Supporting Information

First Principles Study on Thickness Dependent Structural and Electronic Properties Unveiling Growth and Stability of 2D Layered II-VI Semiconducting Compounds.

P. Devi ${ }^{\dagger}$, D. Mahendiran ${ }^{\dagger, \ddagger}$, and P. Murugan ${ }^{\dagger,,, *}$
\dagger Electrochemical Power Sources Division, CSIR Central Electrochemical Research Institute, Karaikudi - 630003, Tamil Nadu, India
\ddagger Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, Ghaziabad District, Uttar Pradesh, India
*E-mail: murugan@cecri.res.in

Table of Contents

Fig. S1- Cut-off energy optimization for WZ phase of MO and MX compounds.
Fig. S2 - CBM and VBM as a function of uniaxial strain of 2D-MO and 2D-MX surface slabs with thickness of 2 L .

Fig. S3 - Ball and Stick model of various thicknesses of 2D-ZnS and 2D-CdS surface slabs.
Fig. S4 - Layer resolved DOS of 10L thick WZ-ZnTe slab.
Fig. S5 - Calculated $E_{\text {exf }}$ values for various thick (2 L to 10 L) $2 \mathrm{D}-\mathrm{MO}$ and $2 \mathrm{D}-\mathrm{MX}$ surface slabs.

Fig. S6 - DOS and BS of 3L and 4L thick 2D-CdX surface slab.
Fig. S7 - DOS and BS of 10L thick WZ-CdX surface slab.
Fig. S8 - Partial change density of 2L thick 2D-ZnTe surface slab.
Table S1 - $\mathrm{Zn}-\mathrm{X}$ bond distances of various thicknesses of 2D-ZnX surface slabs.
Table S2 - Cd-X bond distances of various thicknesses of 2D-CdX surface slabs.
Table S3 - Interlayer $\mathrm{Zn}-\mathrm{X}$ distances of various thicknesses of 2D-ZnX surface slabs.
Table S4 - Interlayer Cd-X distances of various thicknessess of 2D-CdX surface slabs.
Table S5 - Interlayer M-X distances of various thicknessess of WZ-MX surface slabs.
Table S6 - Buckling distances of various thicknesses of 2D-ZnX surface slabs.
Table S7 - Buckling distances of various thicknesses of 2D-CdX surface slabs.
Table S8 - Mechanical properties of 2L 2D-MX surface slabs.
Table S9 - Band gap of various thicknesses of 2D-MX surface slabs.
Table S10 - Effective mass of various thicknesses of 2D-MX surface slabs.

Fig. S1 : Cut-off energy optimization for WZ phase of MO and MX compounds.

Fig. S2: CBM (red line) and VBM (blue line) as a function of uniaxial strain of MX 2L (high symmetry direction $\Gamma \rightarrow K$)

Fig. S3: Ball and stick model of optimized structures of various thick (1L to 10 L) ZnS (lower diagonal) and CdS (upper diagonal) surface slabs. Grey, sandal and yellow coloured ball represent Zn, Cd and S atoms, respectively.

Fig. S4 : Layer resolved DOS of 10L thick WZ slab of ZnTe compound is given. For clarity, atomic structure is provided in right panel where layers are indexed. This figure clearly indicates the holes and electrons are spatially separated in the surface slab. This kind of feature can be seen in WZ slabs of these compounds.

Table S1: Typical $\mathrm{Zn}-\mathrm{X}$ bond distances (in \AA) along xy-axis of various thick (1L to 10 L) of 2D-MX surface slabs. For comparsion, bulk bond distances are given at last row.

$\mathbf{n L}$	Zn-O	Zn-S	Zn-Se	Zn-Te
$\mathbf{1}$	1.896	2.236	2.364	2.563
$\mathbf{2}$	1.925	2.303	2.448	2.649
$\mathbf{3}$	1.935	$2.269-2.293$	$2.383-2.439$	$2.567-2.647$
$\mathbf{4}$	1.942	$2.297-2.303$	$2.444-2.447$	$2.647-2.648$
$\mathbf{5}$	1.946	$2.258-2.303$	$2.383-2.446$	$2.566-2.654$
$\mathbf{6}$	1.949	$2.295-2.305$	$2.443-2.449$	$2.648-2.650$
$\mathbf{7}$	1.952	$2.304-2.277$	$2.375-3.449$	$2.599-2.671$
$\mathbf{8}$	1.954	$2.294-2.304$	$2.385-2.469$	$2.648-2.650$
$\mathbf{9}$	1.955	$2.295-2.305$	$2.383-2.449$	$2.564-2.652$
$\mathbf{1 0}$	1.956	$2.295-2.306$	$2.390-2.455$	$2.646-2.648$
Bulk	1.99	2.32	2.45	2.63

