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Dataset

Originally, 6,282 polymers and 58 solvents were collected. A subset of 3,373 polymers and

51 solvents is shown in Table S1 (with the solvent names and polymer counts), and a similar

subset of 2,909 polymers and 7 solvents is shown in Table S2.

Table S1: Solvents in the training data with their counts of total, soluble, and insoluble
polymer pairs.

Solvent Total Soluble Insoluble

chloroform 2806 2138 668

THF 2375 1872 503

methanol 2187 159 2028

DMF 2152 1803 349
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DMSO 1794 1451 343

nMP 1622 1507 115

DMAc 1522 1371 151

3-methylphenol 1289 1099 190

propan-2-one 1211 459 752

toluene 967 621 346

benzene 933 602 331

oxidane 898 107 791

pyridine 799 572 227

sulfuric acid 787 774 13

ethanol 785 228 557

DCM 734 580 154

ethyl acetate 446 255 191

acetonitrile 404 222 182

1,4-dioxane 371 284 87

formic acid 360 258 102

1,1,1,2-tetrachloroethane 354 285 69

chlorobenzene 342 221 121

tetrachloromethane 329 178 151

hexane 325 33 292

heptane 271 136 135

1,2-dichloroethane 259 219 40

2,2,2-trifluoroacetic acid 254 231 23

butan-1-ol 235 125 110

cyclohexanone 221 162 59

propan-1-ol 221 114 107

propane-1,2,3-triol 216 114 102
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2-methylpropan-2-ol 210 113 97

acetic acid 195 152 43

nitrobenzene 142 80 62

cyclohexane 140 40 100

phenol 140 138 2

chloromethane 132 94 38

trichloro(fluoro)methane 132 94 38

ethoxyethane 124 9 115

butan-2-one 118 65 53

1,4-xylene 105 61 44

phenyl hypochlorite 75 39 36

chlorane 66 63 3

2,2,2-trifluoroethanol 53 46 7

formamide 46 43 3

1,2-dichlorobenzene 39 35 4

N-[bis(dimethylamino)phosphoryl]-N-

methylmethanamine

33 31 2

1,2,3,4,4a,5,6,7,8,8a-decahydronaphthalene 28 15 13

oxolan-2-one 26 22 4

carbon disulfide 25 14 11

1,2,3,4-tetrahydronaphthalene 24 16 8

Table S2: Solvents in the held out data with their counts of total, soluble, and insoluble
polymer pairs.

solvent Total Soluble Insoluble

2,2-dichloroacetic acid 135 135 0
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methanesulfonic acid 61 61 0

nitric acid 32 32 0

4-chlorophenol 32 32 0

1,2,3,4,5,6-hexafluorobenzene 15 15 0

1,1,2-trichloro-1,2,2-trifluoroethane 12 12 0

1,2,4-trichlorobenzene 12 12 0

This subset was chosen based on the number of soluble and insoluble combinations. If a

solvent did not have an instance of being soluble and an instance of being insoluble it was

removed. The same was done for the polymers. Figure S1 shows a graphic representation of

the polymers. Each polymer has a certain number of combinations with various solvents (the

colorbar) and a certain percentage of those combinations are soluble pairs (y-axis). Those

encapsulated by a red square are the ones removed from the training data set.

Figure S1: Proportion of polymer-solvent combinations that are soluble pairings per polymer.
The color of the polymer data point represents the number of solvents the polymer is paired
with. Those polymers encapsulated by the red square are the ones removed from the training
data set.

The reason these polymers and solvents were removed was due to worry that the model

would learn the specific polymer’s or solvent’s class as opposed to the interaction between

the polymers and solvents. We believed this would skew the metrics used to assess model
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performance, i.e., the model would always predict the correct class for these polymers or

solvents, artificially inflating the recall or f1-score. If a split by solvent was used, the polymers

might inflate the score. If a split by polymer was used, the solvents might inflate the score.

Thus, both were removed.

The model might also fail to correctly predict the polymer’s or solvent’s solubility with

a new combination. To test this, we trained a random forest machine learning model on the

entire data set of 6,282 polymers and 58 solvents. We took 2,909 polymers that were only

one class and used the model to predict their solubility in all 58 solvents. The color of each

polymer corresponded to the average confidence of the random forest model in its prediction

(which is the number of trees that predict the polymer is either soluble or insoluble over the

total number of trees). These results are plotted in Figure S2.

Figure S2: Proportions of polymers predicted as soluble with 58 solvents. The color of each
data point represents the average model confidence in the prediction for all solvents. The
model was trained on the full data set of 6,282 polymers and 58 solvents. The 2,909 polymers
that contained only one class are plotted on the x-axis.

