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Supplementary Information

Experimental Pressure Scans and Mass Spectra

Figure S1: Evolution of the hydrogen decoration of the sodium monomer for five different
pressures. It can be seen that ”magic numbers” are pressure independent. Especially 6 and
8 hydrogen molecules appear strongly unaffected.

Figure S2: Example of mass spectrum of H2 decorated positively charged sodium. Fig.(2)
in the main text, is a zoom of this spectrum up to ≈ mass 50 (m/z)
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Figure S3: Experimental results for the reversed (H2 doping before sodium pick up with
subsequent collision with helium in the evaporation chamber), the graph shows the presence
of magic number (mainly 6,8,10) similar to the results discussed in the main manuscript for
the regular pick up sequence.

Potential Energy Surfaces

The Na+(H2)n Case

The total interaction potential for Na+(H2)n is assumed to be a sum of two-body (2B) and

three-body (3B) interactions:
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For the [H
(i)
2 −Na+] (2B) term, and considering each H2 molecule as a rigid rotor (RigRot),

the potential is represented analytically by a non-covalent contribution (VNC), described

using the atom-bond model1 and an Improved Lennard Jones (ILJ) formulation, plus an

electrostatic (Velec) contribution. More details on the determination and expression of both

contributions are given in Ref.2

As for the [H
(i)
2 −H

(j)
2 ] (2B) term, it is also expressed as a sum of non-covalent plus

electrostatic contributions (following the procedure indicated in Ref.3) being each one, within

the RigRot approximation, depending only on Jacobi coordinates: the modulus of the vector

r⃗ij between the center of mass of the two diatomic molecules, and the angles θa, θb between
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the previous vector and H2 internuclear distances, plus ϕab, the torsion angle.

Table S1: Optimized parameters for the (H2)n-Na+ PES, within the rigid rotor
and the pseudo-atom approximations (see Ref.(3) for a more complete account

on parameters and procedures for the pseudo-atom approach). Distances r⊥e , r
∥
e ,

r̄e, and the internuclear H −H distance ρ are in Å, while well depths ε⊥, ε∥ and
ε̄ are in meV. Common for the two approximations are m and β (dimensionless)
and α, the H2 average polarizability (from Ref.4times 1.05), in Å3. H2 partial
charges are in units of the proton charge; qH is located on top of the H nuclei
and qCM at the bond center.

Rigid rotor Pseudo-atom

Dimer m β r⊥e r
∥
e ε⊥ ε∥ r̄e ε̄

H2-Na
+ 4 4.7 2.51 2.61 95.93 126.87 2.54 106.24

H2-H2 6 7.0 3.46 3.50 1.30 2.00 3.47 3.07

α 0.8263
ρ 0.76664
H2 charges qH =0.45955, qCM = −2qH

Finally, the third term in Eq.1 corresponds to the interaction between the dipoles that

the cation induces in the hydrogen molecules i and j as employed in previous studies4–6

V 3B[H
(i)
2 −Na+−H

(j)
2 ] =

−α2

4
[3rig3(rj)g5(rij) + 3rjg3(ri)g5(rij)

−g3(ri)g3(rj)g1(rij)− 6g1(ri)g1(rj)g5(rij)

−2g1(ri)g3(rj)g3(rij)− 2g3(ri)g1(rj)g3(rij)] (2)

where gn(r) = r−n, ri and rj are the distances between (the center of mass of) H2(i) and

H2(j) to Na+, respectively, rij is the distance between the hydrogen molecules, and α is

the polarizability of H2. This magnitude is in fact a tensor which in the molecular frame is

diagonal with two distinct components α∥ and α⊥, so in principle the polarizability varies

with the orientation of the molecule with respect to the cation. We have found that this

anisotropic contribution is negligible (less than 0.1 meV difference in the total energy as com-

pared with using a spherically averaged polarizability, for (H2)2Na
+ at equilibrium). Hence
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we have adopted, for the averaged polarizability, the reference value4 α = 0.7870 Å3, that

has been multiplied by 1.05 to get a better comparison with ab-initio estimations. As in pre-

vious cases3 our potential model provides a good agreement with ab initio (supermolecular)

estimations obtained at the CCSD(T)/CBS level for this system.

Therefore, the 3B term can also be used in a common approximation within this context

which is the treatment of the diatomic H2 molecule as a pseudo atom (Psat). Within

this approach the parameters needed in the ILJ atom-atom interaction fit, are given by

r̄e = (2 r⊥e + r
∥
e)/3 and ϵ̄e = (2 ϵ⊥e + ϵ

∥
e)/3.

