Supplementary Information

Non-covalent Bonds in Group 1 and Group 2 Elements: The 'Alkalene bond'

Arijit Das and E. Arunan

Table S1. Correlation coefficients, intercepts and slopes of the binding energy (kJ/mol) versus electron density (au) plot for various H, Li, Na, Be, Mg and Ca bonded complexes. Values in brackets denote standard deviation.

Complexes	CC	Intercept	Slope
	X=H	·	
FX···A	0.92	0.3(3.0)	844(85)
HOX…A	0.94	-1.0(1.6)	832(73)
HSX···A	0.92	-0.0(1.0)	648(67)
Overall [by avg.]	0.93	-0.2(1.9)	775(75)
Overall [by fit, with (0,0)]	0.96	-2.2(0.9)	889(35)
Overall [by fit, without	0.95	-2.5(1.0)	901(38)
(0,0)]			
	X=Li		
FX···A	0.86	1.0(8.7)	2868(408)
ClX···A	0.85	2.2(10.3)	2997(449)
BrX…A	0.85	2.7(10.5)	2995(450)
Overall [by avg.]	0.85	2.0(9.8)	2953(436)
Overall [by fit, with $(0,0)$]	0.89	0.7(4.4)	3011(199)
Overall [by fit, without	0.85	1.1(5.4)	2997(239)
(0,0)]			
	X=Na		
FX···A	0.91	-12.7(6.9)	4274(484)
ClX···A	0.92	-9.9(6.4)	4039(423)
BrX····A	0.92	-9.7(6.6)	3978(428)
Overall [by avg.]	0.92	-10.8(6.6)	4097(445)
Overall [by fit, with $(0,0)$]	0.93	-7.0(3.0)	3840(202)
Overall [by fit, without	0.91	-10.5(3.6)	4074(238)
(0,0)]			
	X=Be	1	1
$F_2X\cdots A$	0.96	-58.4(6.7)	3030(226)
$Cl_2X\cdots A$	0.89	-76.7(18.2)	3090(380)
$H_2X\cdots A$	0.92	-78.1(14.2)	3261(338)
Overall [by avg.]	0.92	-71.1(13.0)	3126(315)
Overall [by fit, with (0,0)]	0.82	-38.8(9.1)	2408(209)

Overall [by fit, without	0.88	-64.9(9.1)	2983(206)
(0,0)]			
	X=Mg		
$F_2X\cdots A$	0.95	-20.6(7.6)	3596(277)
$Cl_2X\cdots A$	0.93	-17.7(10.0)	3569(349)
$H_2X\cdots A$	0.97	-15.3(4.2)	2960(186)
Overall [by avg.]	0.95	-17.9(7.3)	3375(271)
Overall [by fit, with (0,0)]	0.93	-16.6(4.6)	3384(176)
Overall [by fit, without	0.93	-22.9(5.0)	3606(188)
(0,0)]			
	X=Ca		
$F_2X\cdots A$	0.95	-8.9(6.7)	3137(260)
$Cl_2X\cdots A$	0.94	-9.5(7.9)	3108(277)
$H_2X\cdots A$	0.95	-8.0(6.0)	2931(245)
Overall [by avg.]	0.95	-8.8(6.9)	3059(261)
Overall [by fit, with (0,0)]	0.95	-6.6(3.2)	2986(125)
Overall [by fit, without	0.94	-9.2(3.8)	3081(143)
(0,0)]			

Table S2. Correlation coefficients (CC), intercepts and slopes of the binding energy (kJ/mol) versus electron density (au) plot for various non-covalent bonded complexes. 'Overall (by avg.)' denotes average value of correlation coefficient (CC), intercept and slope of the three sets, '**Overall [(by fit, without (0,0)]**' fits all data point without the (0,0) point]. Values in the brackets denote standard deviation. The function y=mx (without intercept) has been used to fit the data.

