Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

A Review of Recent Advances and Applications of Machine Learning in Tribology

Abhishek T. Sose, Soumil Y. Joshi, Lakshmi Kumar Kunche, Fangxi Wang, and Sanket A. Deshmukh*

Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States

*Corresponding author

E-mail address: sanketad@vt.edu (Sanket A. Deshmukh)

Keywords: Tribology, lubricants and composite design, emerging green lubricants, Machine

learning, Data Science

No.	Sections	No.	Subsections
1	Introduction		-
2	Fundamentals of Tribology	2.1	Experimental studies of Tribology
		2.2	Introduction to machine learning algorithms and their applications
3	A review of the current trends of ML in tribology	3.1	ANN in the material formulation of (i) Lubricants (ii) Composites, including (a) polymer matrix composites (PMCs), (b) metal matrix composites (MMCs), (c) ceramic matrix composites (CMCs) (3.1.1) ANOVA-assisted ANN (3.1.2) Other ML/optimization-assisted ANN
		3.2	Recurrent neural networks (RNN) and Principal component analysis based ANN (PCA-ANN)
		3.3	Adaptive resonance theory (ART-2) based ANN
		3.4	Extreme learning machine (ELM)
		3.5	Adaptive Neuro-Fuzzy Inference System (ANFIS)

 Table S1. Table of Content of this article.

		3.6	Decision Trees (DT)
		3.7	Random Forests (RF)
		3.8	Support vector machines (SVM)
		3.9	Other multiple ML models
4	Computational methods in tribology	4.1	Molecular Dynamics (MD)
		4.2	Reactive Molecular Dynamics (RMD)
		4.3	Non-equilibrium Molecular Dynamics (NEMD)
5	Applications of ML in computational modeling techniques	5.1	Our perspective
6	Emerging, new and unexplored tribological	6.1	Glyco-Materials (carbohydrate-based materials)
	materials	6.2	MXenes

Table S2. A tabular representation of applications of ANN to design lubricant materials. Accuracy measure: $R^2=1$, MSE = 0, RMSE = 0, and MAE = 0: perfect fitting and accurate predictions can be achieved.

Oil (s) Mixtures	Modifiers	Input	Output	ANN accuracy	Ref
Perfluoropolyet her (PFPE)	Different types of PFPE	Sliding speed, distance, viscosity, applied load, CoF, and temperature	Wear rate	$R^2 = 0.93$	1
Castor oil (NCO), Glycerol	Cashew nut shell liquid (CNSL)	Contents of NCO, CNSL, and glycerol	CoF, WSD	-	2
Vegetable oil	Rapeseed oil	Contents of sunflower	CoF	RMSE	3

		oil and rapeseed oil		=0.00099 876	
Mineral oil	Polytetrafluoroethyle ne (PTFE)	Applied load, sliding velocity, PTFE content	CoF	98 %	4

Table S3. A tabular representation of applications of ANN to design polymeric composite materials.

Polymers	Modifiers	Input	Output	Ref
Polyether ketone (PEK)	Short glass fiber (SGF)	Impact angle, impact velocity, fiber content	Erosion rate	5
Polyamid e (PA) 4.6	Short carbon fibers (SCFs), PTFE, graphite	Compressive strength, compression modulus, contraction to failure, tensile strength (T _s), strain to failure, impact strength, environmental testing temperature, starting load, average load, average velocity	Wear volume	6
PA 4.6	PTFE, SCF	Polyamide volume, Fiber volume, PTFE volume, compression modulus, compression strength, hardness, fracture toughness, temperatures, normal force, wear speed	Coefficient of determination (B) of CoF and wear	7
Polyethyl ene (PE), polyureth ane (PUR), Epoxy	Hygrothermally decomposed polyurethane (EP-PUR)	PE: Erosive impact angle, Young's modulus (Y), yield stress, yield strain and fracture energy, as well as the crystallinity (6-25-1) PUR: T _g , damping at T _g , hardness, density, thermal expansion coefficient EP-PUR: wt. % of epoxy and PUR, impact angle, mass flow rate and	Wear rate	8

		velocity of erodents.		
PA 4.6	Glass fiber (GF), CF, PTFE, Graphite	Content of polymer, fiber and filler, temperature, normal applied force and sliding speed	Compressive modulus, compressive strength, T _s , Flexural strength (F _s), and SWR, CoF	9
PA 4.6 and PA 6.6	GF, CF, PTFE, Graphite	Content of polymer, fiber and filler, temperature, normal applied force and sliding speed	Compressive modulus, compressive strength, T _s , F _s and SWR, CoF	10
Polyphen ylene sulfide (PPS)	SCFs, TiO ₂ particles, Graphite, PTFE	PPS content, Volume of SCF, TiO ₂ , PTFE, Graphite	SWR	11
PPS	SCFs, TiO ₂ particles, Graphite, PTFE	Material composition (volume fraction of matrix, fillers, reinforcing agents and lubricants), pressure, sliding speed, tensile and compressive properties	SWR and CoF	12
PPS	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Content of polymer, SCF, TiO ₂ , PTFE, and graphite, normal applied force and sliding speed	SWR and CoF	13
PPS	$\begin{array}{ll} SCFs, & TiO_2\\ particles, \\ Graphite, PTFE \end{array}$	-	SWR and CoF	14
PTFE	CF, TiO ₂	Content of PTFE, CF, TiO ₂ , sliding speed, applied load, hardness, compressive strength	Wear	15
Polyether etherketo ne composite (PEEK)	30 wt. % CF	<i>pv</i> factor, sliding temperature	CoF, Wear weight loss	16
Epoxy (Araldite	Pine wood dust (PWD)	Filler content, sliding speed, and distance, applied normal load	SWR	17