Besides, within this Psat model, in a consistent way the [H
(i)
2 −H

(j)
2 ] interaction is also

taken as an average over all dimers’ orientations and represented by atom-atom ILJ functions,

as that of Eq.(2) of Supplementary Information of Ref.,3 where a more detailed information

can be found on the methodology and also the value of potential parameters which are the

same than the one employed here, for well depths and equilibrium positions.

A compilation of the optimized values of all the parameters involved in the analytical

RigRot and Psat PESs are given in Table S1.

The Na+2 (H2)n Case

In this case only (2B) contributions are considered and the potential interaction is expressed

as follows:

V
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2
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The second term in Eq.(3), is the the same as in the case of the Na+ monomer, while the

interaction between the Na+2 and the H2 molecules is given, as usually, as a sum of van der

Waals non-covalent (NC) plus electrostatic interactions, i.e. V 2B
[
H

(i)
2 − Na+2

]
= VNC+Velec.

Both interactions depend on the distance R between the centers of mass of the two

diatomic under consideration, the angles Θa,Θb between the (vector) R and the vectors

defining the bond lengh of Na+2 and H2 respectively, and finally Φ, the dihedral angle,

the common Jacobi coordinates for two diatomic molecules. Please note that we also use

(θ,Φ), with other meaning for the cluster structure, but we think they are easily differentiate

because they are used in very different context.

The VNC term is evaluated as a sum of bond-bond pairwise interactions, which better

represent the Na+2 bond polarizability and its contribution to the whole interaction.7,8

Specifically, these interactions are represented by the Improved Lennard-Jones potential

expression8,9
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VvdW (R, γ) = ε(γ)

[
m(γ)
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(
Rm(γ)

R
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(
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and γ denotes collectively the triplet of angles Θa,Θb,Φ while ϵ(γ) and Rm(γ) are the well

depth and the equilibrium distance, while

n(R, γ) = β(γ) + 4.0

(
R

Rm(γ)

)2

(5)

where β(γ) represents and an additional parameter (with respect to the conventional Lennard-

Jones one), that provides more flexibility in the description of the repulsive wall of the

interaction.

Table S2: Optimized parameters for the Na+2 (H2)n bond-bond non-covalent in-
teraction.

h
Configurations ϵ (meV ) Rm (Å) β m

H 5.75 4.37 6.10 4.0
X 5.75 4.37 6.10 4.0
Tb 34.44 4.73 8.50 6.0
Ta 7.41 4.37 6.10 4.0
L 44.74 4.61 6.10 6.0

The angular dependence of VvdW is obtained by representing the ε, Rm, β andm potential

parameters in a spherical harmonic expansion7,10,11

ε(γ) = ε000 + ε202A202(γ) + ε022A022(γ) + ε220A220(γ) + ε222A222(γ) (6)

Rm(γ) = R000
m +R202

m A202(γ) +R022
m A022(γ) +R220

m A220(γ) +R222
m A222(γ) (7)

β(γ) = β000 + β202A202(γ) + β022A022(γ) + β220A220(γ) + β222A222(γ) (8)

m(γ) = m000 +m202A202(γ) +m022A022(γ) +m220A220(γ) +m222A222(γ) (9)

where the coefficients of the bipolar spherical harmonics AL1L2L3(γ) can be obtained as

illustrated in Ref.7 from the ε, Rm, β and m values corresponding to specific angular con-

figurations of the H2-Na
+
2 dimer.
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These values are reported in Table S2 for the (H,X, Ta, Tb and L) dimer configurations,

which correspond to the angular triplets γ = (Θa,Θb,Φ)=H(90o, 90o, 0o), X(90o, 90o, 90o),

Ta(90
o, 0o, 0o), Tb(0

o, 90o, 0o), L(0o, 0o, 0o), respectively. A method to estimate zeroth order

values of the ϵ and Rm reported in Table S2 from diatomic (or molecular bond) polarizability

values is illustrated in Appendix A of ref[7].

All the parameters in Table S2 have been optimized on the basis of the comparison of

analytical interaction energies with the ab initio estimations reported in Fig.S4.

