<u>ESI</u>

Multi-functional Palladium-Ruthenium Nanocomposites: Approach towards Semi-Hydrogenation Catalysis and Hydrogen Sorption

Chirasmita Bhattacharya, Kamla D Netam, Balaji R Jagirdar*

Table of contents

- A. Calculation of Turn Over Frequency (TOF) based on dispersion degree from TEM images
- **B.** Comparison of the relative performance of our catalyst with other Pd-Ru bimetallic catalysts for semi-hydrogenation of phenyl acetylene
- C. Supporting Figures and Data

Figure S1. Characterization of Pd-THF nanoparticles: (a) PXRD pattern, (b) BFTEM image, (c) HRTEM image, (d) SAED pattern.

Figure S2. Characterization of Ru nanoparticles: (a) PXRD pattern, (b) BFTEM image, (c) HRTEM image, (d) SAED pattern.

Figure S3. Powder X-ray diffraction pattern corresponding to Ru nanoparticles annealed at 150 °C and 300 °C.

Figure S4. Enlarged STEM EDS area map images of bimetallic Pd-Ru nanocomposites with stoichiometric ratio between Pd and Ru as $Pd_{0.5}Ru_{0.5}$ (Reference to Figure 4)

Figure S5. Elemental area mapping analysis of bimetallic Pd-Ru nanocomposites with stoichiometric ratio between Pd and Ru as: (a) $Pd_{0.8}Ru_{0.2}$, (b) $Pd_{0.6}Ru_{0.4}$, (c) $Pd_{0.4}Ru_{0.6}$, (d) $Pd_{0.2}Ru_{0.8}$.

Figure S6. (a) Bright-field, (b) high-resolution TEM images of Pd nanoparticles obtained upon digestive ripening process.

Figure S7. Pressure-composition isotherms corresponding to: (a) Pd, (b) $Pd_{0.5}Ru_{0.5}$ nanoparticles measured at 1 atm H₂ pressure and different temperatures, i.e., 25 °C, 100 °C, and 150 °C.

Figure S8. 1H NMR spectral stack plot showing gradual conversion of styrene to ethyl benzene at 5 bar H2 pressure and 25 °C.

Figure S9. NMR spectral and GC-MS analysis corresponding to hydrogenation reactions carried out on various olefinic substrates in their neat form using $Pd_{0.5}Ru_{0.5}$ bimetallic catalyst. Reaction conditions: catalyst to substrate ratio of 1:500; H_2 gas pressure of 5 bar; room temperature condition. [Table 3]

Figure S10. NMR spectral analysis corresponding to hydrogenation of Benzene in neat form using $Pd_{0.5}Ru_{0.5}$ bimetallic catalyst. Reaction conditions: catalyst to substrate ratio of 1:500; H_2 gas pressure of 5 bar; room temperature condition.

Figure S11. GC-MS analysis corresponding to sequential hydrogenation of phenyl acetylene (with THF as a solvent) using $Pd_{0.5}Ru_{0.5}$ bimetallic catalyst. Reaction conditions: catalyst to substrate ratio of 1:500; H_2 gas pressure of 5 bar; room temperature condition.

Figure S12. NMR spectral and GC-MS analysis corresponding to hydrogenation reactions carried out on styrene in neat form using $Pd_{0.5}Ru_{0.5}$ bimetallic catalyst [Table 4]

Figure S13. Enlarged STEM EDS area map images corresponding to catalyst recycling for neat styrene hydrogenation by Pd-Ru nanocomposite for 7 cycles using Pd_{0.5}Ru_{0.5} bimetallic catalysts. Reaction Conditions: 5 bar, 298 K, 1:500 catalyst to substrate ratio (Reference to Figure 7)

Figure S14. NMR spectral and GC-MS analysis corresponding to catalyst recycling for neat styrene hydrogenation by Pd-Ru nanocomposite for 7 cycles using Pd_{0.5}Ru_{0.5} bimetallic catalysts. Reaction Conditions: 5 bar, 298 K, 1:500 catalyst to substrate ratio

Figure S15. NMR spectral analysis corresponding to catalyst poisoing study using neat styrene as substrate and tricyclohexylphosphine (PCy_3) as catalyst poison. Reaction Conditions: 5 bar, 298 K, 1:500 catalyst to substrate ratio

Figure S16. NMR spectral analysis corresponding to catalyst poisoing study using neat styrene as substrate and quinoline as catalyst poison. Reaction Conditions: 5 bar, 298 K, 1:500 catalyst to substrate ratio

A. Calculation of Turn Over Frequency (TOF) based on dispersion degree from TEM images:

In order to estimate the Turnover frequency (TOF), following assumptions were made:

- 1. The shape of all the bimetallic Pd_{0.5}Ru_{0.5} nanoparticles have been considered to be spherical. Based on analysis of HR-TEM images, the average particle size was estimated to be 5.04 nm.
- 2. The calculation of catalyst dispersity was done by considering Pd nanoparticles as active sites for catalysis.

