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Table S1. Table of Content of this article.

No. Sections No. Subsections

1 Introduction -

2 2.1 Experimental studies of TribologyFundamentals of Tribology

2.2 Introduction to machine learning algorithms and 
their applications

3 3.1 ANN in the material formulation of
(i) Lubricants
(ii) Composites, including
  (a) polymer matrix composites (PMCs), 
  (b) metal matrix composites (MMCs), 
  (c) ceramic matrix composites (CMCs)

(3.1.1) ANOVA-assisted ANN
(3.1.2) Other ML/optimization-assisted ANN

3.2 Recurrent neural networks (RNN) and Principal 
component analysis based ANN (PCA-ANN)

3.3 Adaptive resonance theory (ART-2) based ANN

3.4 Extreme learning machine (ELM)

A review of the current 
trends of ML in tribology

3.5 Adaptive Neuro-Fuzzy Inference System (ANFIS)
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3.6 Decision Trees (DT)

3.7 Random Forests (RF)

3.8 Support vector machines (SVM)

3.9 Other multiple ML models

4 4.1 Molecular Dynamics (MD)

4.2 Reactive Molecular Dynamics (RMD)

Computational methods in 
tribology

4.3 Non-equilibrium Molecular Dynamics (NEMD)

5 Applications of ML in 
computational modeling 
techniques

5.1 Our perspective

6 6.1 Glyco-Materials (carbohydrate-based materials)Emerging, new and 
unexplored tribological 
materials 6.2 MXenes

Table S2. A tabular representation of applications of ANN to design lubricant materials. Accuracy 

measure: R2=1, MSE = 0, RMSE = 0, and MAE = 0: perfect fitting and accurate predictions can 

be achieved.

Oil (s) 
Mixtures

Modifiers Input Output ANN 
accuracy

Ref

Perfluoropolyet
her (PFPE)

Different types of 
PFPE

Sliding speed, 
distance, viscosity, 
applied load, CoF, 
and temperature

Wear rate R2 = 0.93 1

Castor oil 
(NCO), 
Glycerol

Cashew nut shell 
liquid (CNSL)

Contents of NCO, 
CNSL, and glycerol

CoF, 
WSD

- 2

Vegetable oil Rapeseed oil Contents of sunflower CoF RMSE 3

https://paperpile.com/c/rQo70t/1Cfrr
https://paperpile.com/c/rQo70t/5KZzM
https://paperpile.com/c/rQo70t/48tPS
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oil and rapeseed oil =0.00099
876

Mineral oil Polytetrafluoroethyle
ne (PTFE)

Applied load, sliding 
velocity, PTFE 
content

CoF 98 % 4

Table S3. A tabular representation of applications of ANN to design polymeric composite 
materials.

Polymers Modifiers Input Output Ref

Polyether
ketone 
(PEK)

Short glass fiber 
(SGF)

Impact angle, impact velocity, fiber 
content

Erosion rate 5

Polyamid
e (PA) 4.6

Short carbon 
fibers (SCFs), 
PTFE, graphite

Compressive strength, compression 
modulus, contraction to
failure, tensile strength (Ts), strain 
to failure, impact strength,
environmental testing temperature, 
starting load, average
load, average velocity

Wear volume 6

PA 4.6 PTFE, SCF Polyamide volume, Fiber volume, 
PTFE volume, compression 
modulus, compression strength, 
hardness, fracture toughness, 
temperatures, normal force, wear 
speed

Coefficient of 
determination (B) 
of CoF and wear

7

Polyethyl
ene (PE), 
polyureth
ane 
(PUR), 
Epoxy

Hygrothermally 
decomposed 
polyurethane 
(EP-PUR)

PE: Erosive impact angle, Young’s 
modulus (Y), yield stress, yield 
strain and fracture energy, as well 
as the crystallinity (6-25-1)
PUR: Tg, damping at Tg, hardness, 
density, thermal expansion 
coefficient
EP-PUR: wt. % of epoxy and PUR, 
impact angle, mass flow rate and 

Wear rate 8

https://paperpile.com/c/rQo70t/N3MWq
https://paperpile.com/c/rQo70t/lnWGg
https://paperpile.com/c/rQo70t/ui80l
https://paperpile.com/c/rQo70t/prBat
https://paperpile.com/c/rQo70t/RvZqo
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velocity of erodents.