For 1,155 of the polymers, the model predicted it was soluble in at least 46 of the 58 of

solvents with a average confidence 0.8. This seems unlikely though, as a visual screening of

solvent functional groups indicated only 43 of the solvents are polar, and we would expect

solubility to be limited based on the ”like-dissolves-like” rule of thumb. The fact some
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polymers are expected to dissolve in all solvents is especially suspect. This was why we

decided to remove the solvents and polymers with only one class.

Class Imbalance

The f1 score is highly affected by class imbalance because precision is affected by class

imbalance. To show this, we generated 10,000 data points labelled as either class 0 or class

1. We generated a fake prediction for the data points that was accurate for 75% of the data

for each class. We did this 98 times, varying the proportion of class 0 data from 1% to 99%

of data. The resutls are plotted in Figure S3.
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Figure S3: 10,000 data points were generated with varying proportion of class 0 and 1. 75%
of the data was classified correctly for each class, while 25% was misclassified. The effect
of class imbalance on f1 score (top), recall (middle), and precision (bottom) is plotted. The
y-axis is the metric the imbalance is being simulated for, the x-axis is the proportion of
simulated data that is class 0.
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As we can see, recall is not biased by the proportion of class data, but precision and

f1 score are. Since the precision is the true positive over the sum of true Positive and

false Positive, when there is more negative data there is higher likelihood for false positives,

skewing the results. Since recall only accounts for the correct and incorrect classifications of

the positive data, it is not affected by the proportion of negative data. Based on our analysis

of Figure S3, the bias does not affect f1 score too dramatically until one class makes up over

65 to 70% of data.

As stated in the manuscript, this is the case for the test data of two splits in the solvent

splitting method (70 and 75% of the test data is soluble vs 41, 50 and 50% for the other

three splits). However, an analysis of recall, seen in Figure S4, reveals there is still a large

variation in the recall between splits when using a group split by solvent.

Figure S4: Average recall of SolNet infrastructure models for soluble and insoluble classi-
fication using either a one-hot encoding for solvents or a structural fingerprint. Five-fold
cross validation splits were chosen using either a random split stratified by solubility (left),
group split by polymer (middle), or group split by solvent (right). Error bars represent the
standard deviation for the F1 score of those splits.

Tanimoto Similarity

Tanimoto(x, y) =

∑
xiyi∑

x2
i +

∑
y2i −

∑
xiyi

(1)

where x and y are either both polymers or both solvents and i is their ith fingerprint. A

Tanimoto score of 0 means x and y are completely different while a value of 1 indicates they

are the same.
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Learning Curve

To assess the random forest model’s performance on completely unseen solvents and poly-

mers, we did a learning curve analysis. First, we used the leave-one-out method to generate

51 splits of the data where one solvent and all of its associated polymers were held out as a

test set. To start each learning curve, we trained a random forest model with one solvent and

all of its polymers and tested the model on the held out solvent-polymer pairings. Then, we

added another solvent and its polymers and ran the analysis again. This was done 50 times

until each solvent and their polymers were added to the training model. Solvents were added

based on the number of polymer pairings they had, so the solvents with the fewest pairings

were added first. This was done 51 times so each solvent and its polymers were the test

pairings at least once. For instance, chloroform and all 2,806 polymers would be removed

for the test set, and then a model would be trained with 1,2,3,4-tetrahydronaphthalene and

all of its polymers (excluding any that were in the chloroform’s set) and tested on chloro-

form’s set. After, a new model would be trained with both 1,2,3,4-tetrahydronaphthalene

and carbon disulfide with all of their polymers and tested on the chloroform set. This would

continue until all 50 solvents were added to the training data (in order of smallest to largest

data set size), then it would be repeated with a new test solvent.

The results of this analysis are shown in Figure S5. Recall is used as the metric due

to the large test set imbalance in classes for some solvents. Figure S5a shows the average

± standard deviation recall for predictions on all solvents (when used as the test set) as a

function of the number of solvents in the training data set. Figure S5b shows the recall when

methanol is the test solvent (with 1,915 test polymers) as a function of data set size. It also

plots the proportion of test and training data that is soluble as a function of data set size.

Figure S5c plots the same information for when chlorobenzene is the test solvent (with 226

test polymers). The discrepancy in data set size between S5b and S5c is because methanol

has more test polymers. All polymers are removed from the training data, which results in a

variable amount of data loss depending on how many solvents each polymer has been paired
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with and how many polymers are in the test set.

