Quantum versus Classical Unimolecular Fragmentation Rate Constants and Activation Energies at Finite Temperature from Direct Dynamics Simulations

Federica Angiolari,[†] Simon Huppert,[‡] and Riccardo Spezia^{*,†}

†Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, 4 Place Jussieu, 75005 Paris (France).

‡Sorbonne Université, Institut de Nanosciences de Paris, UMR 7588 CNRS, 4 Place Jussieu, 75005 Paris (France)

E-mail: riccardo.spezia@sorbonne-universite.fr

S1 Algorithm

Here we report the details of the algorithm used to propagate RPMD trajectories, as discussed by Ceriotti and co-workers in their original work.¹

$$p_i^j \leftarrow p_i^j - \Delta t \frac{\partial V(q_1^j .. q_N^j)}{\partial q_i^j} \tag{1}$$

$$\widetilde{p}_i^k = \sum_{j=1}^P p_i^j C_{jk} \quad \widetilde{q}_i^k = \sum_{j=1}^P q_i^j C_{jk} \tag{2}$$

$$\begin{bmatrix} \widetilde{p}_i^k \\ \widetilde{q}_i^k \end{bmatrix} \leftarrow \begin{bmatrix} \cos \omega_k \frac{\Delta t}{2} & -m_i \omega_k \sin \omega_k \frac{\Delta t}{2} \\ [\frac{1}{m_i \omega_k}] \sin \omega_k \frac{\Delta t}{2} & \cos \omega_k \frac{\Delta t}{2} \end{bmatrix} \begin{bmatrix} \widetilde{p}_i^k \\ \widetilde{q}_i^k \end{bmatrix}$$
(3)

$$\widetilde{p}_i^k \leftarrow c_1^k \widetilde{p}_i^k + \sqrt{\frac{m_i}{\beta_P}} c_2^k \eta_i^k \tag{4}$$

$$\begin{bmatrix} \widetilde{p}_i^k \\ \widetilde{q}_i^k \end{bmatrix} \leftarrow \begin{bmatrix} \cos\omega_k \frac{\Delta t}{2} & -m_i\omega_k \sin\omega_k \frac{\Delta t}{2} \\ \begin{bmatrix} \frac{1}{m_i\omega_k} \end{bmatrix} \sin\omega_k \frac{\Delta t}{2} & \cos\omega_k \frac{\Delta t}{2} \end{bmatrix} \begin{bmatrix} \widetilde{p}_i^k \\ \widetilde{q}_i^k \end{bmatrix}$$
(5)

$$p_{i}^{j} = \sum_{k=0}^{P-1} C_{jk} \tilde{p}_{i}^{k} \quad q_{i}^{j} = \sum_{k=0}^{P-1} C_{jk} \tilde{q}_{i}^{k}$$
(6)

Where η is a random gaussian number and:

$$c_1^k = e^{-\Delta t \gamma^k} \tag{7}$$

$$c_2^k = \sqrt{1 - [c_1^k]^2} \tag{8}$$

S2 Temperature Correlation Function

Figure S1: Temperature autocorrelation function obtained from LMD simulations at 3000 K with potential C for two different values of γ : 0.01 fs⁻¹ in black and 0.001 fs⁻¹ in blue.

S3 Rate constants

S3.1 1-D Morse model

Table S1: Lifetimes in ps for the 1D-Morse as a function of temperature (in K).