PA 4.6 Glass fiber (GF), 
CF, PTFE, 
Graphite

Content of polymer, fiber and 
filler, temperature, normal applied 
force and sliding speed

Compressive 
modulus, 
compressive 
strength, Ts, 
Flexural strength 
(Fs), and SWR, 
CoF

9

PA 4.6 
and PA 
6.6

GF, CF, PTFE, 
Graphite

Content of polymer, fiber and 
filler, temperature, normal applied 
force and sliding speed

Compressive 
modulus, 
compressive 
strength, Ts, Fs 
and SWR, CoF

10

Polyphen
ylene 
sulfide 
(PPS)

SCFs, TiO2 
particles, 
Graphite, PTFE

PPS content, Volume of SCF, 
TiO2, PTFE, Graphite

SWR 11

PPS SCFs, TiO2 
particles, 
Graphite, PTFE

Material composition (volume 
fraction of matrix, fillers, 
reinforcing agents and lubricants), 
pressure, sliding speed, tensile and 
compressive properties

SWR and CoF 12

PPS SCFs, TiO2 
particles, 
Graphite, PTFE

Content of polymer, SCF, TiO2, 
PTFE, and graphite, normal applied 
force and sliding speed

SWR and CoF 13

PPS SCFs, TiO2 
particles, 
Graphite, PTFE

- SWR and CoF 14

PTFE CF, TiO2 Content of PTFE, CF, TiO2, sliding 
speed, applied load, hardness, 
compressive strength

Wear 15

Polyether
etherketo
ne 
composite 
(PEEK)

30 wt. % CF pv factor, sliding temperature CoF, Wear weight 
loss

16

Epoxy 
(Araldite 

Pine wood dust 
(PWD)

Filler content, sliding speed, and 
distance, applied normal load

SWR 17

https://paperpile.com/c/rQo70t/7dtdl
https://paperpile.com/c/rQo70t/wmVQ4
https://paperpile.com/c/rQo70t/pWuli
https://paperpile.com/c/rQo70t/5EgQN
https://paperpile.com/c/rQo70t/rrgfE
https://paperpile.com/c/rQo70t/6pQ4v
https://paperpile.com/c/rQo70t/A8lv5
https://paperpile.com/c/rQo70t/Pwku9
https://paperpile.com/c/rQo70t/cVf5b
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LY 556)

Epoxy 
(LY 556)

Rice husk (RH) RH content, sliding velocity, 
applied load

SWR 18

Epoxy 
(LY 556)

SGF, Microsized 
blast furnace 
slag (BFS) 
particles

Filler content, sliding speed, and 
distance, applied normal load

SWR 19

Polyester Betelnut fiber Applied load, sliding distance and 
fiber orientation

CoF 20

Polyester Chopped strand 
mat GF

Applied load, sliding speed, time of 
test and fiber orientation

CoF 21

Polyester Cotton fiber, fly 
ash

Content of polyester, cotton fiber, 3 
wt. % fly ash and 5 wt. % fly ash 

SWR 22

Polyester Waste marble 
dust (WMD)

Applied load, sliding speed and 
distance and fiber orientation

SWR 23

Polycarbo
nate

Graphene (GR), 
Boron carbide 
(B4C)

Vol. content of polycarbonate, GR, 
and B4C, applied load, and sliding 
speed

SWR and CoF 24

Polyprop
ylene

Blast furnace 
slag (BFS)

BFS content, sliding velocity, 
sliding distance and applied load

SWR 25

Ultra high 
molecular 
weight 
polyethyl
ene 
(UHMWP
E)

Carbon nanotube 
(CNT), CF, 
graphene oxide 
(GO), 
wollastonite

UHMWPE, ZnO, zeolite, CNT, 
CF, GO, wollastonite, size of ZnO 
and zeolite, applied load, and 
sliding speed

Wear volume 26

PEEK Silica Carbide 
(SiC)

Applied load, and sliding speed CoF and SWR 27

Table S4. A tabular representation of applications of ANN to design metallic composite materials.

