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DETAILS OF THE THEORETICAL MODEL

We consider N particles in a square box with periodic boundaries in two dimensions, and assume that each particle
is a self-propelled particle (SPP) with an intrinsic polarity along which the domain tries to move [1]. The location
and intrinsic polarity of the j-th particle are described by xj = (xj , yj) and qj , respectively (j = 1, 2, · · · , N). We
assume that the velocity vj , which determines the xj ’s time evolution as

dxj
dt

= vj , (S1)

and the polarity qj of the j-th particle obeys

Θ(qj)vj = v0qj + JVE
j (S2)

and

dqj
dt

= JAL
j + ξj + ωST + ΩCT

j (S3)

under the constraint |qj | = 1, respectively, for every j. Equation (S2) assumes the over-damped dynamics, and each
particle moves with a constant velocity v0 in the absence of volume exclusion interactions. Equation (S2) also assumes
that each particle hardly moves along the direction perpendicular to the direction of qj , which has been implemented
by the (rescaled) anisotropic friction tensor Θ(qj) = qj ⊗ qj + R−1ζ (I − qj ⊗ qj) with the ratio Rζ = ζ‖/ζ⊥ of
friction coefficients in parallel ζ‖ and perpendicular directions ζ⊥. Here, ⊗ is the tensor product, and I is the identity
matrix. (The reason we introduced such anisotropy in friction is as follows: Ref. [1] observed that, when the gliding
microtubule collides another microtubule from its side, the colliding microtubule either stops moving or gets over the
other. In other words, phenomenologically, the microtubule collided from its side does not move into the direction
perpendicular to its polarity. Since this work is motivated by the observations in microtubule gliding assay, as we
detailed in Introduction of the main text, we reflected this fact phenomenologically by using the anisotropic mobility,
or inverse friction, and below setting the friction perpendicular to the particle’s intrinsic polarity to be much higher
than the parallel counterpart, with which the particle hardly moves to the perpendicular direction indeed. However,
it is to be noted that this anisotropic mobility is not essential in our main result.) The term ξqj(t) represents the
noise, for which, for simplicity, we assume a white Gaussian noise with 〈ξqj〉 = 0 and

〈ξqi,k(t)ξqj,l(t
′)〉 = 2Dδijδklδ(t− t′) , (S4)

where the subscripts k and l specify the directions, k, l = x, y, with the statistical average 〈·〉. The coefficient D
indicates the noise strength. The particle-particle interactions are given by JVE

j and JAL
j , which represent the

volume exclusion and bidirectional alignment interaction with the interaction ranges r, respectively. The volume
exclusion is given by

JVE
j = β

∑
j′(n.j)

(
r

|∆xj,j′ |
− 1

)
∆xj,j′

|∆xj,j′ |
. (S5)

The summation
∑
j′(n.j) runs for all the neighbors j′ of j-th particles, defined by |∆xj,j′ | < r with ∆xj,j′ = xj −

xj′ . Here, we have assumed not rigorous but soft volume exclusion, and the softness is controlled by the factor β.
Bidirectional alignment interaction is given by [1]

JAL
j = 2αAL

∑
j′(n.j)

(qj · qj′) qj′ . (S6)

The coefficient αAL indicates the strength of alignment. We can scrutinize the meaning of this term by rewriting it
in the potential form;

JAL
j = −∂V ({qi})

∂qj
(S7)

with

V ({qi} = −αAL

∑
j,j′∈n.p.

|qj · qj′ |2 = −αAL

∑
j,j′∈n.p.

cos2(θj − θj′) (S8)
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The summation
∑
j,j′∈n.p. runs for all the neighboring j-th and j′-th particle pairs, defined again by |∆xj,j′ | < r.

As Eqs. (S7) and (S8) indicate, this interaction term align the polarities of neighboring pair of particles in the
bidirectional way, i.e. toward either θj−θj′ = 0 or θj−θj′ = π. In this study, we naively assume given constants αAL

and β for the interaction, but there are other possible choices. For example, in some literature on collective motion
of SPPs, the interaction is defined in the way that its strength depends on the SPP speed [2]. This may be the point
which one has to be careful when investigating the phase diagram over e.g. v0. In this paper, we focus on only the
torque strengths, mentioned below, so that this choice may not affect the conclusion.

The last two terms of Eq. (S3) are the key terms of this study, which give rise to chirality. As mentioned in
Introduction of the main text, in this article, we assume that chirality affects the system’s dynamics through the two
different ways: one is the self-propelled torque (ST) ωST ≡ ωSTq⊥j , and the other is the collision-induced torque (CT)

ΩCT
j ≡ ΩCT

j q⊥j . Here, q⊥j is one of the unit vectors perpendicular to the polarity, given by q⊥j ≡ (− sin θj , cos θj).

