Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting Information

MoSSe/Hf(Zr)S₂ heterostructures used for efficient Z-scheme photocatalytic water-splitting

Guangzhao Wang,^{*a,b,c} Junli Chang,^d San-Dong Guo,^e Weikang Wu,^f Wenyi Tang,^a Hao Guo,^g Suihu Dang,^a Rui Wang,^b and Yee Sin Ang^h

^a Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China.

^b Institute for Structure and Function & Department of Physics & Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China.

^c Chongqing Jiulongyuan High-tech Industry Group Co., Ltd., Chongqing 400080, China.

^d School of Physical Science and Technology, Southwest University, Chongqing 400715, China.

^e School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.

^fDivision of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.

^g Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore.

^h Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372,

Singapore.

* Corresponding author. E-mail address: <u>wangyan6930@126.com/wangyan6930@yznu.edu.cn</u>

	$\Delta G_{\rm H1}({\rm eV})$	$\Delta G_{\rm H2}({\rm eV})$
pH = 0, U = 0 eV	1.87	-1.87
pH = 7, U = 0 eV	2.29	-1.46
pH = 0, U = 0.95 eV	0.92	-2.82

1.34

-2.41

pH = 7, U = 0.95 eV

Table S1 Free energy changes for all the reaction steps in the HER process of HfS₂/SMoSe HS under different conditions.

Table S2 Free energy changes for all the reaction steps in the HER process of HfS₂/SeMoS HS under different conditions.

	$\Delta G_{\rm H1}({\rm eV})$	$\Delta G_{\rm H2}({\rm eV})$
pH = 0, U = 0 eV	1.58	-1.58
pH = 7, U = 0 eV	2.00	-1.17
pH = 0, U = 0.28 eV	1.30	-1.86
pH = 7, U = 0.28 eV	1.72	-1.45

Table S3 Free energy changes for all the reaction steps in the HER process of $ZrS_2/SMoSe$ HS under different conditions.

	$\Delta G_{\rm H1}({\rm eV})$	$\Delta G_{\rm H2}({\rm eV})$
pH = 0, U = 0 eV	1.87	-1.87
pH = 7, U = 0 eV	2.28	-1.46
pH = 0, U = 1.05 eV	0.82	-2.92
pH = 7, U = 1.05 eV	1.23	-2.51

Table S4 Free energy changes for all the reaction steps in the HER process of ZrS_2 /SeMoS HS under different conditions.

	$\Delta G_{\rm H1}({\rm eV})$	$\Delta G_{\rm H2}({\rm eV})$
pH = 0, U = 0 eV	1.55	-1.55
pH = 7, U = 0 eV	1.97	-1.14
pH = 0, U = 0.25 eV	1.30	-1.80
pH = 7, U = 0.25 eV	1.72	-1.39

Table S5 The free energy changes for all the reaction steps in the OER process of $HfS_2/SMoSe$ HS under different conditions.

	$\Delta G_1 ({ m eV})$	$\Delta G_2 (\mathrm{eV})$	$\Delta G_3 ({ m eV})$	$\Delta G_4 (\mathrm{eV})$
pH = 0, U = 0 eV	2.29	0.58	2.64	-0.59
pH = 7, U = 0 eV	1.88	0.17	2.23	-1.01
pH = 0, U = 2.80 eV	-0.50	-2.22	-0.16	-3.40
pH = 7, U = 2.80 eV	-0.92	-2.63	-0.57	-3.81

Table S6 The free energy changes for all the reaction steps in the OER process of HfS₂/SeMoS HS under different conditions.

	$\Delta G_1 ({ m eV})$	$\Delta G_2 (\mathrm{eV})$	$\Delta G_3 ({ m eV})$	$\Delta G_4 (\mathrm{eV})$
pH = 0, U = 0 eV	2.28	0.62	2.62	-0.60
pH = 7, U = 0 eV	1.86	0.21	2.21	-1.01
pH = 0, U = 2.71 eV	-0.43	-2.09	-0.09	-3.31
pH = 7, U = 2.71 eV	-0.85	-2.50	-0.50	-3.72

Table S7 The free energy changes for all the reaction steps in the OER process of $ZrS_2/SMoSe$ HS under different conditions.