LV 556)				
L1 330)				
Epoxy (LY 556)	Rice husk (RH)	RH content, sliding velocity, applied load	SWR	18
Epoxy (LY 556)	SGF, Microsized blast furnace slag (BFS) particles	Filler content, sliding speed, and distance, applied normal load	SWR	19
Polyester	Betelnut fiber	Applied load, sliding distance and fiber orientation	CoF	20
Polyester	Chopped strand mat GF	Applied load, sliding speed, time of test and fiber orientation	CoF	21
Polyester	Cotton fiber, fly ash	Content of polyester, cotton fiber, 3 wt. % fly ash and 5 wt. % fly ash	SWR	22
Polyester	Waste marble dust (WMD)	Applied load, sliding speed and distance and fiber orientation	SWR	23
Polycarbo nate	Graphene (GR), Boron carbide (B ₄ C)	Vol. content of polycarbonate, GR, and B_4C , applied load, and sliding speed	SWR and CoF	24
Polyprop ylene	Blast furnace slag (BFS)	BFS content, sliding velocity, sliding distance and applied load	SWR	25
Ultra high molecular weight polyethyl ene (UHMWP E)	Carbon nanotube (CNT), CF, graphene oxide (GO), wollastonite	UHMWPE, ZnO, zeolite, CNT, CF, GO, wollastonite, size of ZnO and zeolite, applied load, and sliding speed	Wear volume	26
PEEK	Silica Carbide (SiC)	Applied load, and sliding speed	CoF and SWR	27

Table S4. A tabular representation of applications of ANN to design metallic composite materials.

Metals/Alloy Modifiers	Input	Output	Ref
------------------------	-------	--------	-----

Aluminum	Al ₂ O ₃	Operating conditions: Applied load, sliding speed, temperature Material: Hardness, Vol. fraction of Al ₂ O ₃ and densityfraction of	SWR	28
Aluminum (AA2014) alloy	B ₄ C	Sliding time, B ₄ C volume fraction	Volume loss, SWR, and surface roughness	29
Co-30Cr-4Mo- 1Ni alloy	Tungsten	Applied load, sliding velocity, sliding distance, tungsten content	Wear loss	30
Aluminum (AA1100) alloy	Rice husk ash (RHA), bagasse ash, coconut shell ash, zinc oxide (ZnO), egg shell particles	Applied load, sliding speed, sliding velocity, cumulative time, 6 % Content of one of the ash	SWR and CoF	31
Titanium	GR, Si ₃ N ₄	Applied load, density, reinforcements	SWR	32
Aluminum (AA 7075) alloy	Silicon carbide (SiC), Al ₂ O ₃	Applied load, sliding speed, material composition	SWR and CoF	33
Aluminum (AA 6082) alloy	SiC, TiC, Al ₂ O ₃ , WC, B ₄ C	Friction stir welding (FSW) process: Rotational speed, traverse speed, groove width, and ceramic particle	SWR	34
Aluminum- silicon alloy	Titanium carbide (TiC)	Applied load, sliding speed	Wear volume loss, Rise in temperature	35
Aluminum A380 alloy	Fly ash	Peak current, pulse on, pulse off, Fly ash content %, particle size	Surface roughness, material removal rate, tool wear rate	36
Copper surface	SiC, TiC, Al ₂ O ₃ , WC,	FSW process: Rotational speed, traverse speed, groove width, and	SWR	37

	B ₄ C	ceramic particle		
Aluminum	RHA	Applied load, sliding speed, RHA particle size, and weight percentage of RHA reinforcement.	SWR and CoF	38
Aluminum	Red mud nanoparticl e	Composition and deformation of composite, sliding velocity, and applied load	Volumetric wear	39
Zinc–aluminum ZA27	Alumina fiber	Fiber volume, fiber orientation, and applied load and	SWR and CoF	40
Aluminum (A380)	Fly ash	Applied load, sliding speed, fly ash particle size and content (wt. %)	SWR and CoF	41
Aluminum alloys	Copper, SiC	Copper content (wt. %), SiC content (wt. %), Cumulative testing time	Wear mass loss	42
Aluminum alloys (A356)	Copper, SiC	Manufacturing furnace temperature, applied load, sliding distance, wt. % of SiC	Wear mass loss	43
Aluminum alloys (A356)	B ₄ C	Sliding distance, particle size and volume percent of B ₄ C, and From FEM: Temperature gradient, cooling rate	Weight loss, Variation of porosity	44
Aluminum silicon alloy (A356)	SiC	SiC wt. %, SiC particle size,	SWR	45
Aluminum alloys (Al7075)	Al ₂ O ₃	Al ₂ O ₃ wt. %, applied load, sliding distance, density	SWR	46
Aluminum alloys (Al6061)	Al ₂ O ₃	Al ₂ O ₃ wt. %, applied load, sliding distance, density	SWR	47
Magnesium alloy (RZ-5)	TiC	Applied load, Sliding distance	CoF	48
Nickel-free stainless steel (NFSS)	Hydroxyap atite (HA)	Applied load, HA content (vol. %), Sliding distance	Wear volume loss	49

Table S5. A tabular representation of applications of ANN combined with ANOVA statistical

analysis to design composite materials.