The constant ωST is the strength of ST. On the other hand, ΩCT
j is given by ΩCT

j = ωCTmj with the number mj of

particles within the range r from the focused particle (j), and the constant ωCT controls the strength of CT. (See
Fig. 1 in the main text for the schematics.) It is worth noted that, in two dimensions, there are two unit vectors
perpendicular to a certain reference vector, corresponding to left or right. The above definition of q⊥j selected out

one of them. Thus, the existence of q⊥j in the definitions of ωST and ΩCT is expressing the origin of chirality.
Equation (S3) can be rewritten as the time evolution of the angles θj of the polarity directions, using qj =

(cos θj , sin θj). For this purpose, we may take the inner products of q⊥j and the both sides of Eq. (S3). As a result,

Eq. (2) of the main text is obtained, with ξj ≡ ξj · q⊥j . The new noise term ξj(t) represents the angular noise, and
since ξj = −ξqx,j sin θj + ξqy,j cos θj , it is again a Gaussian white noise with 〈ξj〉 = 0 and

〈ξα(t)ξα′(t′)〉 = 2Dδα,α′δ(t− t′). (S9)

Note thatD−1 now characterizes the persistence time of polarity direction, or characteristic time of angular fluctuation.
Equation (S2) and Eq. (2) of the main text, i.e., the angular description of Eq. (S3), can be rewritten by the

dimensionless forms as

dx̃j

dt̃
= q + β̃

∑
j′ (n.j)

∆̃xj,j′

|∆̃xj,j′ |2
(S10)

and

dθj

dt̃
= 2α̃AL

∑
j′(n.j)

(qj · qj′) (q⊥j · qj′) + ξ̃j + ˜ωST + ˜ΩCT
j , (S11)

respectively, where x̃j = xj/X, t̃ = t/T , ∆̃xj,j′ = ∆xj,j′/X, β̃ = βT/X, α̃AL = αALT , ˜ωST = ωSTT and ˜ΩCT
j =

ΩCT
jT , with characteristic length X ≡ r and time T ≡ r/v0. The noise term is also rescaled into the new notation

ξ̃j(t), which is a Gaussian white noise satisfying 〈ξ̃j〉 = 0 and

〈ξ̃α(t)ξ̃α′(t′)〉 = 2D̃δα,α′δ(t̃− t̃′). (S12)

with D̃ = DT . In the main text, we applied the same nondimensionalization by putting r = 1 and v0 = 1. The
propulsion strength is often quantified by using Péclet number [3, 4]. The Péclet number, or specifically the rotational
Péclet number [4], is defined by Pe ≡ v0τp/r, with the migration persistence time τp [3]. Pe is given by the inverse

of the dimensionless noise, Pe = D̃−1, because τp = D−1 in our case. The parameter values which we used in our
simulations here correspond to Pe = 100.

A FEW NOTES REGARDING DENSITY IN FLOCKS

In the case that ST and CT are the same directions with each other (filled circles) in Fig. S1(b), the local density
in mono-polar flocks is between 0.4 to 1.5 with the median of 1.0. When the density is 1.0, the packing is almost
the closest. The density increases as the absolute value of the average angular velocity increases. This result suggests
that the collisions generate the effective attraction and mono-polar flocks are maintained by the collisions.

The density increases as the absolute value of the mean rotation speed increases. The collision becomes more
frequent and stronger as the torque becomes greater. We can regard that the effective attraction between the particles
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is strong under such conditions. In the case that ST and CT are the opposite directions with each other (filled diamonds
in Fig. S1(b)), this feature is remarkable. Therefore, we find the density 2.5 or more. The large value suggests, the
particles overlay each other due to the strong collision. Here, the red diamonds for the high-density flocks belong
to the island region of monopolar flocks in Fig. 3(b) and (d) in the main text because the red diamonds mean
ωST > 1.5× 10−2. The strong collisions in the cluster caused by the CW-ST and the CCW-CT are confirmed in Fig.
S1(b). These high-density flocks are clearly distinguished from the low-density homogeneous phase.

THREE-PARTICLE SIMULATION

Figure S2 provides additional results of numerical simulations for dynamics of three particles in a regular square
with periodic boundaries. (The system width is set to be L =

√
N/ρ with N = 3 and ρ = 0.02.) In the simulations

here, the initial locations and polarities of the three SPPs are set in a triangular and inwardly-pointing manner,
respectively, which allows three SPPs to effectively collide, as shown in Fig. S2(a) top left; t = 0. Typical snapshots
of the simulation results are shown in Fig. S2(a,b). Here, we have applied ωCT = 0.1, which is much larger than
the maximum strength used in the main text, ωCT = 0.004. As shown in Fig. S2(a), the three SPPs show various
pair/triplet dynamics including the bi-directional orientation, merging into a single mono-polar flock, and split of the
flock. In the main text, we found that the collision-induced torque can induce the mono-polar flocking. Figure S2(b)
indeed demonstrates the case when a two-particle cluster rotates, which broke the bidirectional orientation, and results
in formation of the mono-polar flock of three SPPs.