Method	700	800	900	1000	1100	1200
Classical Sum-of-States	33.07	13.76	7.03	4.15	2.72	1.93
Quantum Sum-of-States	23.78	5.75	3.54	2.39	1.74	10.67
LMD ($\gamma = 0.01$)	48 ± 1	$21.9 {\pm} 0.6$	$11.8 {\pm} 0.3$	$7.8 {\pm} 0.2$	$5.0 {\pm} 0.1$	$3.63 {\pm} 0.08$
RPMD ($\gamma = 0.01$)	$34.1 {\pm} 0.8$	$15.8 {\pm} 0.4$	$9.2 {\pm} 0.2$	$6.3 {\pm} 0.2$	4.3 ± 0.1	$3.21 {\pm} 0.09$
QTB ($\gamma = 0.01$)	$1.32 {\pm} 0.06$	$1.22 {\pm} 0.05$	$1.18 {\pm} 0.06$	$1.08 {\pm} 0.05$	$1.03 {\pm} 0.05$	$0.85 {\pm} 0.03$
LMD ($\gamma = 0.045$)	48 ± 1	$20.5 {\pm} 0.5$	$10.3 {\pm} 0.3$	$5.9 {\pm} 0.1$	$3.88 {\pm} 0.09$	$2.64 {\pm} 0.07$
RPMD ($\gamma = 0.045$)	$34.3 {\pm} 0.8$	15.5 ± 0.4	$8.3 {\pm} 0.2$	5.1 ± 0.1	$3.41 {\pm} 0.08$	$2.41 {\pm} 0.06$
QTB ($\gamma = 0.045$)	$1.18 {\pm} 0.05$	$1.01 {\pm} 0.05$	$0.90 {\pm} 0.04$	$0.85 {\pm} 0.04$	$0.75 {\pm} 0.03$	$0.69 {\pm} 0.03$
LMD ($\gamma = 0.3$)	149 ± 4	62 ± 2	$32.0 {\pm} 0.9$	$17.9{\pm}0.4$	$10.9{\pm}0.2$	$8.1 {\pm} 0.2$
RPMD ($\gamma = 0.3$)	-	48 ± 1	$26.6{\pm}0.7$	$15.3 {\pm} 0.4$	$9.9 {\pm} 0.2$	$7.0 {\pm} 0.2$
QTB ($\gamma = 0.3$)	$20{\pm}1$	12.5 ± 0.8	$9.3 {\pm} 0.5$	$6.9 {\pm} 0.4$	4.7 ± 0.2	$3.6 {\pm} 0.2$

Table S2: Rate constants in $\rm ps^{-1}$ for the 1D-Morse potential as a function of temperature (in K).

Method	700	800	900	1000	1100	1200
Classical SoS	0.03	0.07	0.14	0.24	0.37	0.52
Quantum SoS	0.04	0.17	0.28	0.42	0.57	0.09
LMD ($\gamma = 0.01$)	0.0207	0.0456	0.0847	0.128	0.199	0.275
RPMD ($\gamma = 0.01$)	0.0293	0.0633	0.109	0.158	0.234	0.311
QTB ($\gamma = 0.01$)	0.756	0.819	0.849	0.924	0.965	1.17
LMD ($\gamma = 0.045$)	0.0207	0.0488	0.0968	0.168	0.258	0.379
RPMD ($\gamma = 0.045$)	0.0292	0.0644	0.121	0.1958	0.293	0.415
QTB ($\gamma = 0.045$)	0.845	0.989	1.109	1.18	1.336	1.441
LMD ($\gamma = 0.3$)	0.00669	0.0161	0.0312	0.0559	0.0914	0.123
RPMD ($\gamma = 0.3$)	-	0.0209	0.0376	0.06538	0.100	0.143
QTB ($\gamma = 0.3$)	0.049	0.0796	0.108	0.143	0.2099	0.280

Figure S2: Quantum and classical rate constants as a function of temperature for 1-D Morse. In full lines we report values obtained from sum-of-state approach (both classical and quantum), while results from simulations (with $\gamma = 0.045 \text{ fs}^{-1}$) are reported as dots: LMD (black), RPMD (red) and QTB (green).

Figure S3: Quantum and classical rate constants as a function of temperature for 1-D Morse. In full lines we report values obtained from sum-of-state approach (both classical and quantum), while results from simulations (with $\gamma = 0.3 \text{ fs}^{-1}$) are reported as dots: LMD (black), RPMD (red) and QTB (green).