Material	Modifiers	ANN model parameter s	Input	Output	Ref
Polyester	SGF	4-10-1	Filler content, sliding speed, and distance, applied normal load	SWR and CoF	50
Epoxy resins	Castor oil fiber (Ricinus communis)	3-9-13-9- 3	Applied load, fiber length, sliding distance	Gravimetric wear, CoF, and interfacial temperature	51
Copper	Tungsten	4-7-4-3	Tungsten weight content, applied load, sliding distance, and sintering temperature	CoF, SWR, and hardness	52
Copper	Tungsten	4-140-3	Tungsten weight content, applied load, sliding distance, and sintering temperature	CoF, SWR, and hardness	53
Aluminum	Micro SiC, nano Zirconia	4-10-1	Sliding speed, zirconia content, applied load, sliding distance	Wear loss	54
Copper (Cu)	Aluminum nitride, Boron nitride	4-7-1	Volumetric fractions of particles, sliding speed, applied load, and sliding distances	SWR	55
Al-Si alloy (A356)	SiC (10 wt. %), Graphite	3-20-30-2	Applied load, sliding speed and graphite content	SWR and CoF	56
Aluminum (LM6)	Powder -chip	2-5-1	Sliding distance, Reinforcement	SWR	57
Aluminum alloy (Al25Zn)	SiC	4-8-1	SiC wt. %, applied load, sliding speed, testing temperature	SWR	58
Copper	Multi-walled carbon nanotubes	3-7-1	MWCNT wt. %, sliding distance and applied load	Wear loss	59

	(MWCNTs)				
Magnesium (AZ31) alloy	Reduced graphene oxide (r-GO)	4-7-1	Applied load, r-GO weight content, sliding distance, sliding velocity	SWR	60
Magnesium (AZ31) alloy	r-GO, SiC	5-8-1	Applied load, r-GO and SiC weight content, sliding distance, sliding velocity	SWR	61

Table S6. A tabular representation of applications of ANN with other ML and optimization algorithms to design composite materials.

Oil (s) Mixtures	Modifiers	ML/Optimization algorithm with ANN	Output	Ref
PTFE resin	Aramid pulp, mica, copper (Cu), nano- SiO ₂ , potassium titanate whisker (PTW)	Monte-Carlo (MC)	CoF and SWR	62
ZA-27 alloy	Marble dust particles (MDp)	Improved bat algorithm (IBA)	Wear	63
UHMWPE	CNT, GR	Non-sorted Genetic Algorithm (NSGA- II)	Y, T _s	64
Coconut oil, castor oil, palm oil	MWCNT and GR	Genetic Algorithm (GA)	CoF, WSD	65
Castor oil (NCO), mineral oil (CMO)	MWCNT, GR, graphite, ZnO particles	Genetic algorithm (GA)	CoF	66

Polyester E-glass fiber, cement by-pass dust (CBPD), alumina (Al ₂ O ₃), SiC	Genetic algorithm (GA)	Wear rate	67
---	---------------------------	-----------	----

Table S7. A tabular representation of applications of other ML technqies to design processes or novel materials.

Aim/Test/Pro cess	Material	ML algorithm	Accuracy	Output	Ref
Dry and base oil bath lubricated Fretting test	Chromiu m steel	Recurrent Neural Network (RNN), PCA-ANN	RNN: PCA-ANN:		68
Identify defects in ball bearing		Adaptive resonance theory (ART-2) based ANN, BPNN	ART-2-ANN: BPNN		69
Transesterific ation process	P50S50 biodiesel	Extreme Learning Machine (ELM)	ELM		70
FSW	AA7075 aluminu m alloy	Adaptive neuro- fuzzy inference systems (ANFIS)	RMSE: 9.331	Tool pin profile, tool rotary speed, welding speed, and welding axial forces	71
FSW	Aluminu m alloy joints	ANFIS	ANFIS - (RMSE: 29.7 MPa, MAPE: 7.7%); ANN - (RMSE:36.7 MPa, MAPE: 10.9 %)	Ultimate tensile strength (UTS)	72
Designing ceramic pairings	-	Decision trees	$R^2 = 0.89$	CoF	73
Sliding	-	Random Forests	Accuracy: 0.939	States of	74

experiments in oscillatory and translatory motion				operation	
Gas face seal status	-	Support Vector Machines (SVM)	$\frac{RSS}{TSE} \le 0.1$	Eccentric load on the stator of the seal	75
FSW	Aluminu m alloy AA1100	SVM	Absolute error: (i) SVR: 0.53 (ii) BPNN: 3.08 (iii) General regression: 13.55	UTS	76
Brakes	-	Isotonic regression, SMO, simple linear, linearm pace, gaussian least median squared regression	RMSE: 0.0014 Correlation coefficient: 0.9999	CoF	77
Thin film synthesis	Alumina (Al ₂ O ₃), TiO ₂ , molybde num disulphi de (MoS ₂), and aluminu m (Al)	MLP-ANN, DT and RF, SVR, age- layered population structure (ALPS), grammatical evolution (GE), and symbolic regression multi-gene programming (SRMG)	-	-	78
Aluminum base alloy	SiC	KNN, SVM, ANN, RF, and GBM	MSE of SWR 1. ANN = 0.0009 2. RF = 0.00001 3. kNN = 0.0008 4. SVM = 0.0007 5. GBM = 0.00002 MSE of CoF 1. ANN = 0.0055 2. RF = 0.0028 3. kNN = 0.0028 4. SVM = 0.0007	SWR and CoF	79

