH₂O via self-reaction of CH₂OO and the reaction CH₂OO + I. In the experiments, the formation rates of CH₂O increase, but the yields of CH₂O decrease with the addition of HNO₃, indicating that a part of CH₂O could be generated from the reaction CH₂OO + HNO₃, but the fractional yields of the CH₂O product channel of the reaction CH₂OO + HNO₃ might be lower comparing to that of the reactions CH₂OO + CH₂OO and CH₂OO + I. The temporal concentration profile of CH₂O can be also fitted with kinetic model to derive the branching ratio (y_{HO2}) for the NO₂ + CH₂O + HO₂ product channel and the derived y_{HO2} is consistent with the value obtained by analyzing the time trace of HO₂ radicals.

Figure S1. Comparison of the CH₂OO time traces recorded with different methods. The black trace measured by employing time-resolved dual-comb spectroscopy (TR-DCS) and the red trace measured by using the CW laser mode.

Figure S2. Rate coefficients for the CH₂OO + I reaction (k_3) as a function of the total pressure. The k_3 can be obtained by fitting the measured time traces of CH₂OO using the kinetic model (Table S1) with input of initial concentrations of CH₂I, I, and O₂, in which the rate coefficients at values listed in Table S1, except the k_3 , were fixed while fitting the time traces. The blue curve derived by fitting the determined k_3 in this work with the Lindemann's equation, $k_3 = \{k_{3,0} [M] \times k_{3,\infty}\}/\{k_{3,0} [M] + k_{3,\infty}\}$. The rate coefficients in the low and high pressure limits, $k_{3,0}$ and $k_{3,\infty}$, are determined to be $(1.47\pm0.37)\times10^{-28}$ cm⁶ molecule⁻¹ s⁻¹ and $(4.2\pm0.4)\times10^{-11}$ cm³ molecule⁻¹ s⁻¹, respectively. The data points shown by the green triangle are reported by Mir *et al.*³

Figure S3. Comparison of plots of k^{I} vs. [HNO₃]₀ derived from model fit and single-exponential fit. The data correspond to experimental set 1 listed in Table S2.

Figure S4. Comparison of the measured and simulated temporal profiles of the OH radical. (a) An overall decay rate (k_{18}) of 6800 s⁻¹ was obtained by fitting the time trace with a single exponential-decay function. (b) A comparison of the measured and simulated temporal profiles with the fixed k_{18} of 6800 s⁻¹ and the y_{OH} = 3.2%, 2.6%, and 3.8%. Here, the data correspond to the experiment 3 listed in Table S5.

Figure S5. Comparison of the measured and simulated temporal profiles of the HO₂ radical. (a) A comparison of the measured and simulated temporal profiles excluding the loss pathways of HO₂ ($R_{19}-R_{21}$) and setting the $y_{HO2} = 36.0\%$, 32.4%, and 39.6%. (b) A comparison of the measured and fitted curve with global kinetic model listed in Table S4 with the fixed $y_{HO2} = 36.0\%$. Here, the data correspond to the experiment 3 listed in Table S5.

Figure S6. Comparison of temporal concentration profiles of (a) CH_2OO , (b) CH_2O , (c) OH, and (d) HO_2 with and without HNO_3 addition at 57.9 Torr. The temporal resolution of the measured temporal profiles (black and red) is 12 μ s. The orange and blue curves represent the simulation profiles using the kinetic model shown in Table S4. Here, the data correspond to the experiments 4 and 5 listed in Table S5.

Figure S7. Inverse of the fractional yield of the OH + CH₂(O)NO₃ product channel (y_{OH}^{-1}) as a function of pressure. The red line indicates a linear fitting curve with an intercept of (21 ± 6) and a slope of (2.6±0.6) ×10⁻¹⁷ cm³ molecule⁻¹.

Figure S8. Inverse of the fractional yield of the NO₂ + CH₂O + HO₂ product channel (y_{HO2}^{-1}) as a function of pressure. The red line indicates a linear fitting curve with an intercept of (2.0 ± 0.3) and a slope of (2.0±0.3) ×10⁻¹⁸ cm³ molecule⁻¹.