Turnover frequency (TOF) has been calculated as the amount of a reacted substrate (in moles) per mole of $Pd_{0.5}Ru_{0.5}$ catalyst per unit of time with the account of catalyst dispersity, D_M according to the formula:

TOF*= Moles of substrate transformed per mole of catalyst per hour $\times \frac{1}{D}$ where, D is catalyst dispersity and defined as the ratio of surface atoms to those in the particle volume and were calculated according to the formula: D=0.885/d, where d is mean particle diameter, expressed in nanometers and 0.885 is a Pd reduced factor, corresponding to the ratio of the atomic phase volume to the average atomic effective area on the particle surface.

According to this formula: D=0.885/5.04 = 0.1755

Therefore, Turnover frequency (TOF) (Considering dispersed active catalyst sites) = Turnover frequency (TOF) (Total metal sites) x 5.6980

Where, Turnover frequency (TOF) (Total metal sites) = moles of substrate transformed per mole of catalyst per hour

In parenthesis, Turnover frequency (TOF) (Considering dispersed active catalyst sites) = moles of substrate transformed per mole of exposed catalyst per hour (for dispersed catalyst sites) × 5.6980

[*Reference: E.A. Karakhanov et. al., Selective semi-hydrogenation of phenyl acetylene by Pd nanocatalysts encapsulated into dendrimer networks; Molecular Catalysis 469 (2019) 98–110 <u>https://doi.org/10.1016/j.mcat.2019.03.005</u>].

S. No.	Catalyst	Temperat ure (K)	Pressur e (Bar)	Time (h)	% conversio n	% Selectivit v	TOF (h ⁻¹)	Referenc e
1	Pd _{0.5} Ru _{0.5} NPs	298	5	0.5	64.8	>99.9	650* (3704)	This work
2	Pd-Ru@ZIF-8	373	1	2	98	96	2188	[14]
3	Pd₅Ru95-ZPO (zirconium hydrogen phosphate)	333	20	2	97	91	-	[15]
4	Ru ₂ Pd ₃ nanoporous alloy	308-313	2.75	4	100	85	-	[18]

B. Comparison of the relative performance of our catalyst with other Pd-Ru bimetallic catalysts for semi-hydrogenation of phenyl acetylene

*Turnover frequency = mol(substrate)/mol($Pd_{0.5}Ru_{0.5}$ catalyst) h. In parenthesis: Turnover frequency (TOF) (Considering dispersed active catalyst sites)- Refer ESI - Part A for detailed calculation

Figure S1. Characterization of Pd-THF nanoparticles: (a) PXRD pattern, (b) BFTEM image, (c) HRTEM image, (d) SAED pattern.

Figure S2. Characterization of Ru nanoparticles: (a) PXRD pattern, (b) BFTEM image, (c) HRTEM image, (d) SAED pattern.

Figure S3. Powder X-ray diffraction pattern corresponding to Ru nanoparticles annealed at 150 °C and 300 °C.

ooonn

Figure S4. Elemental area mapping analysis of bimetallic Pd-Ru nanocomposites with stoichiometric ratio between Pd and Ru as $Pd_{0.5}Ru_{0.5}$ (Reference to Figure 4)

Figure S5. Elemental area mapping analysis of bimetallic Pd-Ru nanocomposites with stoichiometric ratio between Pd and Ru as: (a) $Pd_{0.8}Ru_{0.2}$, (b) $Pd_{0.6}Ru_{0.4}$, (c) $Pd_{0.4}Ru_{0.6}$, (d) $Pd_{0.2}Ru_{0.8}$.

Figure S6. (a) Bright-field, (b) high-resolution TEM images of Pd nanoparticles obtained upon digestive ripening process.

Figure S7. Pressure-composition isotherms corresponding to: (a) Pd, (b) $Pd_{0.5}Ru_{0.5}$ nanoparticles measured at 1 atm H_2 pressure and different temperatures, i.e., 25 °C, 100 °C, and 150 °C.

Figure S8. ¹H NMR spectral stack plot showing gradual conversion of styrene to ethyl benzene at 5 bar H_2 pressure and 25 °C.

Figure S9. NMR spectral and GC-MS analysis corresponding to hydrogenation reactions carried out on various olefinic substrates in their neat form using $Pd_{0.5}Ru_{0.5}$ bimetallic catalyst. Reaction conditions: catalyst to substrate ratio of 1:500; H_2 gas pressure of 5 bar; room temperature condition. [Table 3]

7.0

Time (min)

13.0

12.0

11.0

10.0

1. Hydrogenation of styrene

3.0

4.0

5.0

6.0

2. Hydrogenation of phenyl acetylene

GC-MS spectrum

Entry	Substrate	Product	Time (h)	Conversion (%)	TOF (h-1)
3			0.8	85.5	567

3. Hydrogenation of 1,5-cyclooctadiene

GC-MS spectrum

4. Hydrogenation of Cyclooctene

5. Hydrogenation of 1-octadecene

Entry	Substrate	Product	Time (h)	Conversion (%)	TOF (h-1)
5		$\widehat{\frown}$	9	>99	55.5

* Butylated hydroxytoluene (BHT) present as stabilizer in THF used for sample dilution.