The results of such three-SPP simulations are quantified in Fig. S2(c,d) and Fig. 4(b) in the main text. Figure S2(c)
plots rotation velocity VR of intrinsic polarities during the particle-particle contact, averaged over all elements and
time (〈·〉), against ωCT. It indeed increases linearly for increasing ωCT on average. In Fig. S2(d), time evolution
of the polar order Rp (red solid curve), nematic order Rn (green dotted curve) and contact numbers (blue broken
curve) corresponding to the sample dynamics shown in Fig. S2(b), or Fig. 4(a) in the main text. The polar- and
nematic-order parameters, Rp and Rn, are defined as

Rp(t) ≡

∣∣∣∣∣∣
∑

i=1,2,3

exp [iθi(t)]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

i=1,2,3

qi(t)

∣∣∣∣∣∣ (S13)

and

Rn(t) ≡

∣∣∣∣∣∣
∑

i=1,2,3

exp [2iθi(t)]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

i=1,2,3

[
q2x(t)− q2y(t) + 2iqx(t)qy(t)

]∣∣∣∣∣∣ (S14)

respectively. The summation
∑
i=1,2,3 runs over three SPPs labelled by i = 1, 2, 3. We assume that two SPPs are in

contact with each other if the distance of those two SPPs is smaller than the interaction range r, and contact number
is defined as the number of such pairs in contact. Figure S2(d) also shows the mono-polar flock and bidirectional
orientation regimes. Here, the mono-polar flock regime has been defined as the time window during which Rp > RTh

and the contact number is 2 or 3. The bidirectional orientation regime has been defined as the time window during
which Rn > R2

Th, Rp < RTh and the contact number is equal to or higher than 1. (We here set RTh = 0.9 again.)
Although there is another short bidirectional orientation regime around t = 100 in Fig. S2(d), we skipped plotting it
for better visibility. In Fig. 4(b) of the main text, we plotted the probability P(t<128) by which the three SPPs form
the mono-polar flock at least a time by t = 128 for various ωCT and ωST. To define P(t<128) for each parameter set,
we have counted the number of the samples which has mono-polar flock regimes at least a time until t = 128 and
divided it by the total number of samples (128 samples).
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FIG. S1. First order transition-like nature of mono-polar flocking. (a) Hysteresis of SPP number fraction in mono-polar flocks,
nMPF. ωST is set to be 0.01, and ωCT was swept from 0 to 0.004 (ascent; red curve) and, after that, vice versa ( descent; blue
curve). See the legend of Fig. 3(c,d) in the main text for the definition of nMPF. (b) Local density in regions with high polar
order, against the average angular velocity of each SPP. The color of each mark indicates the CT strength ωST whereas the
shape indicates the direction of ST (circles and diamonds; the same as and opposite to CT, respectively). Multiple marks with
the same color and shape correspond to various ωCT.
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FIG. S2. Numerical simulations for dynamics of three particles in a regular square with periodic boundaries. (a) Snapshots for
a single simulation. Each colored arrow represents the location and polarity direction of each particle, and the color indicates
its polarity direction corresponding to the color wheel. ωCT = 0.1, ωST = 0.0, and the other parameters are the same as in the
main text. (b) Another sample with the same parameter values with (a). (c) Rotation velocity VR of intrinsic polarities during
the particle-particle contact, averaged over all particles and time 〈·〉 vs ωCT. Different marks corresponding to different runs.
The plots are fitted by 〈VR〉 = (1.048 ± 0.002)ωCT + (−0.00016 ± 0.00011). 2, 048 runs were simulated in total for each ωCT,
and each simulation was carried out up to t = 256. (d) Time evolution of polar order Rp (red solid curve), nematic order Rn
(green dotted curve) and contact numbers (blue broken curve) for the simulation sample identical to (b).
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ST case...

(b)(a) (c)ωCT=0.002, ωST=0.0 ωCT=0.001, ωST=0.0 ωCT=0.0, ωST=0.002

FIG. S3. Dynamic patterns for the case with isotropic friction, Rζ = 1.0. Typical snapshots of the numerical results are shown
for (a) ωCT = 0.002, ωST = 0.0, (b) ωCT = 0.001, ωST = 0.0, and (c) ωCT = 0.0, ωST = 0.002. ρ = 0.2, αAL = 1.0, and
N = 20, 000. Except that the friction is isotropic, these settings are corresponding to those in Fig. 2 of the main text. The
mono-polar flocking and bidirectional orientation for the cases with only the CT and only the ST, respectively, are reproduced
while typical morphology of each mono-polar flock seems different from that seen in the anisotropic-friction case, where the
flock seems to be more elongated (Fig. 2 of the main text).