	Reaction	Rate coefficient ^{<i>a</i>}	Ref.
$R_{1a}{}^b$	$CH_2I + O_2 \rightarrow CH_2OO + I$	${1-0.4/(1+1\times10^{-18} [M])}\times1.7\times10^{-12}$ /(1+1×10 ⁻¹⁹ [M])	1,2
$R_{1b}{}^b$	$CH_2I + O_2 \xrightarrow{+M} ICH_2OO$	$1.7 \times 10^{-12} - 1.7 \times 10^{-12} / (1 + 1 \times 10^{-19} \text{ [M]})$	1,2
R_{1c}^{b}	$CH_2I + O_2 \rightarrow products$	$1.7 \times 10^{-12} - (k_{1a} + k_{1b})$	1,2
R_2	$CH_2OO + CH_2OO \rightarrow 2CH_2O + O_2$	8.0×10^{-11}	3
<i>R</i> ₃	$CH_2OO + I \xrightarrow{+M} product$	$k_3 = \{1.47 \times 10^{-28} \text{ [M]} \times 4.2 \times 10^{-11} \}$ / $\{1.47 \times 10^{-28} \text{ [M]} + 4.2 \times 10^{-11} \}$	This work
R_4	$ICH_2OO + ICH_2OO \rightarrow 2ICH_2O + O_2$	9.0×10 ⁻¹¹	4
R_5	$ICH_2OO + I \rightarrow ICH_2O + IO$	3.5×10 ⁻¹¹	4
R_6	$IO + IO \rightarrow products$	9.9×10 ⁻¹¹	5
R ₇	$CH_2OO + HNO_3 \rightarrow products$	$k^{\mathrm{I}} = k_7 \times [\mathrm{HNO}_3]_0$, fitted ^c	This work

Table S1. The simplified model used for the kinetic study of the reaction $CH_2OO + HNO_3$.

^{*a*} Rate coefficient in cm^3 molecule⁻¹ s⁻¹, [M] in molecule cm^{-3} .

^b $k_{1a} + k_{1b} + k_{1c} = 1.7 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.$

^{*c*} k_7 represents the rate coefficients for the reaction CH₂OO + HNO₃, $k_{CH2OO+HNO3}$.

Sat	Erret	$[CH_2I]_0$	[CH ₂ OO] ₀	[O ₂]	P_{T}	$[HNO_3]_0^d$	k ^{I e}
Set	Expi.	$/10^{12} c$	$/10^{12} c$	$/10^{17 c}$	/Torr	$/10^{14} c$	$/10^4 \ s^{-1}$
1 ^a	1	7.0	4.8	4.1	13.7	5.00	9.31
	2	7.0	4.8	4.1	13.7	4.04	7.75
	3	7.0	4.8	4.1	13.7	3.25	5.92
	4	7.0	4.8	4.1	13.7	2.51	4.89
	5	7.0	4.8	4.1	13.7	1.72	3.36
	6	7.0	4.8	4.1	13.7	1.19	2.23
	7	7.0	4.8	4.1	13.7	0.80	1.57
	8	7.0	4.8	4.1	13.7	0.51	0.91
2 ª	9	4.5	3.0	2.6	8.7	3.27	6.48
	10	4.5	3.0	2.6	8.7	2.77	5.65
	11	4.5	3.0	2.6	8.7	2.20	4.11
	12	4.5	3.0	2.6	8.7	1.66	3.27
	13	4.5	3.0	2.6	8.7	1.27	2.48
	14	4.5	3.0	2.6	8.7	0.77	1.58
	15	4.5	3.0	2.6	8.7	0.49	0.94
3 ^a	16	7.1	4.8	3.4	12.2	3.73	7.16
	17	7.1	4.8	3.4	12.2	4.10	7.61
	18	7.1	4.8	3.4	12.2	2.50	4.65
	19	7.1	4.8	3.4	12.2	2.11	4.21
	20	7.1	4.8	3.4	12.2	1.41	2.57
	21	7.1	4.8	3.4	12.2	0.86	1.61
4 ^a	22	8.9	6.3	3.6	19.9	2.61	5.03
	23	8.9	6.3	3.6	19.9	2.15	4.00
	24	8.9	6.3	3.6	19.9	1.63	3.04
	25	8.9	6.3	3.6	19.9	1.11	2.30
	26	8.9	6.3	3.6	19.9	0.58	1.20
5 ^a	27	9.6	6.9	3.1	27.4	3.18	6.50
	28	9.6	6.9	3.1	27.4	2.62	5.22
	29	9.6	6.9	3.1	27.4	2.14	3.99
	30	9.6	6.9	3.1	27.4	1.76	3.28
	31	9.6	6.9	3.1	27.4	1.34	2.62
	32	9.6	6.9	3.1	27.4	0.92	1.85
6 ^a	33	11.2	8.2	3.4	36.9	3.24	6.48
	34	11.2	8.2	3.4	36.9	2.65	5.18
	35	11.2	8.2	3.4	36.9	2.20	4.34