	$\Delta G_1 ({ m eV})$	$\Delta G_2 (\mathrm{eV})$	$\Delta G_3 ({ m eV})$	$\Delta G_4 ({ m eV})$
pH = 0, U = 0 eV	2.13	0.61	2.65	-0.47
pH = 7, U = 0 eV	1.72	0.19	2.24	-0.88
pH = 0, U = 2.67 eV	-0.54	-2.07	-0.01	-3.14
pH = 7, U = 2.67 eV	-0.95	-2.48	-0.43	-3.55

Table S8 The free energy changes for all the reaction steps in the OER process of $ZrS_2/SeMoS$ HS under different conditions.

	$\Delta G_1 ({ m eV})$	$\Delta G_2 (\mathrm{eV})$	$\Delta G_3 ({ m eV})$	$\Delta G_4 (\mathrm{eV})$
pH = 0, U = 0 eV	2.12	0.64	2.65	-0.49
pH = 7, U = 0 eV	1.71	0.23	2.23	-0.90
pH = 0, U = 2.73 eV	-0.61	-2.09	-0.08	-3.22
pH = 7, U = 2.73 eV	-1.02	-2.50	-0.50	-3.63

Table S9 Free energy changes for all the reaction steps in the HER process of Se defected $HfS_2/SMoSe$ HS under different conditions.

	$\Delta G_{\rm H1}({\rm eV})$	$\Delta G_{\rm H2}({\rm eV})$
pH = 0, U = 0 eV	0.01	-0.01
pH = 7, U = 0 eV	0.43	0.40
pH = 0, U = 0.95 eV	-0.94	-0.96
pH = 7, U = 0.95 eV	-0.52	-0.55

Table S10 Free energy changes for all the reaction steps in the HER process of S defected HfS₂/SeMoS HS under different conditions.

	$\Delta G_{\rm H1}({ m eV})$	$\Delta G_{\rm H2}({\rm eV})$
pH = 0, U = 0 eV	-0.30	0.30
pH = 7, U = 0 eV	0.11	0.72
pH = 0, U = 0.28 eV	-0.58	0.02
pH = 7, U = 0.28 eV	-0.17	0.44

Table S11 Free energy changes for all the reaction steps in the HER process of Se defectedZrS2/SMoSe HS under different conditions.

	$\Delta G_{\rm H1}({ m eV})$	$\Delta G_{\rm H2}({\rm eV})$
pH = 0, U = 0 eV	-0.01	0.01
pH = 7, U = 0 eV	0.40	0.43
pH = 0, U = 1.05 eV	-1.06	-1.04
pH = 7, U = 1.05 eV	-0.65	-0.62

Table S12 Free energy changes for all the reaction steps in the HER process of S defectedZrS2/SeMoS HS under different conditions.

	$\Delta G_{\rm H1} ({\rm eV})$	$\Delta G_{\rm H2}({\rm eV})$
pH = 0, U = 0 eV	-0.40	0.40
pH = 7, U = 0 eV	0.01	0.82
pH = 0, U = 1.05 eV	-0.65	0.15
pH = 7, U = 1.05 eV	-0.24	0.57