Table S2: Typical Cd-X bond distances (in \AA) along xy-axis of various thick (1L to 10L) of 2D-MX surface slabs. For comparsion, bulk bond distances are given at last row.

$\mathbf{n L}$	$\mathbf{C d}-\mathbf{O}$	$\mathbf{C d}-\mathbf{S}$	Cd-Se	Cd-Te
$\mathbf{1}$	2.115	2.446	2.572	2.760
$\mathbf{2}$	2.153	2.517	2.649	2.840
$\mathbf{3}$	2.170	$2.497-2.510$	$2.594-2.646$	$2.758-2.840$
$\mathbf{4}$	2.179	$2.513-2.525$	$2.642-6.50$	$2.840-2.842$
$\mathbf{5}$	2.185	$2.508-2.528$	$2.589-2.658$	$2.756-2.844$
$\mathbf{6}$	2.190	$2.512-2.531$	$2.639-2.652$	$2.838-2.842$
$\mathbf{7}$	2.193	$2.516-2.537$	$2.587-2.666$	$2.756-2.844$
$\mathbf{8}$	2.196	$2.518-2.538$	$2.640-2.655$	$2.801-2.868$
$\mathbf{9}$	2.198	$2.519-2.540$	$2.597-2.662$	$2.743-2.848$
$\mathbf{1 0}$	2.199	$2.521-2.540$	$2.643-2.656$	$2.800-2.873$
Bulk	2.23	2.55	2.68	2.81

In these Tables (S1 \& S2), M-X bond distances, along xy axis of layers, in odd nL are observed to varied significanly as compared to even $n \mathrm{n}$, owing to instability of former case.

Table S3 : Interlayer distances (in \AA) of various thick (nL) of $2 \mathrm{D}-\mathrm{ZnX}$ surface slabs are reported. Left and right diagonal panels correspond to even and odd number layered surface slabs, repectively.

Table S4: Interlayer distances (in \AA) of various thick (nL) of 2D-CdX surface slabs are reported. Left and right diagonal panels correspond to even and odd number layered surface sla bs, repectively.

Table S5: Interlayer distances (in \AA) of MX (expect CdO) various thick surface slabs (nL) are provided. Pink and yellow color marked boxes correspond to M-X bonding side and nonbonding side of surface slabs (refer Fig. 2), respectively.