Complexes		y=mx
	CC	Slope
	X=H	
FX···A	0.92	853(28)
HOX···A	0.94	788(24)
HSX···A	0.92	649(21)
Overall (by avg.)	0.93	763(24)
Overall [by fit, without (0,0)]	0.94	813(19)
	X=Li	
FX···A	0.86	2914(107)
ClX···A	0.85	3088(114)
BrX···A	0.85	3107(114)
Overall (by avg.)	0.85	3036(112)
Overall [by fit, without (0,0)]	0.85	3042(64)
	X=Na	
FX···A	0.87	3411(137)
ClX···A	0.90	3408(113)
BrX…A	0.89	3372(112)
Overall (by avg.)	0.89	3397(121)
Overall [by fit, without (0,0)]	0.89	3396(67)

X=Be		
$F_2X\cdots A$	0.76	1700(119)
$Cl_2X\cdots A$	0.65	1524(134)
$H_2X\cdots A$	0.62	1441(139)
Overall (by avg.)	0.68	1555(131)
Overall [by fit, without (0,0)]	0.67	1554(75)
	X=Mg	
$F_2X\cdots A$	0.91	2875(96)
$Cl_2X\cdots A$	0.90	2976(103)
$H_2 X \cdots A$	0.94	2316(94)
Overall (by avg.)	0.92	2722(98)
Overall [by fit, without (0,0)]	0.88	2779(74)
	X=Ca	
$F_2 X \cdots A$	0.94	2803(77)
$Cl_2X\cdots A$	0.93	2789(76)
$H_2X\cdots A$	0.94	2623(79)
Overall(by avg)	0.94	2738(77)
Overall [by fit, without (0,0)]	0.93	2745(45)

Table S3. Power fit $(y=ax^r)$ of the binding energy (kJ/mol) versus electron density (au) data for various non-covalent bonded complexes formed by different elements. The values of the pre factor, a, and the power, r, and standard deviation from the fit, are given. Columns 1 and 2 include the correlation coefficients (CC) from the linear and power fits, which may be used to compare the fit. For Be bond, the power (r) is close to or greater than 2.00 (in bold).

Elements	Linear Fit CC	Power fit CC	a	r
Н	0.95	0.95	1248(220)	1.12(0.05)
Li	0.85	0.85	2585(894)	0.96(0.09)
Na	0.91	0.91	8854(3429)	1.23(0.09)
Be	0.88	0.92	61627(30220)	2.21(0.16)
Mg	0.93	0.93	11780(3628)	1.41(0.09)
Ca	0.94	0.94	4428(982)	1.13(0.06)

Table S4: Correlation coefficients (CC), intercept, and slope for group 1 and group 2 elements with and without correcting the Basis Set Superposition Error (BSSE) in energy.

Elements	With BSSE Corrected Energy		Without	BSSE Correct	ted Energy	
	CC	Intercept	Slope	CC	Intercept	Slope
Н	0.95	-2.5(1.0)	901(38)	0.97	-0.12(0.89)	986(35)
Li	0.85	1.1(5.4)	2997(239)	0.86	4.9(5.4)	3176(238)
Na	0.91	-10.5(3.6)	4074(238)	0.94	-9.1(3.2)	4256(210)
Be	0.88	-64.9(9.1)	2983(206)	0.88	-62.7(9.6)	3164(217)
Mg	0.93	-22.9(5.0)	3606(188)	0.92	-20.2(5.3)	3713(201)
Ca	0.94	-9.2(3.8)	3081(143)	0.94	-7.4(4.2)	3260(160)

Table S5: Comparison of slope from other studies and present work. References are from main text.

Method	CC	Intercept	Slope	Reference
		Н		
MP2(full)/aug-cc-pVTZ	0.88	-0.4	777	[37]
MP2(full)/aug-cc-pVTZ	0.98	-5.1	1101	[83]
B3LYP/6-311++G(d,p)	0.86	-2.9(5.6)	911(141)	[97]
MP2/aug-cc-pVDZ	0.95	-2.5(1.0)	901(38)	This work
		Li		
MP2(full)/aug-cc-pVTZ	0.97	-17.6	3271	[37]
MP2(full)/aug-cc-pVTZ	0.96	-13.1	3218	[83]
MP2/aug-cc-pVDZ	0.85	1.1(5.4)	2997(239)	This work
		Na		
MP2(full)/6-311++G(d,p)	0.90	18.0(9.6)	4699(536)	[34]
MP2/aug-cc-pVDZ	0.91	-10.5(3.6)	4074(238)	This work
		Be		
CCSD(T)/aug-cc-pVTZ	0.87	-64.1(16.6)	2600(308)	[40]
G4	0.77	-68.0(46.3)	2813(694)	[44]
MP2/aug-cc-pVDZ	0.88	-64.9(9.1)	2983(206)	This work
Mg				
B3LYP/6-311+G(3df,2p)	0.93	-29.2(13.7)	3599(466)	[46]
MP2/aug-cc-pVDZ	0.93	-22.9(5.0)	3606(188)	This work
Са				
G4	0.97	-3.0(18.6)	3082(566)	[49]
MP2/aug-cc-pVDZ	0.94	-9.2(3.8)	3081(143)	This work