			5. GBM = 0.0030		
Aluminum- graphite	SiC	KNN, SVM, ANN, RF, and GBM	$MSE of SWR \\1. ANN = 0.0031 \\2. RF = 0.0014 \\3. kNN = 0.0017 \\4. GBM = 0.0016 \\MSE of CoF \\1. ANN = 0.0037 \\2. RF = 0.0037 \\3. KNN = 0.0066 \\4. SVM = 0.0064 \\5. GBM = 0.0028 \\$	SWR and CoF	80

Table S8. A tabular representation of ML used in combination with computational modelingtechniques like MD and DFT.

Aim/Test/Process	Material	ML algorithm	Research outputs	Ref
High throughput screening	Soft matter monolayer films	RF	CoF and adhesion force	81
Elastohydrodynami c lubrication	Squalane	PCA with NEMD simulations	-	82
2D materials	-	Bayesian Model with MD and DFT	Maximum energy barrier	83
Lubricants screening (with surface sliding MD simulations)	Toy model of fluids	Gaussian mixture model and bayesian neural network with MD	Shear rate	84

Abbreviation List:

AE	Acoustic emissions
AIREBO	Adaptive intermolecular reactive empirical bond order
GDX	Adaptive learning rate

ANFIS	Adaptive neuro-fuzzy inference system
ART-2	Adaptive resonance theory
Adj SS	Adjusted sum of squares
ASTM	American society for testing and materials
ANOVA	Analysis of variance
ANN	Artificial neural network
BPNN	Back propagation neural network
ВА	Bat algorithm
BNN	Bayesian neural network
BFS	Blast furnace slag
BFGS	Broyden-Fletcher-Goldfarb-Shanno
CF	Carbon fiber
CNT	Carbon nanotube
CNSL	Cashew nut shell liquid
CBPD	Cement by-pass dust
CVT	Centroidal Voronoi tessellation
СМС	Ceramic matrix composite
CG MD	Coarse grained molecular dynamics
CoF	Coefficient of friction
СМО	Commercial mineral oil
CNN	Convolutional neural network
CC	Correlation coefficient
CFPC	cotton fiber polyester composite
DT	Decision trees
DFT	Density functional theory
DBSCAN	Density-based spatial clustering of applications with noise

DOE	Design of experiments
DLC	Diamondlike carbon
DTAB	Dodecyl trimethyl ammonium bromide
EHL	Elastohydrodynamic lubrication
EFI	Empirical force index
EBP	Error back propagation
ELM	Extreme learning machine
FEM	Finite element method
FF	Force field
FM	Friction modifier
FSW	Friction stir welding
FGM	Functionally graded materials
GA	Genetic algorithm
Tg	Glass transition temperature
GBM	Gradient boosting machine
GR	graphene
GO	graphene oxide
GRA	Gray relational analysis
НА	Hydroxyapatite
IBA	Improved bat algorithm
KNN	K nearest neighnours
LFM	Lateral force microscopy
LOO	Leave one out
LJ	Lennard Jones
LM	Levenberg-Marquardt

LED	Light emitting diodes
ML	Machine Learning
MDp	Marble dust particles
MEB	Maximum energy barrier
MAE	Mean absolute error
MRE	Mean relative error
MSE	Mean squared error
MF	Membership function
MMC	Metal matrix composite
MNN	Modular neural network
MD	Molecular dynamics
MOSDeF	Molecular Simulation and Design Framework
МС	Monte carlo
MWCNT	Multi walled carbon nanotube
MoGA	Multi-objectives Genetic Algorithm
MRA	Multiple regression analyses
NCO	Neutralized castor oil
NFSS	Nickel-free stainless steel composites
Neural network	NN
NEMD	Non-equilibrium molecular dynamics
NSGA	Non-sorting genetic algorithm
PAES	Pareto-archived evolution strategy
PFPE	Perfluoropolyether
POD	Pin-on-disk
PWD	Pine wood dust
PEEK	Poly ether ether ketone

РА	Polyamide
РЕК	Polyetherketone
РЕ	Polyethylene
РМС	Polymer matrix composite
PPS	Polyphenylene sulfide
PTFE	Polytetrafluoroethylene
EP-PUR	Polyurethane
PTW	Potassium titanate whisker
PES	Potential energy surface
CGB	Powell–Beale conjugate gradient algorithm
PC	Principal component
РСА	Principal component analysis
QSTR	Quantitative structure tribo-ability relationship
RBFNN	radial basis function neural network
RF	Random forests
REBO	Reactive empirical bond order
ReaxFF	Reactive force field
RMD	Reactive molecular dynamics
RNN	Recurrent neural networks
r-GO	Reduced graphene oxide
RSM	Response surface methodology
RH	Rice husk
RHA	Rice husk ash
RMSE	Root mean squared error
RPM	Rotations per minute
SCG	Scaled conjugate gradient

