Supporting Information

Density functional theoretical study of the tungsten-doped In₂O₃ catalyst for CO₂ hydrogenation to methanol

Rui Zou,^a Kaihang Sun,^a Chenyang Shen^b and Chang-jun Liu*^{ab}

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
^b Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, China

Fig. S1 The doping positions of W on the $In_2O_3_D$ model. Red: O atoms; brown: In atoms.

Fig. S2 The potential energy of the W-In₂O₃_D model during the AIMD simulation. The ab initio molecular dynamics (AIMD) simulation was carried out using the CP2K package with a cutoff of 350 Ry. The AIMD simulation was performed in the canonical (NVT) ensemble using Nosé-Hoover thermostats. The temperature was set as 573 K. The time step was set as 1 fs with a time period of 10 ps.

Fig. S3 Deformation charge density for (a) the $In_2O_3_D$ model and (b) the W-In₂O₃_D model. Blue isosurfaces represent depleted electron density region, whereas yellow isosurfaces represent accumulated electron density region. The iso-surface value is $0.0025 |e|/bohr^3$.

Fig. S4 The configuration of the H_2 dissociative adsorption on (a) the $In_2O_3_D$ model and (b) the W-In₂O₃_D model. Red: O atoms; brown: In atoms; blue: W atom; white: H atoms.

Fig. S5 NEB path for the conversion of CO_2^* and H adatom to the HCOO intermediate on the W-In₂O₃_D model.

IS

TS3

FS

 $\text{R4: } H_2\text{COOH}^*\text{+*} \rightarrow H_2\text{CO}^*\text{+OH}^*$

IS

TS4

FS

 $R6: H_2CO^* + H^* \rightarrow H_3CO^* + *$

 $R8: H_2CO^* \text{+} H^* \rightarrow H_2COH^* \text{+}^*$

 $\textbf{R10: CO_2*+H*} \rightarrow \textbf{COOH*+*}$

IS

TS10

Fig. S6 The top and side views of all initial, transition, and final states for the methanol synthesis and RWGS reaction on the W-In₂O₃_D model. Red: O atoms; brown: In atoms; blue: W atom; gray: C atom; white: H atoms. The bond length is in angstroms.

TS3'

 $R4': H_2COOH^* + * \rightarrow H_2CO^* + OH^*$

TS5'

FS

 $\text{R5':} \text{H}_2\text{CO}^*\text{+}\text{OH}^*\text{+}\text{H}^* \rightarrow \text{H}_2\text{CO}^*\text{+}\text{H}_2\text{O}^*\text{+}^*$

 $\textbf{R6':} \ \textbf{H_2CO*+H^*} \rightarrow \textbf{H_3CO*+*}$

IS

Fig. S7 The top and side views of all initial, transition, and final states for the methanol synthesis on the $In_2O_3_D$ model. Red: O atoms; brown: In atoms; blue: W atom; gray: C atom; white: H atoms. The bond length is in angstroms.

doping position	formation energy (eV)	
In ₁	-11.12	
In ₂	-10.93	
In ₃	-11.07	
In ₄	-10.03	
In ₅	-8.29	
In ₆	-9.72	

Table S1 The formation energy of W doping obtained by different doping positions

X(TOF)	H_3CO^* (W-In ₂ O ₃)	H_2COH^* (W-In ₂ O ₃)	H_3CO^* (In_2O_3)
X(TOF, T1)	0.00	0.00	0.00
X(TOF, T2)	0.00	0.00	0.00
X(TOF, T3)	0.00	0.00	0.00
X(TOF, T4)	0.00	0.00	0.00
X(TOF, T5)	0.00	0.00	0.00
X(TOF, T6)	0.00	0.00	0.00
X(TOF, T7)	0.04	0.00	0.05
X(TOF, T8)	0.00	0.00	0.00
X(TOF, T9)	0.00	0.00	0.00
X(TOF, T10)	0.00	0.00	0.00
X(TOF, T11)	0.00	0.00	0.00
X(TOF, T12)	0.96	0.00	0.95
X(TOF, T13)	0.00	0.00	0.00
X(TOF, T14)	0.00	1.00	0.00
X(TOF, T15)	0.00		0.00
X(TOF, I1)	0.66	0.72	0.00
X(TOF, I2)	0.00	0.00	0.00
X(TOF, I3)	0.09	0.10	0.08
X(TOF, I4)	0.00	0.00	0.00
X(TOF, I5)	0.16	0.18	0.00
X(TOF, I6)	0.00	0.00	0.00
X(TOF, I7)	0.00	0.00	0.00
X(TOF, I8)	0.00	0.00	0.00
X(TOF, I9)	0.00	0.00	0.00
X(TOF, I10)	0.00	0.00	0.00
X(TOF, I11)	0.00	0.00	0.00
X(TOF, I12)	0.00	0.00	0.00
X(TOF, I13)	0.06	0.00	0.90
X(TOF, I14)	0.00	0.00	0.02
X(TOF, I15)	0.03		0.00

Table S2 The degree of TOF control (X_{TOF}) for each intermediate or transition state for the methanol synthesis on the W-In₂O₃_D model and the In₂O₃_D model