Figure S1. Power fit (ax^r) of the binding energy (kJ/mol) versus electron density (au) for alkalene (Li, Na, Be, Mg, Ca) and hydrogen (H) bonded complexes. Values of the prefactor (a) and power (r) of the best fit lines are shown along with their respective standard deviation. The R^2 value denotes the quality of the fit.

Figure S2. Comparison of slopes and intercepts from binding energy and electron density plots obtained from M062X and MP2 methods for H and Be-bonds.

The following section contains all data sets. (Tables D1 to D6 and Figures D1 to D6).

All Data Sets

Table D1. Electron density at BCP (au) and binding energy (kJ/mol) data for H-bonded complexes.

Complexes	Electron Density (au)	Binding Energy (kJ/mol)
FH•••OH ₂	0.0381	32.9
FH•••SH ₂	0.0214	19.0
FH•••NH ₃	0.0506	48.7
FH•••NCH	0.0288	28.3
FH•••CO	0.0203	13.5
FH•••HCHO	0.0395	31.1
FH•••C ₂ H ₄	0.0183	17.1
FH•••CH ₃ OH	0.0452	37.4
FH•••PH ₃	0.0202	17.6
FH•••O(CH ₃) ₂	0.051	39.1
HOH•••OH ₂	0.0237	18.5
HOH•••SH ₂	0.0137	10.7
HOH•••NH ₃	0.0275	24.3
HOH•••NCH	0.0174	15.0
НОН•••СО	0.0115	6.4
HOH•••OCH ₂	0.0234	19.8
HOH•••C ₂ H ₄	0.0121	9.5
HOH•••OHCH ₃	0.0277	21.1
HOH•••PH ₃	0.0121	8.9
$HOH \bullet \bullet O(CH_3)_2$	0.0306	22.1
HSH•••OH ₂	0.0155	10.4
HSH•••SH ₂	0.0105	6.5
HSH•••NH ₃	0.0197	13.7
HSH•••NCH	0.0124	9.4
HSH•••CO	0.0078	3.6
HSH•••OCH ₂	0.0172	11.7
HSH•••C ₂ H ₄	0.0095	6.3
HSH•••OHCH ₃	0.0189	12.9
HSH•••PH ₃	0.009	5.7
HSH•••O(CH ₃) ₂	0.0239	13.6
50 45 40 35 30 25 20 15 10 5	• • • •	•
0 0 2	Electron density at BCP (au)	8 10 12

Figure D1. Binding energy (kJ/mol) versus electron density at BCP (au) plot for H-bonded complexes

Complexes	Electron Density (au)	Binding Energy (kJ/mol)
FLi•••OH ₂	0.0241	65.7
FLi•••NCCH ₃	0.0222	73.7
FLi•••NH ₃	0.0234	79.9
FLi•••NCH	0.0203	61.3
FLi•••OCH ₂	0.0251	75.0
FLi •••C ₂ H ₄	0.0112	33.5
FLi•••OHCH ₃	0.0269	75.9
FLi•••PH ₃	0.0118	37.0
FLi•••CO	0.013	28.7
FLi•••O(CH ₃) ₂	0.0275	68.8
ClLi•••OH ₂	0.0256	74.3
ClLi •••NCCH ₃	0.0237	84.5
ClLi•••NH ₃	0.0247	90.3
ClLi•••NCH	0.0218	70.3
ClLi•••OCH ₂	0.0267	80.9
ClLi•••C ₂ H ₄	0.0125	39.7
ClLi•••OHCH ₃	0.0286	84.8
ClLi•••PH ₃	0.0132	44.0
ClLi•••CO	0.0142	33.5
ClLi•••O(CH ₃) ₂	0.0297	80.7
BrLi•••OH ₂	0.0259	76.2
BrLi•••NCCH ₃	0.0242	86.8
BrLi•••NH ₃	0.0252	92.4
BrL•••NCH	0.0222	72.2
BrLi•••OCH ₂	0.0271	81.7
BrLi ••• C_2H_4	0.0126	41.0
BrLi•••OHCH3	0.029	86.3
BrLi•••PH ₂	0.0135	45.4
BrLi···CO	0.0145	34.4
BrLi•••O(CH ₂) ₂	0.0302	82.7