nL		INTERLAYERDISTANCE OF WURZITE SLABS								
		1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10
$\begin{aligned} & \mathrm{O} \\ & \mathbf{N} \end{aligned}$	7	2.16	2.13	2.12	2.13	2.14	2.22			
		2.88	3.00	3.02	3.02	3.01	2.94			
	8	2.14	2.09	2.08	2.08	2.09	2.10	2.18		
		2.91	3.04	3.06	3.07	3.07	3.07	3.01		
	9	2.13	2.07	2.07	2.07	2.07	2.07	2.08	2.16	
		2.93	3.08	3.11	3.11	3.11	3.11	3.10	3.04	
	10	2.12	2.06	2.06	2.05	2.05	2.05	2.05	2.07	2.14
		2.94	3.10	3.14	3.14	3.14	3.14	3.13	3.13	3.07
$\stackrel{\curvearrowleft}{N}$	6	2.56	2.52	2.50	2.51	2.49				
		2.96	3.60	3.55	3.57	3.64				
	7	2.51	2.46	2.45	2.45	2.45	2.45			
		3.19	3.69	3.67	3.67	3.67	3.74			
	8	2.43	2.40	2.39	2.39	2.39	2.39	2.40		
		3.71	3.80	3.79	3.79	3.79	3.79	3.87		
	9	2.42	2.38	2.38	2.38	2.38	2.38	2.38	2.39	
		3.75	3.82	3.82	3.82	3.82	3.81	3.81	3.89	
	10	2.41	2.37	2.37	2.37	2.37	2.37	2.37	2.38	2.39
		3.77	3.84	3.83	3.82	3.82	3.83	3.83	3.83	3.90
$\stackrel{\cong}{n}$	5	2.62	2.64	2.68	2.67					
		3.89	3.77	3.92	2.82					
	6	2.59	2.60	2.60	2.63	2.66				
		3.96	3.85	3.83	3.93	2.84				
	7	2.56	2.56	2.56	2.57	2.59	2.65			
		4.00	3.91	3.92	3.90	3.96	2.88			
		2.53	2.53	2.53	2.54	2.54	2.57	2.66		
		4.02	3.94	3.96	3.96	3.93	3.97	2.91		
	9	2.52	2.52	2.51	2.52	2.52	2.53	2.56	2.67	
		4.04	3.97	3.98	3.98	3.98	3.95	3.98	2.91	
	10	2.52	2.51	2.51	2.51	2.51	2.51	2.52	2.56	2.67
		4.05	3.99	4.00	4.00	4.00	4.00	3.97	3.99	2.92
		2.86	2.92	2.82						
		4.24	4.44	2.88						
		2.77	2.78	2.81	2.80					
		4.39	4.24	4.40	2.88					
		2.73	2.74	2.74	2.76	2.79				
		4.44	4.31	4.28	4.37	2.90				
		2.70	2.71	2.71	2.71	2.73	2.79			
$\boldsymbol{\mathcal { N }}$		4.48	4.33	4.33	4.29	4.37	2.90			
		2.69	2.70	2.70	2.70	2.70	2.72	2.78		
		4.51	4.35	4.35	$4 . .5$	4.30	4.36	2.91		
	9	2.68	2.69	2.71	2.69	2.69	2.69	2.71	2.78	
		4.52	4.37	4.38	4.37	4.37	4.33	4.38	2.91	
	10	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.70	2.78
	10	4.53	4.38	4.37	4.37	4.37	4.36	4.31	4.35	2.91

Note that in last two layers (particularly for MSe, MTe cases), the M-X interlayer distances in both bonding and non-bonding sides are almost equal due to formation of bilayer in the WZ slabs.

Table S6- Buckling distances ($\Delta \mathrm{z}$ in \AA) of various thick $2 \mathrm{D}-\mathrm{ZnX}(\mathrm{X}=\mathrm{S}, \mathrm{Se}, \mathrm{Te})$ surface slabs.

Layer	1L	2L	3L	4L	5L	6L	7 L	8L	9L	10L
1L	0.02									
2L	10.473	$-0.47 \overline{5}$ I								
3L	10.254	0.006	0.26 ${ }^{-1}$							
4L	10.402	-0.33	0.331	-0.4 ${ }^{-1}$						
5L	10.318	-0.171	0.005	0.162	-0.309					
6L	10.371	-0.275	0.213	-0.212	0.279	$-0.37 \overline{2} 1$				
7L	10.007	-0.005	0.002	0	0.002	0.005	-0.007			
8L	10.335	-0.222	0.134	-0.108	0.109	-0.135	0.228	$-0.33 \overline{6}$ I		
9L	10.324	-0.203	0.096	-0.045	0.002	-0.035	0.089	-0.194	0.318	
10L	10.318	-0.197	0.099	-0.06	0.044	-0.046	0.064	-0.103	$0.202[-0.321$	
1L	0.409								ZnSe	
2L	0.724	-0.723 I								
3L	10.271	0.477	-0.584							
4L	10.688	-0.656	0.653	$-0.65 \overline{8} 1$						
5L	10.022	-0.018	0	0.018	-0.022					
6L	10.684	-0.65	0.632	-0.632	0.649	-0.682 1				
7L	10.658	-0.629	0.595	-0.595	0.51	-0.426	-0.297			
8L	10.679	-0.642	0.626	-0.622	0.622	-0.623	0.642	$-0.67 \overline{7} 1$		
9L	0.658	-0.63	0.603	-0.609	0.597	-0.599	0.511	-0.426	$-\overline{-296}$ I	
10L	10.673	-0.637	0.619	-0.619	0.618	-0.619	0.621	-0.623	0.641 [-0.675	
1L	0.565								ZnTe	
2L	10.985	-0.984 1								
3L	0.66	0.942	-0.948							
4L	10.98	-0.974	0.974	-0.98 ${ }^{1}$						
5L	0.662	0.94	-0.938	0.966	-0.965					
6L	0.981	-0.974	0.971	-0.972	0.973	-0.981				
7L	0.663	0.939	-0.936	0.962	-0.954	0.969	-0.97			
8L	0.98	-0.973	0.969	-0.97	0.97	-0.969	0.973	-0.98		
9L	0.668	0.942	-0.939	0.962	-0.955	0.964	-0.957	0.969	-0.968	
10L	0.978	-0.97	0.97	-0.969	0.969	-0.968	0.969	-0.969	0.969	-0.978

