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Supplementary Notes 

S1. Derivation of initiation-time distribution and renewal function 

S1.1 Initiation-time distribution  

For the queuing model, a key step for deriving the exact protein distribution is to derive the analytical 

expression of the initiation-time distribution ini ( ).f t  From Fig. 1 in the main text, we can know that the 

promoter in the ON state can either produce protein bursting or switch back to OFF state. Specifically, 

the gene in the ON state can lead to protein bursting in a single step or make multistep trips to the OFF 

state before protein bursting occurs. A simple calculation yields the following explicit expression of the 

initiation-time distribution in the Laplace domain [1] 

( )
( )( )

syn

ini

syn on off

,
1

r
f s

s r r f s
=

+ + −
                               (S1) 

where ( )inif s   and ( )offf s   are the Laplace transforms of ( )inif t   and ( )offf t  , respectively. Then, the 

initiation-time distribution ( )inif t
 
can be obtained by calculating the inverse Laplace transform of ( )inif s : 

( ) ( )( ) 1

ini syn syn on off1 .f t r s r r f s−  = + + −
 

In addition, if the survival function of the OFF state is defined as 

( ) ( )off off
t

F t f x dx


=   whose Laplace transform is denoted by ( )off ,F s we can show ( ) ( )( )off off1 .F s f s s= −  

Substituting this expression into Eq. S1, we immediately obtain the following expression 

( ) ( )( )ini syn syn on offf s r r s sr F s= + +                                (S2) 

In the following, we consider that the waiting time for gene activation follows an Erlang distribution 

of the form ( ) ( ) ( )off off off1

off off off ,
k k r t

f t r t e k
− −

=    where offr   is the scale parameter and offk   is the shape 

parameter characterizing the number of reaction steps [2]. Then, the mean silent time is off off off .k r =
   

 
To derive the analytical expression of initiation-time distribution, we first compute the Laplace 

transform of the survival function ( )offF t  and the result is ( ) ( ) ( )
off 1

1

off off off

0

.
k

i i

i

F s r r s
−

+

=

= + Substituting this 

expression into Eq. S2, we obtain the Laplace transform of initiation-time distribution ( )inif t : 

( )
( )

( ) ( ) ( )

off

off

off off off

syn off

ini

1

off syn off on off off

1

.

k

k
k k k jj

j

r s r
f s

s s r r s r r s r s r
−−

=

+
=

+ + + + +
                 (S3) 
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Note that the Laplace transform function ( )inif s  can be rewritten as the following rational function 

( )
( )

( )

( )off

off

off

off

syn 1 0syn

ini 1

1 1 0

,

k

k

k

k

r p s p s pr P s
f s

Q s q s q s q
+

+

+ + +
= =

+ + +
                           (S4) 

where ( )off  1,2, ,ip i k=  , and ( )off  1,2, , 1jq j k= +
  
are constant coefficients determined by Eq. S3. 

Assume that ( )Q s
 
has l  real roots and m  pairs of complex roots (i.e., off2 1l m k+ = + ). In principle, 

( )inif s
 
can be decomposed into the summation of real part and complex part 

( )
( )

ini 2
2

1 1

,
l m

j j j

j jj
j j

c d s g
f s

s s  = =

+
= +

+ + +
                            (S5) 

where constants , , , ,j j j j jc d g    and j  
can be determined according to the partial fraction expansion. 

Using the inverse Laplace transform to Eq. S5, we obtain the following initiation-time distribution  

( ) ( ) ( )( )ini

1 1

cos sin ,j j

l m
t t

j j j j j

j j

f t c e d e t t
 

  
− −

= =

= + +                        (S6) 

where ( ) ( ).j j j j j jg d d  = −  Eq. S6 implies that the analytical expression of initiation-time distribution 

can be obtained if its Laplace transform can be written in the forms of partial fractions. 