Table S2 Summary of experimental conditions and fitted rate coefficients k^{I} .

	36	11.2	8.2	3.4	36.9	1.77	3.56
	37	11.2	8.2	3.4	36.9	1.34	2.90
7 ^a	38	6.5	4.6	3.6	58.6	3.32	6.29
	39	6.5	4.6	3.6	58.6	2.53	4.91
	40	6.5	4.6	3.6	58.6	1.75	3.27
	41	6.5	4.6	3.6	58.6	1.16	2.26
8 ^a	42	7.1	5.0	3.5	45.2	3.43	6.33
	43	7.1	5.0	3.5	45.2	2.49	4.73
	44	7.1	5.0	3.5	45.2	1.85	3.48
	45	7.1	5.0	3.5	45.2	1.33	2.75
	46	7.1	5.0	3.5	45.2	0.97	1.90
9 ^a	47	6.8	4.5	2.6	9.2	2.00	3.96
	48	6.8	4.5	2.6	9.2	2.70	5.28
	49	6.8	4.5	2.6	9.2	2.30	4.39
	50	6.8	4.5	2.6	9.2	1.57	2.95
	51	6.8	4.5	2.6	9.2	0.59	1.19
10^{b}	52	6.8	4.5	2.6	9.2	2.03	4.07
	53	6.8	4.5	2.6	9.2	2.51	4.61
	54	6.8	4.5	2.6	9.2	0.83	1.59
	55	6.8	4.5	2.6	9.2	1.21	2.26
11 ^b	56	10.8	7.1	1.6	6.3	2.32	4.32
	57	10.8	7.1	1.6	6.3	3.42	6.51
	58	10.8	7.1	1.6	6.3	4.49	8.62
	59	10.8	7.1	1.6	6.3	1.37	2.49
	60	10.8	7.1	1.6	6.3	0.92	1.71
	61	10.8	7.1	1.6	6.3	4.27	8.14
	62	10.8	7.1	1.6	6.3	2.96	5.50

^{*a*} For the experiments, the CH₂OO line at 1271.795 cm⁻¹ was probed.

^b For the experiments, the CH₂OO line at 1237.622 cm⁻¹ was probed.

^c in unit of molecule cm⁻³.

^{*d*} The mixing ratio of the gaseous HNO₃ in the bath gas O_2/N_2 before injection into the reactor was determined using UV absorption spectra and the absorption cross section of HNO₃ in region 200–210 nm.⁶ The [HNO₃]₀ in the reactor was estimated by the ratio of its flow rate to the total flow rate and the total pressure. Considering the errors of UV absorption cross section of HNO₃ at 200–210 nm (5 %), the flow rates (3 %), temperature (1 %), and pressure (1 %), an overall uncertainty of [HNO₃]₀ was estimated the to be 6 %.

^{*e*} The k^{I} obtained by fitting of CH₂OO traces with the kinetic model listed in Table S1.

Study	Temperature	Pressure	$[CH_2OO]_0$	$[HNO_3]_0$	<i>k</i> _{CH2OO+HNO3}
Study	/ T	/ Torr	$/10^{13 a}$	$/10^{13} a$	/ 10 ⁻¹⁰ b
This work	296	6.3–58.6	0.30-0.82	4.9–50.0	1.9 ± 0.2
Foreman et al., 2016 ⁷	295	27–35	1–2	8–23	5.4 ± 1.0
Chung <i>et al.</i> , 2022 ⁸	298	40–70	>7	150–590	2.4 ± 0.4
Yang <i>et al.</i> , 2022 ⁹	298	7.7–399.0	0.03-0.14	0.8–24.2	1.51 ± 0.45
Raghunath et al., 2017 ¹⁰	295	20-760			5.1
Vereecken, 2017 ¹¹	250-350	760			2.5

Table S3 Summary of experimental and computational results for the $k_{CH2OO+HNO3}$.