SCF	Short carbon fiber
SGF	Short glass fiber
SWR	Specific wear rate
SPEA	Strength pareto evolutionary algorithm
SVM	Support vector machine
SVR	Support vector regression
SRGM	Symbolic regression multi-gene programming
T _s	Tensile strength
TTCF	Transient-time correlation function
TMDC	Transition metal dichalcogenide
T-BFRP	Treated betelnut fiber polyster
UTS	Ultimate tensile strength
UHMWPE	Ultra high molecular weight polyethylene
UA	United atom
WMD	Waste marble dust
WSD	Wear scar diameter
Y	Young's modulus

References

- 1 S. P. Jones, R. Jansen and R. L. Fusaro, Preliminary Investigation of Neural Network Techniques to Predict Tribological Properties, *Tribol. Trans.*, 1997, **40**, 312–320.
- 2 S. Bhaumik and M. Kamaraj, Artificial neural network and multi-criterion decision making approach of designing a blend of biodegradable lubricants and investigating its tribological properties, *Proc. Inst. Mech. Eng. Pt. J: J. Eng. Tribol.*, 2021, **235**, 1575–1589.
- 3 C. Humelnicu, S. Ciortan and V. Amortila, Artificial Neural Network-Based Analysis of the Tribological Behavior of Vegetable Oil–Diesel Fuel Mixtures, *Lubricants*, 2019, **7**, 32.
- 4 E. Durak, Ö. Salman and C. Kurbanoğlu, Analysis of effects of oil additive into friction coefficient variations on journal bearing using artificial neural network, *Ind. Lubr. Tribol.*, 2008, **60**, 309–316.
- 5 A. Suresh, A. P. Harsha and M. K. Ghosh, Erosion Studies of Short Glass Fiber-reinforced Thermoplastic Composites and Prediction of Erosion Rate Using ANNs, *J. Reinf. Plast.*

Compos., 2010, **29**, 1641–1652.

- 6 K. Velten, R. Reinicke and K. Friedrich, Wear volume prediction with artificial neural networks, *Tribol. Int.*, 2000, **33**, 731–736.
- 7 Z. Zhang, K. Friedrich and K. Velten, Prediction on tribological properties of short fibre composites using artificial neural networks, *Wear*, 2002, **252**, 668–675.
- 8 Z. Zhang, N.-M. Barkoula, J. Karger-Kocsis and K. Friedrich, Artificial neural network predictions on erosive wear of polymers, *Wear*, 2003, **255**, 708–713.
- 9 Z. Jiang, Z. Zhang and K. Friedrich, Prediction on wear properties of polymer composites with artificial neural networks, *Compos. Sci. Technol.*, 2007, **67**, 168–176.
- 10 Z. Jiang, L. Gyurova, Z. Zhang, K. Friedrich and A. K. Schlarb, Neural network based prediction on mechanical and wear properties of short fibers reinforced polyamide composites, *Mater. Des.*, 2008, **29**, 628–637.
- 11 Z. Jiang, L. A. Gyurova, A. K. Schlarb, K. Friedrich and Z. Zhang, Study on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro TiO2 particles, *Compos. Sci. Technol.*, 2008, **68**, 734–742.
- 12 L. A. Gyurova, P. Miniño-Justel and A. K. Schlarb, Modeling the sliding wear and friction properties of polyphenylene sulfide composites using artificial neural networks, *Wear*, 2010, **268**, 708–714.
- 13 L. A. Gyurova and K. Friedrich, Artificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide composites, *Tribol. Int.*, 2011, 44, 603–609.
- 14 M. Busse and A. K. Schlarb, in *Tribology of Polymeric Nanocomposites (Second Edition)*, eds. K. Friedrich and A. K. Schlarb, Butterworth-Heinemann, Oxford, 2013, pp. 779–793.
- 15 J. Zhu, Y. Shi, X. Feng, H. Wang and X. Lu, Prediction on tribological properties of carbon fiber and TiO2 synergistic reinforced polytetrafluoroethylene composites with artificial neural networks, *Mater. Des.*, 2009, **30**, 1042–1049.
- 16 X. LiuJie, J. P. Davim and R. Cardoso, Prediction on tribological behaviour of composite PEEK-CF30 using artificial neural networks, *J. Mater. Process. Technol.*, 2007, **189**, 374–378.
- 17 G. Kranthi and A. Satapathy, Evaluation and prediction of wear response of pine wood dust filled epoxy composites using neural computation, *Comput. Mater. Sci.*, 2010, **49**, 609–614.
- 18 A. Rout and A. Satapathy, Analysis of Dry Sliding Wear Behaviour of Rice Husk Filled Epoxy Composites Using Design of Experiment and ANN, *Procedia Engineering*, 2012, 38, 1218–1232.
- 19 P. K. Padhi and A. Satapathy, Analysis of Sliding Wear Characteristics of BFS Filled Composites Using an Experimental Design Approach Integrated with ANN, *Tribol. Trans.*, 2013, 56, 789–796.
- 20 U. Nirmal, Prediction of friction coefficient of treated betelnut fibre reinforced polyester (T-BFRP) composite using artificial neural networks, *Tribol. Int.*, 2010, **43**, 1417–1429.
- 21 T. Nasir, B. F. Yousif, S. McWilliam, N. D. Salih and L. T. Hui, *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science*, 2010, 224, 419–429.
- 22 H. H. Parikh and P. P. Gohil, in *Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites*, eds. M. Jawaid, M. Thariq and N. Saba, Woodhead Publishing, 2019, pp. 301–320.
- 23 S. K. Nayak and A. Satapathy, Wear analysis of waste marble dust-filled polymer composites with an integrated approach based on design of experiments and neural

computation, Proc. Inst. Mech. Eng. Pt. J: J. Eng. Tribol., 2020, 234, 1846-1856.