Metals/Alloy Modifiers Input Output Ref

https://paperpile.com/c/rQo70t/nBIuC
https://paperpile.com/c/rQo70t/rTLiT
https://paperpile.com/c/rQo70t/PMt1X
https://paperpile.com/c/rQo70t/hX7yI
https://paperpile.com/c/rQo70t/5gBPJ
https://paperpile.com/c/rQo70t/QZ4Sj
https://paperpile.com/c/rQo70t/ip68M
https://paperpile.com/c/rQo70t/icIKD
https://paperpile.com/c/rQo70t/JJVjP
https://paperpile.com/c/rQo70t/PbuvD
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Aluminum Al2O3 Operating conditions: Applied load, 
sliding speed, temperature
Material: Hardness, Vol. fraction of 
Al2O3 and densityfraction of 

SWR 28

Aluminum 
(AA2014) alloy

B4C Sliding time, B4C volume fraction Volume loss, 
SWR, and 
surface 
roughness

29

Co-30Cr-4Mo-
1Ni alloy

Tungsten Applied load, sliding velocity, sliding 
distance, tungsten content 

Wear loss 30

Aluminum 
(AA1100) alloy

Rice husk 
ash (RHA), 
bagasse 
ash, 
coconut 
shell ash, 
zinc oxide 
(ZnO), egg 
shell 
particles

Applied load, sliding speed, sliding 
velocity, cumulative time, 6 % 
Content of one of the ash

SWR and 
CoF

31

Titanium GR, Si3N4 Applied load, density, reinforcements SWR 32

Aluminum (AA 
7075) alloy

Silicon 
carbide 
(SiC), 
Al2O3

Applied load, sliding speed, material 
composition

SWR and 
CoF

33

Aluminum (AA 
6082) alloy

SiC, TiC, 
Al2O3, WC, 
B4C

Friction stir welding (FSW) process: 
Rotational speed, traverse speed, 
groove width, and ceramic particle

SWR 34

Aluminum-
silicon alloy

Titanium 
carbide 
(TiC)

Applied load, sliding speed Wear volume 
loss, Rise in 
temperature

35

Aluminum 
A380 alloy

Fly ash Peak current, pulse on, pulse off, Fly 
ash content %, particle size

Surface 
roughness, 
material 
removal rate, 
tool wear rate

36

Copper surface SiC, TiC, 
Al2O3, WC, 

FSW process: Rotational speed, 
traverse speed, groove width, and 

SWR 37

https://paperpile.com/c/rQo70t/L1zwd
https://paperpile.com/c/rQo70t/1pFVj
https://paperpile.com/c/rQo70t/4ERso
https://paperpile.com/c/rQo70t/rMLTs
https://paperpile.com/c/rQo70t/fxFO6
https://paperpile.com/c/rQo70t/pEOgz
https://paperpile.com/c/rQo70t/gFiGh
https://paperpile.com/c/rQo70t/NyJgO
https://paperpile.com/c/rQo70t/ZaOnq
https://paperpile.com/c/rQo70t/UMQ04
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B4C ceramic particle

Aluminum RHA Applied load, sliding speed, RHA 
particle size, and weight percentage 
of RHA reinforcement.