^{*a*} in unit of molecule cm^{-3} .

^{*b*} in cm³ molecule⁻¹ s⁻¹.

	Reaction	Rate coefficient ^{<i>a</i>}	Ref.
R_{1a}^{c}	$CH_2I + O_2 \rightarrow CH_2OO + I$	${1-0.4/(1+1\times10^{-18} [M])}\times1.7\times10^{-12}$ /(1+1×10 ⁻¹⁹ [M])	1,2
$R_{1b}{}^c$	$CH_2I + O_2 \xrightarrow{+M} ICH_2OO$	$1.7 \times 10^{-12} - 1.7 \times 10^{-12} / (1 + 1 \times 10^{-19} \text{ [M]})$	1,2
R_{1cI}^{c}	$CH_2I + O_2 \rightarrow CH_2OO^{\#} + I$	1.2×10^{-13}	2
$R_{1 c II}^{c}$	$CH_2I + O_2 \rightarrow OH^{\#} + HCO^{\#} + I$	k _{1cII}	d
$R_{1 \text{cIII}}^{c}$	$CH_2I + O_2 \rightarrow 2H + CO_2 + I$	k _{1cIII}	d
$R_{1 cIV}^{c}$	$CH_2I + O_2 \rightarrow products + I$	$1.7 \times 10^{-12} - (k_{1a} + k_{1b} + k_{1cI} + k_{1cII} + k_{1cIII})$	d
R_2	$CH_2OO + CH_2OO \rightarrow 2CH_2O + O_2$	8.0×10^{-11}	3
R_{3a}	$CH_2OO + I \xrightarrow{+M} CH_2O^{\#} + IO$	$0.56 \times k_3$	d
R_{3b}	$CH_2OO + I \xrightarrow{+M} ICH_2OO$	$0.44 imes k_3$	d
R_4	$ICH_2OO + ICH_2OO \rightarrow 2ICH_2O + O_2$	9.0×10 ⁻¹¹	4
R_5	$ICH_2OO + I \rightarrow ICH_2O + IO$	3.5×10^{-11}	4
R_6	$IO + IO \rightarrow products$	9.9×10 ⁻¹¹	5
R _{7a}	$CH_2OO + HNO_3 \rightarrow OH + CH_2(O)NO_3$	$y_{ m OH} imes k_7$	d
$R_{7\mathrm{b}}$	$CH_2OO + HNO_3 \rightarrow NO_2 + CH_2O + HO_2$	$y_{HO2} imes k_7$	d
<i>R</i> _{7c}	$CH_2OO + HNO_3 \rightarrow other \ products$	$(1 - y_{OH} - y_{HO2}) \times k_7$	d
R_8	$CH_2OO + CH_2OO^{\#} \rightarrow 2CH_2O^{\#} + O_2$	8.0×10^{-11}	2
R 9	$CH_2OO^{\#} + CH_2OO^{\#} \rightarrow 2CH_2O^{\#} + O_2$	8.0×10^{-11}	2
R _{10a}	$CH_2OO^{\#} + I \xrightarrow{+M} CH_2O^{\#} + IO$	set as same as k_{3a}	2
R_{10b}	$CH_2OO^{\#} + I \xrightarrow{+M} ICH_2OO$	set as same as k_{3b}	2
R _{11a}	$CH_2OO^{\#} + HNO_3 \rightarrow OH + CH_2(O)NO_3$	set as same as k_{7a}	d
R _{11b}	$CH_2OO^{\#} + HNO_3 \rightarrow NO_2 + CH_2O + HO_2$	set as same as k_{7b}	d
R_{11c}	$CH_2OO^{\#} + HNO_3 \rightarrow products$	set as same as k_{7c}	d
R _{12a}	$CH_2OO^{\#} \rightarrow OH + HCO$	2000 ^b	2

Table S4. Global kinetic model and rate coefficients employed for simulation of temporal profiles.