- 24 M. Zakaulla, F. Parveen, Amreen, Harish and N. Ahmad, Artificial neural network based prediction on tribological properties of polycarbonate composites reinforced with graphene and boron carbide particle, *Materials Today: Proceedings*, 2020, **26**, 296–304.
- 25 P. K. Padhi, A. Satapathy and A. M. Nakka, Processing, characterization, and wear analysis of short glass fiber-reinforced polypropylene composites filled with blast furnace slag, *J. Thermoplast. Compos. Mater.*, 2015, **28**, 656–671.
- 26 H. I. Kurt and M. Oduncuoglu, Application of a Neural Network Model for Prediction of Wear Properties of Ultrahigh Molecular Weight Polyethylene Composites, *Int. J. Polym. Sci.*, DOI:10.1155/2015/315710.
- 27 G. Zhang, S. Guessasma, H. Liao, C. Coddet and J.-M. Bordes, Investigation of friction and wear behaviour of SiC-filled PEEK coating using artificial neural network, *Surf. Coat. Technol.*, 2006, **200**, 2610–2617.
- 28 T. S. Mahmoud, Artificial neural network prediction of the wear rate of powder metallurgy Al/Al2O3 metal matrix composites, *Proc. Inst. Mech. Eng. Part L J. Mat. Des. Appl.*, 2012, 226, 3–15.
- 29 A. Canakci, S. Ozsahin and T. Varol, Prediction of Effect of Reinforcement Size and Volume Fraction on the Abrasive Wear Behavior of AA2014/B4Cp MMCs Using Artificial Neural Network, *Arab. J. Sci. Eng.*, 2014, **39**, 6351–6361.
- 30 A. Aherwar, A. Singh and A. Patnaik, Prediction of effect of tungsten filled Co-30Cr-4Mo-1Ni metal matrix biomedical composite alloy on sliding wear peculiarity using Taguchi methodology and ANN, *Advances in Materials and Processing Technologies*, 2017, **3**, 665– 688.
- 31 A. Nagaraj and S. Gopalakrishnan, A Study on Mechanical and Tribological Properties of Aluminium 1100 Alloys 6% of RHAp, BAp, CSAp, ZnOp and Egg Shellp Composites by ANN, *Silicon Chem.*, 2021, **13**, 3367–3376.
- 32 T. Mutuk, M. Gürbüz and H. Mutuk, Prediction of wear properties of graphene-Si3N4 reinforced titanium hybrid composites by artificial neural network, *Mater. Res. Express*, 2020, **7**, 086511.
- 33 K. K. Ekka, S. R. Chauhan and Varun, Study on the sliding wear behaviour of hybrid aluminium matrix composites using Taguchi design and neural network, *Proc. Inst. Mech. Eng. Part L J. Mat. Des. Appl.*, 2016, **230**, 537–549.
- 34 I. Dinaharan, R. Palanivel, N. Murugan and L. R. Frans, Predicting the wear rate of AA6082 aluminum surface composites produced by friction stir processing via artificial neural network, *Multidiscipline Modeling in Materials and Structures*, 2019, 16, 409–423.
- 35 V. Sivananth, P. Karuppusamy and K. Lingadurai, Wear and corrosion behaviour of titanium carbide reinforced metal matrix composites for automobile brake disc application, *International Journal of Materials Engineering Innovation*, 2019, **10**, 246–267.
- 36 V. S. Sreebalaji and K. R. Kumar, Artificial neural networks and multi response optimisation on EDM of aluminium (A380)/fly ash composites, *Int. J. Comput. Mater. Sci. Surface Eng.*, 2016, 6, 244–262.
- 37 I. Dinaharan, R. Palanivel, N. Murugan and R. F. Laubscher, Application of artificial neural network in predicting the wear rate of copper surface composites produced using friction stir processing, *Australian Journal of Mechanical Engineering*, 2020, 1–12.
- 38 S. D. Saravanan and M. Senthilkumar, Prediction of tribological behaviour of rice husk ash reinforced aluminum alloy matrix composites using artificial neural network, *Russian*

Journal of Non-Ferrous Metals, 2015, 56, 97–106.