SWR and 
CoF

38

Aluminum Red mud 
nanoparticl
e

Composition and deformation of 
composite, sliding velocity, and 
applied load

Volumetric 
wear

39

Zinc–aluminum 
ZA27 

Alumina 
fiber

Fiber volume, fiber orientation, and 
applied load and 

SWR and 
CoF

40

Aluminum 
(A380)

Fly ash Applied load, sliding speed, fly ash 
particle size and content (wt. %)

SWR and 
CoF

41

Aluminum 
alloys

Copper, 
SiC

Copper content (wt. %), SiC content 
(wt. %), Cumulative testing time

Wear mass 
loss

42

Aluminum 
alloys (A356)

Copper, 
SiC

Manufacturing furnace temperature, 
applied load, sliding distance, wt. % 
of SiC

Wear mass 
loss

43

Aluminum 
alloys (A356)

B4C Sliding distance, particle size and 
volume percent of B4C, and
From FEM: Temperature gradient, 
cooling rate

Weight loss, 
Variation of 
porosity

44

Aluminum 
silicon alloy 
(A356)

SiC SiC wt. %, SiC particle size, SWR 45

Aluminum 
alloys (Al7075)

Al2O3 Al2O3 wt. %, applied load, sliding 
distance, density

SWR 46

Aluminum 
alloys (Al6061)

Al2O3 Al2O3 wt. %, applied load, sliding 
distance, density

SWR 47

Magnesium 
alloy (RZ-5)

TiC Applied load,
Sliding distance

CoF 48

Nickel-free 
stainless steel 
(NFSS)

Hydroxyap
atite (HA)

Applied load, HA content (vol. %), 
Sliding distance

Wear volume 
loss

49

 

Table S5. A tabular representation of applications of ANN combined with ANOVA statistical 

https://paperpile.com/c/rQo70t/7CGF5
https://paperpile.com/c/rQo70t/DFkzk
https://paperpile.com/c/rQo70t/EDyZh
https://paperpile.com/c/rQo70t/XPkJm
https://paperpile.com/c/rQo70t/JZxQQ
https://paperpile.com/c/rQo70t/mqLQ0
https://paperpile.com/c/rQo70t/5ZD7H
https://paperpile.com/c/rQo70t/4ics3
https://paperpile.com/c/rQo70t/kI2tQ
https://paperpile.com/c/rQo70t/X0mmE
https://paperpile.com/c/rQo70t/JwCfB
https://paperpile.com/c/rQo70t/9R4YL
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analysis to design composite materials.

Material Modifiers ANN 
model 
parameter
s

Input Output Ref

Polyester SGF 4-10-1 Filler content, sliding speed, 
and distance, applied normal 
load

SWR and 
CoF

50

Epoxy 
resins

Castor oil 
fiber (Ricinus 
communis)

3-9-13-9-
3

Applied load, fiber length, 
sliding distance

Gravimetric 
wear, CoF, 
and 
interfacial 
temperature

51

Copper Tungsten 4-7-4-3 Tungsten weight content, 
applied load, sliding distance, 
and sintering temperature

CoF, SWR, 
and 
hardness

52

Copper Tungsten 4-140-3 Tungsten weight content, 
applied load, sliding distance, 
and sintering temperature

CoF, SWR, 
and 
hardness

53

Aluminum Micro SiC, 
nano 
Zirconia

4-10-1 Sliding speed, zirconia content, 
applied load, sliding distance

Wear loss 54

Copper 
(Cu)

Aluminum 
nitride, 
Boron nitride

4-7-1 Volumetric fractions of 
particles, sliding speed, applied 
load, and sliding distances

SWR 55

Al-Si alloy 
(A356)

SiC (10 wt. 
%), Graphite

3-20-30-2 Applied load, sliding speed and 
graphite content

SWR and 
CoF

56

Aluminum 
(LM6)

Powder -chip 2-5-1 Sliding distance, 
Reinforcement 

SWR 57

Aluminum 
alloy 
(Al25Zn)