Regarding the Velec electrostatic contribution, it has been obtained from coulombic in-

teractions involving point charges conveniently distributed on both monomers. For the

H2 monomer the charges are those reported in TableS1. As for Na+2 , the corresponding

charges are qNa = 0.93927 a.u. and qcm = −0.87854 a.u., for the Na atoms and center of

mass, respectively. They have been obtained at a ACPF/AVTZ level, following the proce-

dure given in Ref.12 and corresponding to a diatomic equilibrium distance (optimized at the

CCSD(T)/AVTZ level) of 3.7113 Å: these charges are those compatible with a calculated

quadrupole moment of 23.1 a.u. plus a positive charge (+1) placed in correspondance of the

molecule center of mass to account for the global charge of the cation.

A comparison between the interaction profiles for the (H,X, Ta, Tb and L) dimer configu-

rations, obtained by using the above formulation and from ab initio estimations carried out

at the RCCSD(T)/CBS level of theory (and following the guidelines as in Ref.2) can be seen

in Fig.S4: it can be appreciated that the analytical representation is capable to reproduce

very well the main interaction features of the Na+2 −H2 dimer.

Figure S4: Comparison of ab initio interaction energies and their analytical representation
for selected configurations (see text) of the Na+2 H2 dimer. R is the distance between the
centers of mass. Notice that Tb denotes the configuration with Na+2 aligned along R
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Classical Structures and Local Minima

In order to study the global minima we have used two different algorithms, a Basin Hoping

(BH) technique13,14 using the pseudo atom model and a classical Monte Carlo one in the

case of the rigid rotor model for the H2 molecule.

Favorable structures for Na+(H2)n clusters up to n = 14 were found by unbiased BH

global optimization technique.13 This stochastic algorithm explores the potential energy

surface and locates the global minimun using random moves on local minima, following a

Metropolis algorithm. Suitable parameters for the BH are optimization temperature (kBT =

3meV ), where kB is the Boltzmann constant, and number of steps (2×104), The same global

minimum was located in all trajectories.

Within the rigid rotor model for the H2 molecules which surround Na+ or Na+2 dopants,

we have run classical simulated annealing Monte Carlo calculations15 which involve both

translational and rotational moves and equilibration at ever-lower temperatures (typically

starting from 8 K and cooling to about 0.5 K). The structures so obtained correspond to the

putative global minima of the interaction and are then used as suitable initial configurations

for the Diffusion Monte Carlo calculations.

Diffusion Monte Carlo

We have used the code developed by Sandler and Buch16,17 which has been succesful in

the study of various molecular clusters,3,18,19 and specially suitable for the treatment of

rigid molecules. For a given cluster size, eight runs were usually performed, each of them

involving eigth generations of a descendant weighting procedure,20 and averages of the final

energies of the different runs are computed together with associated standard deviations.

Between 20000 and 25000 replicas were propagated with time steps ranging from 100.0-12.5

a.u., for in between 2500-20000 steps, up to reach convergence. The initial population was

typically built from a Gaussian distribution centered in the minimum of the PES, previously

determined from the classical structures.

Cluster energies were easily converged for the smaller clusters (N < 14), with standard

deviations of about 0.03-1.0 meV.

Path Integral Monte Carlo

The PIMC method is the same as in previous applications for the study of similar ion doped

helium clusters19,21 and it has been described elsewhere before.22 The energy of each cluster

is estimated by means of the thermodynamic approach developed by Barker:23
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⟨E⟩thermo =
3N

2τ
−

〈
M−1∑
α=0

N∑
i=1

(rαi − rα+1
i )2

4Mλmτ 2
− V

〉
, (10)

where λm = ℏ2/2m, m is the mass of H2 or Na+ and τ = β/M , with β = (kBT )
−1. The

expression in Eq. (10) consists on a first term describing the classical kinetic energy multi-

plied by M (the number of quantum beads in the factorization of the density matrix19,21)

and a second term with the average of the energy due to the spring-like interaction assumed

between consecutive beads in the same ring describing a specific particle and of the potential

energy V . The PIMC calculation has been performed at 2K and M = 200 have been enough

to ensure converged results, which are moved in groups of 10 following a staging method.24,25

Typical Structures and Relevant Angles

Figure S5: Classical structure corresponding to Na+(H2)6. Relevant angles: θ, formed by
the vector bondlength and the vector joining the center of mass of a monomer H2 with the
cation Na+ and Φ, the angle formed by vectors joining the sodium cation and the center of
mass of any two monomers.
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Figure S6: Classical structure corresponding to Na+2 (H2)12. Here only the Φ angles, between
vectors directed from one of the sodium atoms (label Na(1)) to any two momoners H2 are
displayed. Note that there are two different groups of hydrogen monomers one of them
around one of the sodium, Na(1), and another group around the other sodium Na(2), both
of them forms the sodium dimer N+

2 .
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