- 39 G. Satyanarayana, G. Swami Naidu and N. H. Babu, Artificial neural network and regression modelling to study the effect of reinforcement and deformation on volumetric wear of red mud nano particle reinforced aluminium matrix composites synthesized by stir casting, *Bol. Soc. Esp. Ceram. Vidr.*, 2018, **57**, 91–100.
- 40 K. Genel, S. C. Kurnaz and M. Durman, Modeling of tribological properties of alumina fiber reinforced zinc–aluminum composites using artificial neural network, *Materials Science and Engineering: A*, 2003, **363**, 203–210.
- 41 K. R. Kumar, K. M. Mohanasundaram, G. Arumaikkannu and R. Subramanian, Artificial neural networks based prediction of wear and frictional behaviour of aluminium (A380)–fly ash composites, *Tribol. Mater. Surf. Interfaces*, 2012, **6**, 15–19.
- 42 M. Hayajneh, A. M. Hassan, A. Alrashdan and A. T. Mayyas, Prediction of tribological behavior of aluminum–copper based composite using artificial neural network, *J. Alloys Compd.*, 2009, **470**, 584–588.
- 43 D. Özyürek, A. Kalyon, M. Yıldırım, T. Tuncay and İ. Çiftçi, Experimental investigation and prediction of wear properties of Al/SiC metal matrix composites produced by thixomoulding method using Artificial Neural Networks, *Mater. Des.*, 2014, **63**, 270–277.
- 44 M. O. Shabani and A. Mazahery, Prediction of wear properties in A356 matrix composite reinforced with B4C particulates, *Synth. Met.*, 2011, **161**, 1226–1231.
- 45 F. S. Rashed and T. S. Mahmoud, Prediction of wear behaviour of A356/SiCp MMCs using neural networks, *Tribol. Int.*, 2009, **42**, 642–648.
- 46 R. Pramod, G. B. Veeresh Kumar, P. S. S. Gouda and A. T. Mathew, A Study on the Al2O3 reinforced Al7075 Metal Matrix Composites Wear behavior using Artificial Neural Networks, *Materials Today: Proceedings*, 2018, 5, 11376–11385.
- 47 G. B. Veeresh Kumar, R. Pramod, C. S. P. Rao and P. S. S. Gouda, Artificial Neural Network Prediction On Wear Of Al6061 Alloy Metal Matrix Composites Reinforced With -Al2o3, *Materials Today: Proceedings*, 2018, 5, 11268–11276.
- 48 D. Mehra, S. V. Sujith, M. M. Mahapatra and S. P. Harsha, Modeling of wear process parameters of in-situ RZ5-10wt%TiC Composite using artificial neural network, *Materials Today: Proceedings*, 2018, **5**, 24124–24132.
- 49 M. Younesi, M. E. Bahrololoom and M. Ahmadzadeh, Prediction of wear behaviors of nickel free stainless steel-hydroxyapatite bio-composites using artificial neural network, *Comput. Mater. Sci.*, 2010, **47**, 645–654.
- 50 Siddhartha and A. K. Singh, Mechanical and dry sliding wear characterization of short glass fiber reinforced polyester-based homogeneous and their functionally graded composite materials, *Proc. Inst. Mech. Eng. Part L J. Mat. Des. Appl.*, 2015, **229**, 274–298.
- 51 R. Egala, G. V. Jagadeesh and S. G. Setti, Experimental investigation and prediction of tribological behavior of unidirectional short castor oil fiber reinforced epoxy composites, *Friction*, 2021, **9**, 250–272.
- 52 S. C. Vettivel, N. Selvakumar and N. Leema, Experimental and prediction of sintered Cu– W composite by using artificial neural networks, *Mater. Des.*, 2013, **45**, 323–335.
- 53 N. Leema, P. Radha, S. C. Vettivel and H. Khanna Nehemiah, Characterization, pore size measurement and wear model of a sintered Cu–W nano composite using radial basis functional neural network, *Mater. Des.*, 2015, **68**, 195–206.
- 54 S. Arif, M. T. Alam, A. H. Ansari, M. B. N. Shaikh and M. Arif Siddiqui, Analysis of tribological behaviour of zirconia reinforced Al-SiC hybrid composites using statistical and

artificial neural network technique, Mater. Res. Express, 2018, 5, 056506.

- 55 T. Thankachan, K. Soorya Prakash and M. Kamarthin, Optimizing the Tribological Behavior of Hybrid Copper Surface Composites Using Statistical and Machine Learning Techniques, *J. Tribol.*, , DOI:10.1115/1.4038688.
- 56 B. Stojanović, A. Vencl, I. Bobić, S. Miladinović and J. Skerlić, Experimental optimisation of the tribological behaviour of Al/SiC/Gr hybrid composites based on Taguchi's method and artificial neural network, *J. Brazil. Soc. Mech. Sci. Eng.*, , DOI:10.1007/s40430-018-1237-y.
- 57 M. Agarwal, M. Kumar Singh, R. Srivastava and R. K. Gautam, Microstructural measurement and artificial neural network analysis for adhesion of tribolayer during sliding wear of powder-chip reinforcement based composites, *Measurement*, 2021, **168**, 108417.
- 58 P. P. Ritapure and Y. R. Kharde, SiC contents and pin temperature effect on tribological properties of Al25Zn/SiC composites, *International Journal of Refractory Metals and Hard Materials*, 2019, **82**, 234–244.
- 59 K. S. Prakash, T. Thankachan and R. Radhakrishnan, Parametric optimization of dry sliding wear loss of copper–MWCNT composites, *Trans. Nonferrous Met. Soc. China*, 2017, **27**, 627–637.
- 60 V. Kavimani and K. S. Prakash, Tribological behaviour predictions of r-GO reinforced Mg composite using ANN coupled Taguchi approach, *J. Phys. Chem. Solids*, 2017, **110**, 409–419.
- 61 V. Kavimani, K. S. Prakash and T. Thankachan, Experimental investigations on wear and friction behaviour of SiC@r-GO reinforced Mg matrix composites produced through solvent-based powder metallurgy, *Composites Part B*, 2019, **162**, 508–521.
- 62 S. Li, M. Shao, C. Duan, Y. Yan, Q. Wang, T. Wang and X. Zhang, *Journal of Applied Polymer Science*, 2019, 136, 47157.
- 63 S. Gangwar and V. K. Pathak, Dry sliding wear characteristics evaluation and prediction of vacuum casted marble dust (MD) reinforced ZA-27 alloy composites using hybrid improved bat algorithm and ANN, *Materials Today Communications*, 2020, **25**, 101615.
- A. Vinoth and S. Datta, Design of the ultrahigh molecular weight polyethylene composites with multiple nanoparticles: An artificial intelligence approach, *J. Compos. Mater.*, 2020, 54, 179–192.
- 65 S. Bhaumik, B. R. Mathew and S. Datta, Computational intelligence-based design of lubricant with vegetable oil blend and various nano friction modifiers, *Fuel*, 2019, **241**, 733–743.
- 66 S. Bhaumik, S. D. Pathak, S. Dey and S. Datta, Artificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological properties, *Tribol. Int.*, 2019, **140**, 105813.
- 67 S. S. Mahapatra and A. Patnaik, Study on mechanical and erosion wear behavior of hybrid composites using Taguchi experimental design, *Mater. Des.*, 2009, **30**, 2791–2801.
- 68 T. Kolodziejczyk, R. Toscano, S. Fouvry and G. Morales-Espejel, Artificial intelligence as efficient technique for ball bearing fretting wear damage prediction, *Wear*, 2010, **268**, 309–315.
- 69 M. Subrahmanyam and C. Sujatha, Using neural networks for the diagnosis of localized defects in ball bearings, *Tribol. Int.*, 1997, **30**, 739–752.
- 70 M. A. Mujtaba, H. H. Masjuki, M. A. Kalam, H. C. Ong, M. Gul, M. Farooq, M. E. M. Soudagar, W. Ahmed, M. H. Harith and M. Yusoff, Ultrasound-assisted process