Figure S5: Random forest classifier learning curves for test solvents with all solvents and
polymers held out of the training data. In (a), the average ± standard deviation recall
for soluble and insoluble predictions are shown for all 51 test solvents as a function of the
number of solvents in the training data. In (b) and (c), the soluble and insoluble recall for
predictions on methanol (b) and chlorobenzene (c) is plotted as a function of training data
set size for the prediction models. The proportion of training and test that is soluble is also
plotted as a function of data set size, with each point corresponding to when another solvent
was added.

In Figure S5a, there was a high recall for soluble combinations initially because the

training data was overwhelmingly soluble. As more solvents were added, more insoluble data

was in the model training data, and insoluble recall improved while soluble recall degraded

as the model became less over-fit. On average, the model achieved a predictive recall of

0.67 ± 0.33 for soluble pairings and 0.59 ± 0.32 for insoluble pairings after all 50 training
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solvents were added. This large variability can be explained by Figure S5b and Figure S5c

in conjunction with Figure S6a and Figure S6b.

In Figure S6, the number of test polymer pairings with methanol (Figure S6a) or chloroben-

zene (Figure S6b) that were either predicted as soluble correctly (top left), predicted as

soluble incorrectly (top right), predicted as insoluble correctly (bottom left), or predicted as

insoluble incorrectly (bottom right), were plotted as a function of the proportion of similar

training polymers paired with water (Figure S6a) or benzene (Figure S6b) that were of the

same true class as the test pairing. To compare polymer similarity, the Tanimoto similarity

score (a mathematical measure of fingerprint similarity) was used (Equation S1). Training

polymers were considered similar to test polymers if this value was greater than 0.75. If no

similar training polymers existed, the test polymer count was plotted as blue at the 0 to 0.1

position on the x-axis. Else, it was plotted as orange at the appropriate x-axis position.

For some test solvents, as additional solvents were added to the training data, the per-

formance for one class improved, but the performance of the other class got worse. This

occurred for 20 test solvents, including methanol (shown as an example in Figure S5b). Ini-

tially, soluble recall was very high due to the soluble heavy training data. As more data

was added, insoluble recall improved, while soluble recall degraded. Dramatic shifts in per-

formance were due to the addition of similar training solvents that had training polymers

similar to the test polymers. In methanol’s case, the solvent with the most dramatic effect

(dropping soluble recall close to zero and raising insoluble recall to one) was water. Re-

viewing Figure 1 of the manuscript, we see that, water was relatively close to the alcohols

(which include methanol) in our 2d projection, indicating the solvents are fairly similar.

Reviewing Figure S6a, we see that a significant number of the training polymers paired with

water were similar to test polymers paired with methanol, however, for insoluble pairings,

they were the same class as the similar test pairing, whereas for soluble pairings, they were

the opposite. This could explain why the insoluble recall jumped for methanol whereas the

soluble recall dropped. The insoluble methanol-polymer pairings could be learned from the
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Figure S6: Number of test polymer pairings with methanol (a) or chlorobenzene (b) that
were either predicted as soluble correctly (top left), soluble incorrectly (top right), insoluble
correctly (bottom left), or insoluble incorrectly (bottom right), as a function of the proportion
of similar training polymers paired with water (a) or benzene (b) that were the same true
class as the similar test polymer-solvent pairing. Training polymers were similar to the test
polymers if their Tanimoto similarity score was greater than 0.75. If a test polymer had no
similar training polymers paired with water (a) or benzene (b) they were plotted in blue.
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insoluble water-polymer pairings. In contrast, the model could not determine the soluble

methanol-polymer pairs because the similar polymers paired with water were insoluble. This

might indicate additional similar polymers that are soluble in water need to be added to the

data set, or it could indicate the classification is mislabeled for these specific test polymers.

Water didn’t necessarily cause this issue for the other 19 test solvents where this occurred

though, it may have been a different solvent. For instance, for Dimethylformamide it was

Dimethylacetamide that lowered insoluble recall and raised soluble recall.

For chlorobenzene (Figure S5c), and 15 other solvents that achieve high recall for both

soluble and insoluble pairings, something different occurs. After certain solvents are added,

the insoluble recall improves, but the soluble recall also remains high. For chlorobenzene,

the solvent that causes the most dramatic increase in insoluble recall was benzene. Looking

at Figure 1, we see all of the aromatic compounds are extremely close to one another in the

2d projection, implying benzene and chlorobenzene are chemically similar solvents. Looking

at Figure S6b, we find that benzene had many polymers similar to chlorobenzene’s polymers,

and these similar polymers have the same solubility when paired with benzene as the test

polymers had when paired with chlorobenzene. As such, the model was able to learn the

soluble and insoluble pairings of the test polymer-solvent combinations.

For the other solvents, both soluble and insoluble recall remained relatively constant,

regardless of the number of solvents added. This could be because the new solvent-polymer

combinations added are not similar to the test polymer-solvent combinations.
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