R_{12b}	$\rm CH_2OO^{\#} \rightarrow 2\rm H + \rm CO_2$	500 ^b	2
R_{12c}	$CH_2OO^{\#} \rightarrow products$	200 ^{<i>b</i>}	2
R ₁₃	$OH^{\#} \xrightarrow{+M} OH$	2.5×10 ^{4 b}	12
R ₁₄	$\text{HCO}^{\#} \xrightarrow{+M} \text{HCO}$	3.0×10 ^{4 b}	13
R ₁₅	$CH_2O^{\#} \xrightarrow{+M} CH_2O$	5000 ^b	2
R ₁₆	$H + O_2 \xrightarrow{+M} HO_2$	7.0×10^{-14}	14
R 17	$HCO + O_2 \rightarrow HO_2 + CO$	5.5×10^{-12}	15
R ₁₈	$OH + others \rightarrow products$	k_{18} fitted ^b	d
R 19	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	1.7×10^{-12}	16
R_{20}	$HO_2 + IO \rightarrow O_2 + HIO$	8.4×10^{-11}	5
R_{21}	$HO_2 + others \rightarrow products$	k_{21} fitted ^b	d

^{*a*} Rate coefficient in cm^3 molecule⁻¹ s⁻¹, unless specified, [M] in molecule cm^{-3} .

^{*b*} Rate coefficient in s⁻¹.

 $^{c}k_{1a} + k_{1b} + k_{1cI} + k_{1cII} + k_{1cIII} + k_{1cIV} = 1.7 \times 10^{-12} \,\mathrm{cm}^{3} \,\mathrm{molecule}^{-1} \,\mathrm{s}^{-1}.$

^{*d*} The values obtained in this work.

Evet	$[CH_2I]_0$	[HNO ₃] ₀	[O ₂]	P_{T}	$k_{1 c II}$	$k_{1 cIII}$	k_{18}	<i>k</i> ₂₁	d	d
схрі.	$/10^{13 a}$	/10 ¹³ <i>a</i>	$/10^{17 a}$	/Torr	$/10^{-14 b}$	$/10^{-14 b}$	$/10^{3} c$	$/10^{2} c$	уон	уно2
1	3.8	0.0	2.0	12.5	4.0	1.8	5.3	2.6	_	_
2	3.8	7.2	2.0	12.5	4.0	1.8	6.8	0.5	0.032	0.360
3	3.8	14.7	2.0	12.5	4.0	1.8	6.8	0.5	0.032	0.360
4	4.5	0.0	2.3	57.9	3.0	1.4	6.2	2.6	_	_
5	4.5	11.7	2.3	57.9	3.0	1.4	8.0	2.5	0.015	0.175
6	4.3	0.0	1.8	21.5	3.8	1.7	5.4	2.6	_	_
7	4.3	9.6	1.8	21.5	3.8	1.7	6.9	1.0	0.025	0.300
8	4.3	0.0	2.0	31.2	3.5	1.6	5.6	2.6	_	_
9	4.3	9.4	2.0	31.2	3.5	1.6	7.2	1.6	0.020	0.260
10	4.5	0.0	2.1	42.5	3.3	1.5	5.8	2.6	_	_
12	4.5	8.9	2.1	42.5	3.3	1.5	7.5	2.2	0.017	0.215
13	3.0	0.0	1.9	11.7	4.0	1.8	5.3	2.6	_	_
14	3.0	9.1	1.9	11.7	4.0	1.8	6.8	0.5	0.033	0.365
15	3.0	5.4	1.9	11.7	4.0	1.8	6.8	0.5	0.033	0.365
16	3.0	0.0	2.3	59.8	3.0	1.4	6.2	2.6	_	_
17	3.0	6.5	2.3	59.8	3.0	1.4	8.0	2.5	0.014	0.170

Table S5 Summary of experimental conditions, obtained rate coefficients, and branching ratios.

^{*a*} in unit of molecule cm^{-3} .

^{*b*} in unit of cm^3 molecule⁻¹ s⁻¹.

 c in unit of s⁻¹.

 d The y_{OH} and y_{HO2} represent the branching ratios for the OH + CH₂(O)NO₃ and NO₂ + CH₂O + HO₂ product channels, respectively, in the CH₂OO + HNO₃ reaction.