S1.2 Renewal function 

As is well known, renewal function is important in the queuing theory since many results on statistical 

quantities such as binominal moments can be analytically obtained based on the renewal function (see 

subsection 2.2 for details). If a renewal function is defined as the mean number of renewal events, we 

can derive its analytical expression. In fact, in our case, the renew function ( )R t  takes the form [3] 

( ) ( ) ( ) ( )ini ini
0

,
t

R t F t R t f d  = + −                              (S7) 

where ( )iniF t  is the cumulative function of the initiation-time distribution ( )inif t , i.e., ( ) ( )ini ini
0

.
t

F t f d =   

Applying the Laplace transform to Eq. S7, we have  

( ) ( ) ( )( )ini iniR s f s s sf s= −                                 (S8) 

where ( )R s  is the Laplace transform of the renewal function. Then the renewal function can be obtained 

by computing the inverse of Laplace transform ( ) ( ) ( )( ) 1

ini ini .R t f s s sf s−= −                              
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In addition, substituting the expression of ( )inif s in Eq. (S2) into ( )R s  yields  

( )
( )( )

syn on

2

on off

,
r

R s
s F s




=

+
                                (S9) 

where on on1 r =

 

is the mean ON time. Similarly, the renewal function can be obtained by computing 

the inverse of Laplace transform ( ) ( )( ) 1 2

syn on on off .R t r s F s −= +  

Next, we derive the analytical results for renewal function ( )R t   when the waiting time for gene 

activation follows an Erlang distribution. Substituting the expression ( ) ( ) ( )
off 1

1

off off off

0

k
i i

i

F s r r s
−

+

=

= +
 
into Eq. 

S9, we obtain the Laplace transform of the renewal function ( )R t  as follows 

( )
( )

( ) ( )

off

off

off off

syn off

2 1

off on off off

1

,

k

k
k k jj

j

r s r
R s

s s r r r s r
−−

=

+
=

 
+ + + 

 


                      (S10) 

Note that the Laplace transform ( )R s
 
in Eq. S10 can be given by the following rational function 

( )
( )

( )

( )
( )

off

off

off

off

k

syn k 1 0syn

2 k2

k 1 0

,
r p s p s pr P s

R s
s V s s v s v s v

+ + +
= =

+ + +
                        (S11) 

where ( )off1,2, ,iv i k=   is constant-coefficient determined by Eq. S10, and ( )off1,2, ,ip i k=  has the 

same expression as in Eq. S4. Assuming ( )V s  has 1l  real roots and 1m  pairs of complex roots (i.e., 

1 1 off2l m k+ = ). By using the partial fraction expansion, ( )R s  can be decomposed into the summation of 

real part and complex part 

( )
( )

1 12

2
2

1 1 1

,
l m

j j j j

j
j j jj

j j

a f h s u
R s

ss s  = = =

+
= + +

+ + +
                           (S12) 

where coefficients , , , , , ,j j j j j ja f h u   and j
 
are obtained from the partial fraction expansion. Using the 

inverse Laplace transform to Eq. S12, we obtain the renewal function  

( ) ( ) ( )( )
1 1

1 2

1 1

cos sin ,j j

l m
t t

j j j j j

j j

R t a a t f e h e t t
 

  
− −

= =

= + + + +                  (S13) 

where ( ).j j j j j ju h h   = −   Eq. S13 implies that the analytical renewal function can be obtained if its 

Laplace transform can be written the partial fractions.   
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S2. Derivation of analytical moments 

S2.1 Time-dependent binomial moments  

Here, we consider that the waiting time for gene activation follows an Erlang distribution. Substituting 

Eq. S13 into Eq. 3 in the main text, we obtain the time-dependent first-order binomial moment, i.e., the 

time-dependent protein average ( )protein

1b t : 

( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( )

1

deg deg

1

deg

1

2protein

1

1deg deg

deg deg2
2

1
deg

deg2
2

1
deg

1

cos sin

sin cos

j

j j

j j

l
r t t r tj j

j j

m
j j j j t t r t

j j j j j

j
j j

m
j j j j t t

j j j j

j
j j

B fB a
b t e e e

r r

B h
r e t e t r e

r

B h
r e t e t

r



 

 





  
    

 

  
   

 

− − −

=

− − −

=

− −

=

= − + −
−

−
 + − − − −
 

− +

+
+ − +

− +





 deg .
r t

je
− −

 

    (S14) 

In addition, we can also give the analytical expressions for the time-dependent second-order binomial 

moment ( )protein

2b t  and time-dependent noise ( )2

protein t , is defined as the ratio of the variance over the 

squared mean: ( ) ( ) ( ) ( )( )( ) ( )( )
2 2

2 protein protein protein protein

protein 2 1 1 12 +t b t b t b t b t = −  , but we omit them due to the 

complexity of their expressions. 