SiC 4-8-1 SiC wt. %, applied load, 
sliding speed, testing 
temperature

SWR 58

Copper Multi-walled 
carbon 
nanotubes 

3-7-1 MWCNT wt. %, sliding 
distance and applied load

Wear loss 59

https://paperpile.com/c/rQo70t/7dpUK
https://paperpile.com/c/rQo70t/irtW4
https://paperpile.com/c/rQo70t/VLLzs
https://paperpile.com/c/rQo70t/qLd9B
https://paperpile.com/c/rQo70t/jT1w4
https://paperpile.com/c/rQo70t/t9C3X
https://paperpile.com/c/rQo70t/gJZps
https://paperpile.com/c/rQo70t/k8yBi
https://paperpile.com/c/rQo70t/G3Mf1
https://paperpile.com/c/rQo70t/U3odb
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(MWCNTs)

Magnesium 
(AZ31) 
alloy

Reduced 
graphene 
oxide (r-GO)

4-7-1 Applied load, r-GO weight 
content, sliding distance, 
sliding velocity

SWR 60

Magnesium 
(AZ31) 
alloy

r-GO, SiC 5-8-1 Applied load, r-GO and SiC 
weight content, sliding 
distance, sliding velocity

SWR 61

Table S6. A tabular representation of applications of ANN with other ML and optimization 

algorithms to design composite materials.

Oil (s) Mixtures Modifiers ML/Optimization 
algorithm with ANN

Output Ref

PTFE resin Aramid pulp, 
mica, copper 
(Cu), nano-
SiO2, potassium 
titanate whisker 
(PTW)

Monte-Carlo (MC) CoF and SWR 62

ZA-27 alloy Marble dust 
particles (MDp)

Improved bat 
algorithm (IBA)

Wear 63

UHMWPE CNT, GR Non-sorted Genetic 
Algorithm (NSGA-
II)

Y, Ts .
64

Coconut oil, castor 
oil, palm oil

MWCNT and 
GR

Genetic Algorithm 
(GA)

CoF, WSD
.

65

Castor oil (NCO), 
mineral oil (CMO)

MWCNT, GR, 
graphite, ZnO 
particles

Genetic algorithm 
(GA)

CoF
66

https://paperpile.com/c/rQo70t/noZb8
https://paperpile.com/c/rQo70t/8OXGT
https://paperpile.com/c/rQo70t/LYJjh
https://paperpile.com/c/rQo70t/bpjsg
https://paperpile.com/c/rQo70t/52rJZ
https://paperpile.com/c/rQo70t/dx8he
https://paperpile.com/c/rQo70t/HiAxo
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Polyester E-glass fiber, 
cement by-pass 
dust (CBPD), 
alumina 
(Al2O3), SiC

Genetic algorithm 
(GA)

Wear rate
67

  

Table S7. A tabular representation of applications of other ML technqies to design processes or 

novel materials.

Aim/Test/Pro
cess

Material ML algorithm Accuracy Output Ref

Dry and base 
oil bath 
lubricated 
Fretting test

Chromiu
m steel

Recurrent Neural 
Network (RNN), 
PCA-ANN

RNN:
PCA-ANN:

68

Identify 
defects in 
ball bearing

Adaptive resonance 
theory (ART-2) 
based ANN, BPNN

ART-2-ANN:
BPNN

69

Transesterific
ation process 

P50S50 
biodiesel

Extreme Learning 
Machine (ELM)

ELM 70

FSW AA7075 
aluminu
m alloy

Adaptive neuro-
fuzzy inference 
systems (ANFIS)

RMSE: 9.331 Tool pin 
profile, tool 
rotary speed, 
welding speed, 
and welding 
axial forces 

71

FSW Aluminu
m alloy 
joints

ANFIS ANFIS - (RMSE: 
29.7 MPa, MAPE: 
7.7%);
ANN - (RMSE:36.7 
MPa, MAPE: 10.9 %)

Ultimate 
tensile strength 
(UTS)