system	$T \times S$ (eV)	ZPE (eV)
HfS ₂ /SMoSe@H	0.02	0.15
HfS ₂ /SMoSe@O	0.08	0.07
HfS ₂ /SMoSe@OH	0.12	0.35
HfS ₂ /SMoSe@OOH	0.18	0.42
HfS ₂ /SeMoS@H	0.02	0.18
HfS ₂ /SeMoS@O	0.08	0.06
HfS ₂ /SeMoS@OH	0.10	0.34
HfS ₂ /SeMoS@OOH	0.20	0.44
ZrS ₂ /SMoSe@H	0.02	0.15
ZrS ₂ /SMoSe@O	0.09	0.06
ZrS ₂ /SMoSe@OH	0.09	0.34
ZrS ₂ /SMoSe@OOH	0.16	0.43
ZrS ₂ /SeMoS@H	0.02	0.19
ZrS ₂ /SeMoS@O	0.09	0.06
ZrS ₂ /SeMoS@OH	0.12	0.35
ZrS ₂ /SeMoS@OOH	0.11	0.42
Defective HfS ₂ /SMoSe@H	0.01	0.16
Defective HfS ₂ /SeMoS@H	0.01	0.16
Defective ZrS ₂ /SMoSe@H	0.01	0.16
Defective ZrS ₂ /SeMoS@H	0.01	0.16

Table S13 Values used for the entropy and zero-point energy (ZPE) corrections in determining the free energy of reactants, products, and intermediate species adsorbed on catalysts.

Fig. S1 Top and side views of the unit cells of (a) MoSSe, (b) HfS₂, (c) HfSe₂, (d) ZrS₂, and (e) ZrSe₂ SLs.

Fig. S2 Band structures of (a) MoSSe, (b) HfS₂, (c) HfSe₂, (d) ZrS₂, and (e) ZrSe₂ SLs.

Fig. S3 Plane-averaged electrostatic potentials of (a) MoSSe, (b) HfS₂, (c) HfSe₂, (d) ZrS₂, and (e) ZrSe₂ SLs.

Fig. S4 The band-decomposed charge densities of the CBM and VBM for (a) HfS₂/SMoSe, (b) HfS₂/SeMoS, (c) HfSe₂/SMoSe, (d) HfSe₂/SeMoS, (e) ZrS₂/SMoSe, (f) ZrS₂/SeMoS, (g) ZrSe₂/SMoSe, and (h) ZrSe₂/SeMoS HSs. The blue and red regions represent the CBM and VBM, respectively.

Fig. S5 Plane-averaged electrostatic potentials of (a) HfS₂/SMoSe, (b) HfS₂/SeMoS, (c) HfSe₂/SMoSe, (d) HfSe₂/SeMoS, (e) ZrS₂/SMoSe, (f) ZrS₂/SeMoS, (g) ZrSe₂/SMoSe, and (h) ZrSe₂/SeMoS HSs.

Fig. S6 The optical curves of MoSSe, HfS2, HfSe2, ZrS2, and ZrSe2 SLs.

Fig. S7 Top and side views of optimized geometries of (a) HfS₂/SMoSe@H, (b) HfS₂/SeMoS@H, (c) ZrS₂/SMoSe@H, and (d) ZrS₂/SeMoS@H.

Fig. S8 Top and side views of optimized geometries of (a) HfS₂/SMoSe@H, (b) HfS₂/SeMoS@H, (c) ZrS₂/SMoSe@H, and (d) ZrS₂/SeMoS@H with one Se (or S) atom vacancy.

Fig. S9 Top and side views of optimized geometries of (a) HfS₂/SMoSe@O, (b) HfS₂/SMoSe@OH, and (c) HfS₂/SMoSe@OOH.

Fig. S10 Top and side views of optimized geometries of (a) HfS₂/SeMoS@O, (b) HfS₂/SeMoS@OH, and (c) HfS₂/SeMoS@OOH.

Fig. S11 Top and side views of optimized geometries of (a) ZrS₂/SMoSe@O, (b) ZrS₂/SMoSe@OH, and (c) ZrS₂/SMoSe@OOH.

Fig. S12 Top and side views of optimized geometries of (a) ZrS₂/SeMoS@O, (b) ZrS₂/SeMoS@OH, and (c) ZrS₂/SeMoS@OOH.