S2.2 Steady-state binomial moments  

According to Eq. 4 in the main text, we give analytical expressions of steady-state binomial moments. 

For example, the second-order binomial moment is given by 

( ) ( )( ) ( )

2 22 burst

syn on 2 syn onprotein

2 2
off deg on offdeg on off on deg

22

r B b r
b

rr F r

 

   
= +

++ +
,                 (S15) 

the third-order binomial moment by 

( )( )

( )( )

( )( )

2

2 3 on off deg
syn on syn onprotein burst burstmean 1

3 2 32 2

deg deg deg
on off deg on off deg

1 1

,
3

i

i i

i F ir
r rBr

b b B b
r r r

i F ir i F ir


 

 

=

= =

 
+  

 = + + 
    + + 
 



 
 (S16) 

and the fourth-order binomial moment by 
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( )( )

( )( )

( )( )

( )( )

( )( )

3

3 24 on off deg
2syn on syn onprotein burstmean 1

4 23 3

deg deg deg
on off deg on off deg

1 1

on off deg

syn on 1,3 burst

3

deg on off deg

1,3

4

i

i i

i

i

i F ir
r rBr

b b B
r r r

i F ir i F ir

i F ir
r

b
r i F ir


 

 






=

= =

=

=


+   

= +      
   + +


+

+
+



 





( )

( )( )

2
burst

2 burst

4

on off deg

.
2 2

b
B b

F r

 
  

+ +  
+  

  

 (S17) 

Interestingly, binomial moments and central moments have the following relationships 

( ) ( )( )( )
1

protein protein protein protein

1 1

0 0

, , ! ,
k k i

k i

k j

i j

b M k i j j b b
− −

= =

= − +
               

(S18) 

where ( ) ( ) ( ), , 1 ,
i k

M k i j S k i j
i

 
= − − 

 
 with ( ) ( )

0
, 1

k ik n

i

k
S n k i

i

−

=

 
= −  

 
   being the Stirling number of the 

second kind. 

S3. Derivation of analytical distributions 

Here, we consider two representative protein burst distributions: (1) Constant distribution, that is, 

( )1 1, ( ) 0, 0,2,3,P B P B k k= = = = =    (2) Geometric distribution, that is, ( )
1

( ) 1
kk

P B k B B
+

= = + ，

0,1,2,k = . For both distributions, we derive the analytical expressions of steady-state binomial moments 

and probability distributions. 

S3.1 Constant burst-size distribution 

This case means that binomial moments are 
burst

1 1,b B= = ( )burst 0 2,3, .ib i= =  Substituting them into Eq. 

4 in the main text, we obtain the following expression  

( )
( )

1
syn onprotein

deg deg

1on off deg

1
.

n

n

i

r
b R ir ir

nr



 

−

=

=
+

                       (S19) 

Combining Eq. S19 with the expression of ( )R s in Eq. S11, we further obtain the analytical expression 

for the steady-state binomial moments  

( ) ( )

( )

off

off

1
1 deg

syn deg 1protein

1

deg

1

= ,

k

n
j n

j

n k

j n
j

r
r r

b
n

r





−
−

=

−

=




！

                            (S20) 

where j−   and j− ( )off1,2, ,j k=  are the roots of algebraic equations off

off 1 0 0
k

kp s p s p+ + + =   and 

off

off 1 0 0
k

kv s v s v+ + + =  , respectively, and we have defined symbol ( ) ( ) ( )= 1 1 , 1,2, .
n

n n   − − + =  
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Substituting Eq. S20 into Eq. 7 in the main text, we obtain the steady-state protein distribution of the form 

( )
( ) ( )

( )
( )

off

off off off offoff

1
1 deg

syn deg 1 1 1 1 1 1

1 deg deg 1 deg deg syn deg

1

deg

1

= , , ; , , ;
!