72

Designing 
ceramic 
pairings

- Decision trees R2 = 0.89 CoF 73

Sliding - Random Forests Accuracy: 0.939 States of 74

https://paperpile.com/c/rQo70t/zfXD5
https://paperpile.com/c/rQo70t/QxF39
https://paperpile.com/c/rQo70t/vAZrV
https://paperpile.com/c/rQo70t/I1Tkl
https://paperpile.com/c/rQo70t/NAgtG
https://paperpile.com/c/rQo70t/Ae0Cm
https://paperpile.com/c/rQo70t/EBGoK
https://paperpile.com/c/rQo70t/v26Sy
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experiments 
in oscillatory 
and 
translatory 
motion

operation

Gas face seal 
status

- Support Vector 
Machines (SVM)

𝑅𝑆𝑆
𝑇𝑆𝐸

 ≤  0.1 Eccentric load 
on the stator of 
the seal

75

FSW Aluminu
m alloy 
AA1100

SVM Absolute error:
(i) SVR: 0.53
(ii) BPNN: 3.08
(iii) General 
regression: 13.55

UTS 76

Brakes - Isotonic regression, 
SMO, simple linear, 
linearm pace, 
gaussian least 
median squared 
regression

RMSE: 0.0014
Correlation 
coefficient: 0.9999

CoF 77

Thin film 
synthesis

Alumina 
(Al2O3), 
TiO2, 
molybde
num 
disulphi
de 
(MoS2), 
and 
aluminu
m (Al)

MLP-ANN, DT and 
RF, SVR, age-
layered population 
structure (ALPS), 
grammatical 
evolution (GE), and 
symbolic regression 
multi-gene 
programming 
(SRMG)

- - 78

Aluminum 
base alloy 

SiC KNN, SVM, ANN, 
RF, and GBM

MSE of SWR 
1. ANN = 0.0009
2. RF = 0.00001
3. kNN = 0.0008
4. SVM = 0.0007
5. GBM = 0.00002

MSE of CoF 
1. ANN = 0.0055
2. RF = 0.0028
3. kNN = 0.0028
4. SVM = 0.0007

SWR and CoF 79

https://paperpile.com/c/rQo70t/AO74i
https://paperpile.com/c/rQo70t/1bBaz
https://paperpile.com/c/rQo70t/ydtZr
https://paperpile.com/c/rQo70t/z49bd
https://paperpile.com/c/rQo70t/0Kvjh
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5. GBM = 0.0030

Aluminum-
graphite 

SiC KNN, SVM, ANN, 
RF, and GBM

MSE of SWR 
1. ANN = 0.0031
2. RF = 0.0014
3. kNN = 0.0017
4. GBM = 0.0016

MSE of CoF 
1. ANN = 0.0037
2. RF = 0.0037
3. KNN = 0.0066
4. SVM = 0.0064
5. GBM = 0.0028

SWR and CoF 80

Table S8. A tabular representation of ML used in combination with computational modeling 

techniques like MD and DFT.

Aim/Test/Process Material ML algorithm Research outputs Ref

High throughput 
screening 

Soft matter 
monolayer films

RF CoF and adhesion force 81

Elastohydrodynami
c lubrication

Squalane PCA with NEMD 
simulations

- 82

2D materials - Bayesian Model 
with MD and DFT

Maximum energy barrier 83

Lubricants 
screening (with 
surface sliding MD 
simulations)

Toy model of 
fluids

Gaussian mixture 
model and 
bayesian neural 
network with MD

Shear rate 84

Abbreviation List:

AE Acoustic emissions

AIREBO Adaptive intermolecular reactive empirical bond order

GDX Adaptive learning rate

https://paperpile.com/c/rQo70t/6r2iD
https://paperpile.com/c/rQo70t/ZlXoh
https://paperpile.com/c/rQo70t/DC3PB
https://paperpile.com/c/rQo70t/EMER1
https://paperpile.com/c/rQo70t/ttq1Y
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ANFIS Adaptive neuro-fuzzy inference system