References

(1) Ting, W.-L.; Chang, C.-H.; Lee, Y.-F.; Matsui, H.; Lee, Y.-P.; Lin, J. J.-M. Detailed mechanism of the $CH_2I + O_2$ reaction: Yield and self-reaction of the simplest Criegee intermediate CH_2OO . *The Journal of Chemical Physics* **2014**, *141*, 104308.

(2) Luo, P.-L.; Chen, I-Y. Synchronized two-color time-resolved dual-comb spectroscopy for quantitative detection of HO_x radicals formed from Criegee intermediates. *Anal. Chem.* **2022**, *94*, 5752–5759.

(3) Mir, Z. S.; Lewis, T. R.; Onel, L.; Blitz, M. A.; Seakins, P. W.; Stone, D. CH₂OO Criegee intermediate UV absorption cross-sections and kinetics of CH₂OO + CH₂OO and CH₂OO + I as a function of pressure. *Physical Chemistry Chemical Physics* **2020**, *22*, 9448–9459.

(4) Gravestock, T. J.; Blitz, M. A.; Bloss, W. J.; Heard, D. E. A multidimensional study of the reaction CH₂I+O₂: Products and atmospheric implications. *ChemPhysChem* **2010**, *11*, 3928–3941.

(5) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; and Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens. *Atmospheric Chemistry and Physics* **2007**, *7*, 981–1191.

(6) Sander, S. P.; Friedl, R. R.; Abbatt, J. P. D.; Barker, J. R.; Burkholder, J. B.; Golden, D. M.; Kolb, C. E.; Kurylo, M. J.; Moortgat, G. K.; Wine, P. H.; Huie, R. E.; Orkin, V. L. *Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies;* Evaluation Number 17, JPL Publication 10-6; Jet Propulsion Laboratory: Pasadena, CA, 2011.

(7) Foreman, E. S.; Kapnas, K. M.; Murray, C. Angew. Chem., Int. Ed., 2016, 55, 10419–10422.

(8) Chung, C.-A.; Hsu, C.-W.; Lee, Y.-P. Infrared characterization of the products and rate coefficient of the reaction between Criegee Intermediate CH₂OO and HNO₃. *J. Phys. Chem. A* **2022**, *126*, 5738–5750.

(9) Yang, J.-N.; Takahashi, K.; Lin, J.-M. Reaction kinetics of Criegee intermediates with nitric acid. *J. Phys. Chem. A* **2022**, *126*, 6160–6170.

(10) Raghunath, P.; Lee, Y.-P.; Lin, M. C. Computational chemical kinetics for the reaction of Criegee intermediate CH₂OO with HNO₃ and its catalytic conversion to OH and HCO. *J. Phys. Chem. A* **2017**, *121*, 3871–3878.

(11) Vereecken, L. The reaction of Criegee intermediates with acids and enols. *Phys. Chem. Chem. Phys.* **2017**, *19*, 28630–28640.

(12) D'Ottone, L.; Bauer, D.; Campuzano-Jost, P.; Fardy, M.; Hynes, A. J. Vibrational deactivation studies of OH X $^{2}\Pi$ (v = 1-5) by N₂ and O₂. *Physical Chemistry Chemical Physics* **2004**, *6*, 4276–4282.

(13) Langford, A. O.; Moore, C. B. Reaction and relaxation of vibrationally excited formyl radicals. *The Journal of Chemical Physics* **1984**, *80*, 4204–4210.

(14) Michael, J. V.; Su, M.-C.; Sutherland, J. W.; Carroll, J. J.; Wagner, A. F. Rate constants for $H + O_2 + M$ $\rightarrow HO_2 + M$ in seven bath gases. *The Journal of Physical Chemistry* **2002**, *106*, 5297–5313.

(15) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F.; Kerr, J. A.; Rossi, M. J.; Troe, J. Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. *Journal of Physical and Chemical*

Reference Data **1997,** *26,* 521–1011.

(16) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; and Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of O_x, HO_x, NO_x and SO_x species. *Atmospheric Chemistry and Physics* **2004**, *4*, 1461–1738.