S3.2 Molecular model

Table S3: Lifetimes in ps for the potential A at different temperatures (in K)

Temperature	LMD	RPMD	QTB
3000K	844 ± 20	771 ± 18	278 ± 12
$3500 \mathrm{K}$	93 ± 2	83 ± 3	46 ± 2
4000K	18.2 ± 0.4	17.2 ± 0.5	$12.6{\pm}0.6$
$4500 \mathrm{K}$	5.7 ± 0.1	$5.6 {\pm} 0.2$	$4.3 {\pm} 0.2$
$5000 \mathrm{K}$	$2.49 {\pm} 0.07$	$2.38 {\pm} 0.07$	2.1 ± 0.1

Table S4: Rate constants in ps^{-1} for the potential A as a function of temperature (in K)

Temperature	LMD	RPMD	QTB
3000K	0.00118	0.00129	0.00359
$3500 \mathrm{K}$	0.0107	0.0120	0.0215
4000K	0.0549	0.0581	0.0792
$4500 \mathrm{K}$	0.175	0.178	0.233
$5000 \mathrm{K}$	0.402	0.420	0.471

Table S5: Lifetimes in ps for the potential B at different temperatures (in K)

Temperature	LMD	RPMD	QTB
1350K	3460 ± 176	2019 ± 94	64 ± 3
$1500 \mathrm{K}$	646 ± 41	392 ± 21	-
$1700 \mathrm{K}$	116 ± 6	79 ± 4	$13.9 {\pm} 0.7$
$2000 \mathrm{K}$	$16.7 {\pm} 0.8$	$14.4 {\pm} 0.7$	$5.9 {\pm} 0.3$
$2500 \mathrm{K}$	2.5 ± 0.1	$2.1{\pm}0.1$	$0.89 {\pm} 0.04$

Table S6: Rate constants in ps^{-1} for the potential B as a function of temperature.

Temperature	LMD	RPMD	QTB
1350 K	0.000289	0.000495	0.0157
$1500 {\rm K}$	0.00155	0.00255	-
$1700 {\rm K}$	0.00859	0.0127	0.0721
2000 K	0.0600	0.0696	0.171
$2500 \mathrm{K}$	0.397	0.472	0.748

Table S7: Lifetime in ps for the potential C at different temperatures (in K)

Temperature	LMD	RPMD	QTB
800K	7983 ± 554	2267 ± 116	8.9 ± 0.4
$1000 \mathrm{K}$	287 ± 15	116 ± 6	$4.7 {\pm} 0.2$
$1200 \mathrm{K}$	30 ± 1	$17.7 {\pm} 0.9$	$2.7 {\pm} 0.1$
$1500 \mathrm{K}$	$3.7 {\pm} 0.2$	$2.8 {\pm} 0.1$	$1.01{\pm}0.05$
$1800 \mathrm{K}$	$1.14 {\pm} 0.06$	$0.83 {\pm} 0.04$	$0.56 {\pm} 0.02$
$2000 \mathrm{K}$	$0.63 {\pm} 0.03$	$0.53 {\pm} 0.03$	-

Table S8: Rate constants in ps^{-1} for the potential C at different temperatures (in K)

Temperature	LMD	RPMD	QTB
800K	0.000125	0.000441	0.112
$1000 \mathrm{K}$	0.00348	0.0086	0.212
$1200 \mathrm{K}$	0.0336	0.0571	0.370
$1500 \mathrm{K}$	0.271	0.351	0.986
$1800 \mathrm{K}$	0.875	1.197	1.780
$2000 \mathrm{K}$	1.595	1.901	-

Figure S4: Rate constants for CH_4 fragmentation as obtained from RPMD, QTB and LMD simulations compared with experimental data and fitted functions as reported by Cobos and Troe.^{2,3}

References

- Ceriotti, M.; Parrinello, M.; Markland, T. E.; Manolopoulos, D. E. Efficient stochastic thermostatting of path integral molecular dynamics. J. Chem. Phys. 2010, 133, 124104.
- (2) Cobos, C. J.; Troe, J. The Dissociation-Recombination System CH4 + M → CH3 + H
 + M: Reevaluated Experiments from 300 to 3000 K. Z. Phys. Chem. (N. F.) 1990, 167, 129–149.
- (3) Cobos, C. J.; Troe, J. The Dissociation-Recombination System CH4+ M → CH3 + H
 + M: II. Evaluation of Experiments up to 5000 K and Temperature Dependence of ¡E¿.
 Z. Phys. Chem. (N. F.) 1992, 176, 161–171.