Table D2. Electron density at BCP (au) and binding energy (kJ/mol) data for Li-bonded complexes.

Figure D2. Binding energy (*kJ*/mol) versus electron density at BCP (au) plot for Li- bonded complexes.

Binding Energy (kJ/mol) Complexes **Electron Density (au)** FNa•••OH₂ 0.0128 46.5 FNa•••NCCH₃ 0.0162 58.7 FNa•••NH₃ 58.0 0.0165 FNa•••NCH 48.0 0.0148 FNa•••OCH₂ 0.0165 66.5 FNa•••C₂H₄ 0.0082 23.5 FNa•••OHCH₃ 0.0176 61.4 FNa•••PH₃ 26.7 0.0086 FNa•••CO 0.0093 19.6 FNa•••O(CH₃)₂ 53.7 0.0175 ClNa•••OH₂ 51.9 0.015 ClNa•••NCCH3 0.0171 64.8 ClNa•••NH₃ 0.0174 63.6 ClNa•••NCH 0.0156 53.0 ClNa•••OCH₂ 0.0173 63.6 ClNa•••C₂H₄ 0.0087 26.7 ClNa•••OHCH3 0.0184 62.4 ClNa•••PH₃ 0.0091 30.1 ClNa•••CO 21.7 0.0097 ClNa•••O(CH₃)₂ 57.4 0.0188 52.9 BrNa•••OH₂ 0.0155 BrNa•••NCCH₃ 66.1 0.0175 BrNa•••NH₃ 0.0177 64.7 BrNa•••NCH 53.9 0.0159 BrNa••• OCH2 0.0175 62.8 27.3 BrNa•••C₂H₄ 0.0089 BrNa•••OHCH3 0.0188 62.3 BrNa•••PH₃ 0.0094 30.8 BrNa•••CO 0.0099 22.1 BrNa•••O(CH₃)₂ 0.0191 57.7

Table D3. Electron density at BCP (au) and binding energy (kJ/mol) data for Na-bonded complexes.

Figure D3. Binding energy (kJ/mol) versus electron density at BCP (au) plot for Na-bonded complexes.

Complexes	Electron Density (au)	Binding Energy (kJ/mol)
F_2Be ••• OH_2	0.047	84.0
F_2Be ••• SH_2	0.0315	40.0
F_2Be •••NH ₃	0.0546	113.7
F ₂ Be•••NCH	0.0406	59.8
F_2Be •••OCH ₂	0.0446	73.4
F ₂ Be•••C ₂ H ₄	0.025	30.0
F ₂ Be•••OHCH ₃	0.0523	100.0
$F_2Be \bullet \bullet \bullet PH_3$	0.0335	39.6
F ₂ Be•••CO	0.0321	26.3
$F_2Be \bullet \bullet O(CH_3)_2$	0.0544	107.3
$Cl_2Be \bullet \bullet OH_2$	0.0522	84.7
$Cl_2Be \bullet H_2$	0.0369	40.8
Cl ₂ Be•••NH ₃	0.0602	119.8
Cl ₂ Be•••NCH	0.0477	61.2
Cl ₂ Be•••OCH ₂	0.0481	70.8
Cl ₂ Be•••C ₂ H ₄	0.0278	27.6
Cl ₂ Be•••OHCH ₃	0.0575	103.3
Cl ₂ Be•••PH ₃	0.0404	43.8
Cl ₂ Be•••CO	0.0401	23.6
$Cl_2Be \bullet O(CH_3)_2$	0.0578	105.7
$H_2Be \bullet \bullet OH_2$	0.0428	62.7
$H_2Be \bullet \bullet SH_2$	0.0274	24.2
$H_2Be \bullet \bullet \bullet NH_3$	0.0496	85.9
H ₂ Be•••NCH	0.0386	40.3
H ₂ Be•••OCH ₂	0.038	50.8
H ₂ Be•••NH ₂ CH ₃	0.0536	99.3
H ₂ Be•••OHCH ₃	0.0481	78.2
$H_2Be \bullet \bullet \bullet PH_3$	0.0307	24.1
H ₂ Be•••CO	0.0341	13.7
$H_2Be \bullet \bullet O(CH_3)_2$	0.0491	83.3