k

m
j m

j

k k k kk

j m
j

r
r r

P m F m r m r m r m r r r
m

r



   



−
−

= − − − − −

−

=

+ + + + −





      (S21) 

where 
off offk kF denotes a generalized hypergeometric function. If we recall the gene-product distribution in 

the case of a multistep process of gene activation [4], Eq. S21 indicates that non-exponential waiting time 

is indeed equivalent to a multistep process. In particular, for the exponential waiting time, i.e., 

( ) off

off off ,
r t

f t r e
−

=  Eq. S21 reduces to 

( )
( ) ( )

( )( )
( )( )

11

off degsyn deg 1 1 1

1 1 off deg off on deg syn deg1

off on deg

= ; ;
!

m

m

m

r rr r
P m F r r m r r r m r r

m r r r

−−

− − −

−
+ + + −

+
,      (S22) 

which is a known result but is here derived in a different manner [5]. 

S3.2 Burst size follows a geometric distribution 

In this case, the binomial moments are burst .
i

ib B=  Substituting them into Eq. 4 in the main text, we 

obtain the following hnt -order protein binomial moment  

( )
( )

1
syn onprotein

deg deg

1on off deg

1+ .

n
n

n

i

r B
b R ir ir

nr



 

−

=

 =
 +

                      (S23) 

Combining Eq. S23 with the expression of ( )R s in Eq. S11, we further obtain the analytical expression 

for the steady-state binomial moments  

( )

( )

off

off

1

1

deg

1protein

1

deg

1

= ,
!

k

n j n
j

n k

j n
j

r
B

b
n

r





+

−

=

−

=




                           (S24) 

where j−  ( )off1,2, , 1j k= + are the roots of ( ) off

off

1

1 1 0 0,
k

kQ s q s q s q
+

+= + + + =  and j  ( )off1,2, ,j k=
 

are the same as in Eq. S20. Substituting Eq. S24 into Eq. 7 in the main text, we further obtain the steady-

state protein distribution  

( )
( )

( )
( )

off

off off off+1 offoff

1

1

deg

1 1 1 1 1

1 1 deg deg 1 deg deg

1

deg

1

= , , ; , , ;
!

k

m j m
j

k k k kk

j m
j

r
B

P m F m r m r m r m r B
m

r



   



+

−

= − − − −

+

−

=

+ + + + −




,     (S25) 
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where 
off+1 offk kF denotes a generalized hypergeometric function. 

In particular, for the exponentially distributed OFF waiting time, i.e., ( ) off

off off ,
r t

f t r e
−

=  the steady-state 

protein distribution are 

( )
( ) ( )

( )

1 1 1 1
1 deg 2 deg 1 deg 2 deg

2 1 11
degdeg

,
,

!

m

m m

m

r r m r m rB
P m F B

m rm r

   



− − − −

−−

 + +
= − 

 +
 

                 (S26) 

where ( ) ( )
2

1,2 syn on off syn on off syn off on off

1
4 , .

2
r r r r r r r r r r = + +  + + − = +  This results has been also derived in 

previous work yet in a different fashion [6]. 

S4. Estimating the bimodality of steady-state distribution 

It is well-known that there is a strongly relation between the modality of a given distribution and the 

skewness (defined as ( )
3 2

3 2/S  =  , where 2  and 
3   are the second and third central moments, 

respectively) and kurtosis (defined as ( )
2

4 2/K  =  , where 4   is the fourth central moment) of the 

distribution [7-9]. In fact, the bimodality of a given distribution can be measured by the relation 2 1K S−   

and it will converge into one when the sample size tends to infinite [8]. Previous studies have 

demonstrated the use of 2K S− as a measure for the modality of a distribution [7]. Here, we define the 

bimodality coefficient ( BC ):  

2

1
BC

K S
=

−
，                                   （S27） 

which is bounded between 0 and 1. Specifically, BC=5 9  is the case of uniform distribution, and BC>5 9

means the bimodality is more clear with BC  close to 1 , whereas BC<5 9
 
is the unimodal distribution. 
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