6. Hydrogenation of α -methyl styrene

Entry	Substrate	Product	Time (h)	Conversion (%)	TOF (h ⁻¹)
6			1.2	97.5	420

NMR spectra

GC-MS spectrum

7. Hydrogenation of neohexene

8. Hydrogenation of Cyclohexenone

9. Hydrogenation of trans-stilbene

10. Hydrogenation of ethyl acrylate

Entry	Substrate	Product	Time (h)	Conversion (%)	TOF (h-1)
10	0 0 0		0.3	97.0	1511

GC-MS spectrum

11. Hydrogenation of tertiary butyl acrylate

Entry	Substrate	Product	Time (h)	Conversion (%)	TOF (h ⁻¹)
11			0.4	>99	1388

12. Hydrogenation of methyl methacrylate

Figure S10. NMR spectral analysis corresponding to hydrogenation of Benzene in neat form using $Pd_{0.5}Ru_{0.5}$ bimetallic catalyst. Reaction conditions: catalyst to substrate ratio of 1:500; H_2 gas pressure of 5 bar; room temperature condition.

Figure S11. GC-MS analysis corresponding to sequential hydrogenation of phenyl acetylene (with THF as a solvent) using $Pd_{0.5}Ru_{0.5}$ bimetallic catalyst. Reaction conditions: catalyst to substrate ratio of 1:500; H_2 gas pressure of 5 bar; room temperature condition.

General Information

For evaluation of the performance of catalyst under different reaction conditions (Table 5.5) and recyclability study, styrene was used as a model substrate and the product obtained was ethyl benzene. The percentage conversion and turnover frequency (h⁻¹) was calculated based on GC-MS studies. The retention time for ethyl benzene is 4.437 and that of styrene is 4.918 s. Only the gas-chromatogram and NMR spectra is provided for the reactions involving styrene and ethyl benzene.

Entry	Catalyst:	Pressure (bar)	Temperature	Time (h)	Conversion ^a	TOF
	substrate		(К)		(%)	(h⁻¹)
	ratio					
1	1:500	3	323	8.6	>99	58.1

Figure S12. NMR spectral and GC-MS analysis corresponding to hydrogenation reactions carried out on styrene in

neat form using Pd_{0.5}Ru_{0.5} bimetallic catalyst [Table 4]

1. Hydrogenation of Styrene

NMR spectra

Entry	Catalyst:	Pressure	Temperature	Time (h)	Conversion ^a	TOF⁵
	substrate	(bar)	(К)		(%)	(h-1)
	ratio					
2	1:500	5	298	15	>99	33.3

2. Hydrogenation of Styrene

Entry	Catalyst:	Pressure (bar)	Temperature	Time (h)	Conversion ^a	TOF⁵
	substrate ratio		(К)		(%)	(h⁻¹)
3	1:500	5	323	5	>99	100

3. Hydrogenation of Styrene

Entry	Catalyst:	Pressure (bar)	Temperature	Time (h)	Conversion ^a	TOF ^b
	substrate		(К)		(%)	(h-1)
	ratio					
4	1:1000	5	323	6.5	>99	153.8

4. Hydrogenation of Styrene

Entry	Catalyst:	Pressure (bar)	Temperature	Time (h)	Conversion ^a	TOF⁵
	substrate		(К)		(%)	(h-1)
	ratio					
5	1:2000	5	323	8	>99	250

5. Hydrogenation of Styrene

Figure S13. Enlarged STEM EDS area map images corresponding to catalyst recycling for neat styrene hydrogenation by Pd-Ru nanocomposite for 7 cycles using $Pd_{0.5}Ru_{0.5}$ bimetallic catalysts. Reaction Conditions: 5 bar, 298 K, 1:500 catalyst to substrate ratio (Reference to Figure 7)

Figure S14. NMR spectral and GC-MS analysis corresponding to catalyst recycling for neat styrene hydrogenation by Pd-Ru nanocomposite for 7 cycles using $Pd_{0.5}Ru_{0.5}$ bimetallic catalysts. Reaction Conditions: 5 bar, 298 K, 1:500 catalyst to substrate ratio

Figure S15. NMR spectral analysis corresponding to catalyst poisoing study using neat styrene as substrate and tricyclohexylphosphine (PCy₃) as catalyst poison. Reaction Conditions: 5 bar, 298 K, 1:500 catalyst to substrate ratio

Figure S16. NMR spectral analysis corresponding to catalyst poisoning study using neat styrene as substrate and quinoline as catalyst poison. Reaction Conditions: 5 bar, 298 K, 1:500 catalyst to substrate ratio