This buckling distances is higher value of MTe case, owing to having high covalency.

Table S7- Buckling distances (in \AA) of various thick 2D- $\mathrm{CdX}(\mathrm{X}=\mathrm{S}, \mathrm{Se}, \mathrm{Te})$ surface slabs.

This buckling distances is higher value of MTe case, owing to having high covalency,

We calculated the exfoliation energy ($E_{\text {exf }}$) to form n number of monolayers from respective surface slabs, with their thicknesses varying from 2 L to 10 L , from following equation.

$$
E_{e x f}=\frac{n * E_{1 L}-E_{n L}}{n}
$$

where E_{nL} is total energy of surface slab with thickness of $\mathrm{nL}, \mathrm{E}_{1 \mathrm{~L}}$ is the energy of the monolayer and n is the number of layer. Deduced $E_{\text {exf }}$ values for 2D-MO and 2D-MX surface slabs are given in Fig. S5. It shows that thinner slabs are easier to exfoliate, as compared to thicker slabs.

Fig. S5: Calculated $E_{\text {exf }}$ values for various thick (2L to 10L) 2D-MO and 2D-MX surface slabs are shown.

Fig. S6: DOS (a) and BS (b) of 3L (red line) and 4L (blue line) layered 2D- CdX surface slabs.

Fig. S7: DOS (a) and BS (b) of 10L thick WZ surface slab of MX compounds.

Table S 7 : Elastic constants $\left(\mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{22}, \mathrm{C}_{66}\right.$ in unit of $\left.\mathrm{N} / \mathrm{m}\right)$, layer modulus ($\gamma, \mathrm{N} / \mathrm{m}$), Young's modules ($\mathrm{Y}, \mathrm{N} / \mathrm{m}$), Poisson's ratio (v) of 2L 2D-MX compounds are given.

MX	Elastic Constants $(\mathrm{N} / \mathrm{m})$			Layer modulus (γ)	Young modulus $(\mathrm{N} / \mathrm{m})$	Poisson's ratio (v)
	C_{11}	C_{12}	C_{66}			
ZnO	124.4	79.09	22.66	90.43	74.139	0.636
ZnS	72.98	28.36	22.31	39.51	61.967	0.389
ZnSe	61.45	21.61	19.92	31.57	53.85	0.352
ZnTe	54.08	16.74	18.67	26.07	48.895	0.31
CdO	95.40	76.74	9.33	81.40	33.673	0.804
CdS	53.30	27.98	12.66	34.31	38.608	0.525
CdSe	42.93	19.38	11.77	25.27	34.178	0.452
CdTe	39.41	15.85	11.78	21.74	33.027	0.402

These following formulae are used to calculate mechanical properties mentioned in table as follows:

$$
\begin{gathered}
\gamma=\frac{1}{4}\left(c_{11}+c_{12}+2 c_{12}\right) \\
\mathrm{Y}=\frac{\left(C_{11} C_{22}-C_{12} C_{21}\right)}{C_{22}} \\
\mathrm{v}=\frac{c_{21}}{C_{22}}
\end{gathered}
$$

Fig. S8: Occupied DOS of 2L ZnTe is shown, where different discrete peaks (a to e) are marked. The partial change density isosurface plots are plotted for those peaks and their side and top views are presented.

Despite of vdW driven interlayer interaction in 2D-MX surface slabs, the bonding nature within layer is explored by performing partial charge density diagrams for 2 L ZnTe cases and they are shown in Fig. S5. Structurally, sp^{3} hybridized cations (M) are located in the centre of tetrahedra that is formed by X atoms. Each X atom interacts with three M atoms and holding one lone pair, forming trigonal pyramid shape with bond angle of 107°. It is also seen in the charge density diagrams, donut like shapes (mixing of p_{x} and p_{y} orbitals) that are presented in the both sides of bonding states (sp^{3} orbitals).