ART-2 Adaptive resonance theory

Adj SS Adjusted sum of squares

ASTM American society for testing and materials

ANOVA Analysis of variance

ANN Artificial neural network

BPNN Back propagation neural network

BA Bat algorithm

BNN Bayesian neural network

BFS Blast furnace slag 

BFGS Broyden-Fletcher-Goldfarb-Shanno

CF Carbon fiber

CNT Carbon nanotube

CNSL Cashew nut shell liquid

CBPD Cement by-pass dust

CVT Centroidal Voronoi tessellation

CMC Ceramic matrix composite

CG MD Coarse grained molecular dynamics

CoF Coefficient of friction

CMO Commercial mineral oil

CNN Convolutional neural network

CC Correlation coefficient

CFPC cotton fiber polyester composite

DT Decision trees

DFT Density functional theory

DBSCAN Density-based spatial clustering of applications with noise 
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DOE Design of experiments

DLC Diamondlike carbon

DTAB Dodecyl trimethyl ammonium bromide

EHL Elastohydrodynamic lubrication

EFI Empirical force index

EBP Error back propagation

ELM Extreme learning machine

FEM Finite element method

FF Force field

FM Friction modifier

FSW Friction stir welding

FGM Functionally graded materials

GA Genetic algorithm

Tg Glass transition temperature

GBM Gradient boosting machine 

GR graphene

GO graphene oxide

GRA Gray relational analysis

HA Hydroxyapatite

IBA Improved bat algorithm

KNN K nearest neighnours

LFM Lateral force microscopy

LOO Leave one out

LJ Lennard Jones

LM Levenberg–Marquardt
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LED Light emitting diodes

ML Machine Learning

MDp Marble dust particles

MEB Maximum energy barrier

MAE Mean absolute error

MRE Mean relative error

MSE Mean squared error

MF Membership function

MMC Metal matrix composite

MNN Modular neural network

MD Molecular dynamics

MOSDeF Molecular Simulation and Design Framework

MC Monte carlo

MWCNT Multi walled carbon nanotube

MoGA Multi-objectives Genetic Algorithm

MRA Multiple regression analyses

NCO Neutralized castor oil

NFSS Nickel-free stainless steel composites

Neural network NN

NEMD Non-equilibrium molecular dynamics

NSGA Non-sorting genetic algorithm

PAES Pareto-archived evolution strategy

PFPE Perfluoropolyether

POD Pin-on-disk

PWD Pine wood dust

PEEK Poly ether ether ketone
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PA Polyamide

PEK Polyetherketone 

PE Polyethylene

PMC Polymer matrix composite

PPS Polyphenylene sulfide

PTFE Polytetrafluoroethylene

EP-PUR Polyurethane

PTW Potassium titanate whisker

PES Potential energy surface

CGB Powell–Beale conjugate gradient algorithm

PC Principal component

PCA Principal component analysis 

QSTR Quantitative structure tribo-ability relationship

RBFNN radial basis function neural network

RF Random forests

REBO Reactive empirical bond order

ReaxFF Reactive force field

RMD Reactive molecular dynamics

RNN Recurrent neural networks

r-GO Reduced graphene oxide

RSM Response surface methodology

RH Rice husk

RHA Rice husk ash

RMSE Root mean squared error

RPM Rotations per minute

SCG Scaled conjugate gradient
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SCF Short carbon fiber

SGF Short glass fiber

SWR Specific wear rate

SPEA Strength pareto evolutionary algorithm

SVM Support vector machine

SVR Support vector regression

SRGM Symbolic regression multi-gene programming

Ts Tensile strength

TTCF Transient-time correlation function

TMDC Transition metal dichalcogenide

T-BFRP Treated betelnut fiber polyster

UTS Ultimate tensile strength

UHMWPE Ultra high molecular weight polyethylene

UA United atom

WMD Waste marble dust

WSD Wear scar diameter

Y Young’s modulus
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