optimization and tribological characteristics of biodiesel from palm-sesame oil via response surface methodology and extreme learning machine-Cuckoo search, *Renewable Energy*, 2020, **158**, 202–214.

- 71 S. Babajanzade Roshan, M. Behboodi Jooibari, R. Teimouri, G. Asgharzadeh-Ahmadi, M. Falahati-Naghibi and H. Sohrabpoor, Optimization of friction stir welding process of AA7075 aluminum alloy to achieve desirable mechanical properties using ANFIS models and simulated annealing algorithm, *Int. J. Adv. Manuf. Technol.*, 2013, **69**, 1803–1818.
- 72 M. W. Dewan, D. J. Huggett, T. Warren Liao, M. A. Wahab and A. M. Okeil, Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network, *Mater. Des.*, 2016, **92**, 288–299.
- 73 E. W. Bucholz, C. S. Kong, K. R. Marchman, W. G. Sawyer, S. R. Phillpot, S. B. Sinnott and K. Rajan, Data-Driven Model for Estimation of Friction Coefficient Via Informatics Methods, *Tribol. Lett.*, 2012, **47**, 211–221.
- 74 J. Prost, U. Cihak-Bayr, I. A. Neacşu, R. Grundtner, F. Pirker and G. Vorlaufer, Semi-Supervised Classification of the State of Operation in Self-Lubricating Journal Bearings Using a Random Forest Classifier, *Lubricants*, 2021, **9**, 50.
- 75 Y. Yin, X. Liu, W. Huang, Y. Liu and S. Hu, Gas face seal status estimation based on acoustic emission monitoring and support vector machine regression, *Advances in Mechanical Engineering*, 2020, **12**, 1687814020921323.
- 76 B. Das, S. Pal and S. Bag, Journal of Manufacturing Processes, 2017, 27, 8–17.
- 77 M. Timur and F. Aydin, Anticipating the friction coefficient of friction materials used in automobiles by means of machine learning without using a test instrument, *Turkish Journal of Electrical Engineering and Computer Sciences*, 2013, **21**, 1440–1454.
- 78 M. Perčić, S. Zelenika and I. Mezić, Artificial intelligence-based predictive model of nanoscale friction using experimental data, *Friction*, 2021, **9**, 1726–1748.
- 79 M. S. Hasan, A. Kordijazi, P. K. Rohatgi and M. Nosonovsky, Triboinformatic modeling of dry friction and wear of aluminum base alloys using machine learning algorithms, *Tribol. Int.*, 2021, **161**, 107065.
- 80 M. S. Hasan, A. Kordijazi, P. K. Rohatgi and M. Nosonovsky, Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods, *J. Tribol.*, , DOI:10.1115/1.4050525.
- 81 C. D. Quach, J. B. Gilmer, D. Pert, A. Mason-Hogans, C. R. Iacovella, P. T. Cummings and C. McCabe, High-throughput screening of tribological properties of monolayer films using molecular dynamics and machine learning, *J. Chem. Phys.*, 2022, **156**, 154902.
- 82 J. C. S. Kadupitiya and V. Jadhao, Probing the Rheological Properties of Liquids Under Conditions of Elastohydrodynamic Lubrication Using Simulations and Machine Learning, *Tribol. Lett.*, 2021, **69**, 82.
- B. Sattari Baboukani, Z. Ye, K. G. Reyes and P. C. Nalam, Prediction of Nanoscale Friction for Two-Dimensional Materials Using a Machine Learning Approach, *Tribol. Lett.*, 2020, 68, 57.
- 84 M. A. Zaidan, F. F. Canova, L. Laurson and A. S. Foster, Mixture of Clustered Bayesian Neural Networks for Modeling Friction Processes at the Nanoscale, *J. Chem. Theory Comput.*, 2017, **13**, 3–8.