Table S9: Band gap (in eV) of various thicknesses (nL) of 2D-MX surface slabs are shown, along with WZ bulk.

nL	ZnO	ZnS	ZnSe	ZnTe	CdO	CdS	CdSe	CdTe
1	1.66	2.61	1.91	1.694	0.83	1.68	1.33	1.31
2	1.41	2.66	1.85	1.01	0.55	1.87	1.61	1.11
3	1.28	1.54	0.62	0.06	0.39	1.60	0.66	0.00
4	1.20	2.34^{*}	1.67	0.91	0.30	1.61^{*}	1.28^{*}	0.99
5	1.15	1.98^{*}	0.55	0.047	0.24	1.44^{*}	0.85^{*}	0.00
6	1.11	2.12^{*}	1.55^{*}	0.885	0.20	1.52^{*}	1.09^{*}	0.96
7	1.08	1.86	0.52	0.073	0.17	1.47	0.51	0.00
8	1.07	2.00^{*}	1.46^{*}	0.883	0.14	1.47^{*}	0.98^{*}	0.90
9	1.05	1.91	0.54	0.07	0.12	1.43^{*}	0.47^{*}	0.00
10	1.04	1.96^{*}	1.40^{*}	0.87	0.10	1.42^{*}	0.90	0.88
$\infty \mathrm{~L}$	0.94	1.81	1.29	0.93	0.00	1.25	0.74	1.06
WZ Bulk	0.76	2.28	1.40	1.36	0.00	1.23	0.67	0.78

The band gap is calculated by deducing BS calculations. We observed direct band gap in all the cases. It is also noticed that indirect band gap value, in a few cases (* marked), is also lied closer to direct band gap.

Table S10 (a): Effective mass (e^{*}) of various thicknesses of 2D-ZnX various surface slabs

nL	electron $\left(e_{e}^{*}\right)$					hole $\left(e_{h}^{*}\right)$			
	ZnO	ZnS	ZnSe	ZnTe	ZnO	ZnS	ZnSe	ZnTe	
1	0.28	0.19	0.14	0.12	1.07	0.72	0.71	0.97	
2	0.24	0.21	0.15	0.12	1.19	1.35	1.03	1.38	
3	0.22	0.2	0.15	0.11	1.26	0.68	0.74	1	
4	0.21	0.2	0.15	0.12	1.3	1.03	1.12	1.12	
5	0.2	0.19	0.15	0.12	1.33	0.8	0.82	0.66	
6	0.2	0.19	0.15	0.13	1.36	1.26	0.4	1.01	
7	0.2	0.19	0.15	0.12	1.37	0.82	0.82	0.99	
8	0.19	0.19	0.15	0.13	1.39	1.72	3.31	1.1	
9	0.19	0.19	0.15	0.12	1.43	2.92	0.82	0.98	
10	0.19	0.19	0.15	0.13	1.44	2.56	3.07	1.1	

Table S10 (b): Effective mass $\left(e^{*}\right)$ of various thicknesses of 2D-CdX various surface slabs.

nL	$\left(e_{e}^{*}\right.$					$\left(e_{h}^{*}\right)$			
	CdO	CdS	CdSe	CdTe	CdO	CdS	CdSe	CdTe	
1	0.2	0.16	0.14	0.13	0.53	0.65	0.69	0.67	
2	0.17	0.12	0.19	0.13	0.76	1.13	0.89	0.93	
3	0.16	0.16	0.14	0.13	1.31	0.86	0.89	0.99	
4	0.16	0.18	0.16	0.14	1.41	0.89	2.66	1.22	
5	0.16	0.16	0.13	0.14	1.87	0.91	0.75	1	
6	0.17	0.17	0.15	0.16	1.4	1.49	0.28	1.26	
7	0.18	0.17	0.15	0.13	1.4	1.06	0.89	1.01	
8	0.19	0.2	0.14	0.13	1.92	1.21	0.8	1.69	
9	0.21	0.18	0.14	0.13	1.72	1.28	0.9	1	
10	0.22	0.19	0.13	0.13	1.64	1.41	1.58	1.54	