Table D4. Electron density at BCP (au) and binding energy (kJ/mol) data for Be-bonded complexes.

Figure D4. *Binding energy (kJ/mol) versus electron density at BCP (au) plot for Be-bonded complexes.*

Complexes	Electron Density (au)	Binding Energy (kJ/mol)
F_2Mg •••OH ₂	0.0324	91.0
$F_2Mg \bullet \bullet \bullet SH_2$	0.02	50.9
F_2Mg •••NH ₃	0.032	107.9
F ₂ Mg•••NCH	0.026	71.9
F ₂ Mg•••OCH ₂	0.0307	84.8
F ₂ Mg•••C ₂ H ₄	0.016	43.1
F ₂ Mg•••OHCH ₃	0.0349	103.7
$F_2Mg \bullet \bullet \bullet PH_3$	0.0188	48.5
F ₂ Mg•••CO	0.0177	35.5
$F_2Mg \bullet \bullet \bullet O(CH_3)_2$	0.0363	109.2
Cl ₂ Mg•••OH ₂	0.0341	97.8
Cl ₂ Mg•••SH ₂	0.0187	56.7
Cl ₂ Mg•••NH ₃	0.0338	117.2
Cl ₂ Mg•••NCH	0.0279	78.9
Cl ₂ Mg•••HCHO	0.032	88.5
Cl ₂ Mg•••C ₂ H ₄	0.0171	49.6
Cl ₂ Mg•••OHCH ₃	0.0368	112.7
Cl ₂ Mg•••PH ₃	0.0207	55.7
Cl ₂ Mg•••CO	0.0191	38.5
$Cl_2Mg \bullet \bullet \bullet O(CH_3)_2$	0.0368	116.4
H ₂ Mg•••OH ₂	0.0274	61.9
$H_2Mg \bullet \bullet \bullet SH_2$	0.014	28.2
H ₂ Mg•••NH ₃	0.0272	73.7
H ₂ Mg•••NCH	0.0208	44.5
H ₂ Mg•••OCH ₂	0.0252	55.0
H ₂ Mg•••C ₂ H ₄	0.0115	22.4
H ₂ Mg•••OHCH ₃	0.03	72.6
H ₂ Mg•••PH ₃	0.0136	25.2
H ₂ Mg•••CO	0.0123	16.5
$H_2Mg \bullet \bullet O(CH_3)_2$	0.0305	75.9

Table D5. Electron density at BCP (au) and binding energy (kJ/mol) data for Mg-bonded complexes.

Figure D5. Binding energy (kJ/mol) versus electron density at BCP (au) plot for Mg- bonded complexes.

Complexes	Electron Density (au)	Binding Energy (kJ/mol)
F_2Ca ••• OH_2	0.0312	91.7
F_2Ca ••• SH_2	0.0173	48.0
F_2Ca ••• NH_3	0.0287	90.9
F ₂ Ca•••NCH	0.0244	69.1
F ₂ Ca•••CO	0.0161	32.4
F ₂ Ca•••OCH ₂	0.0286	80.0
F_2Ca ••• C_2H_4	0.0146	40.6
F ₂ Ca•••OHCH ₃	0.032	91.3
$F_2Ca \bullet \bullet \bullet PH_3$	0.0172	43.4
F_2Ca •••O(CH ₃) ₂	0.0351	92.9
Cl_2Ca ••• OH_2	0.0336	94.5
Cl_2Ca ••• SH_2	0.0208	54.8
Cl_2Ca ••• NH_3	0.0324	102.9
Cl ₂ Ca•••NCH	0.028	78.3
Cl ₂ Ca•••CO	0.0192	38.2
Cl_2Ca ••• OCH_2	0.0314	84.4
Cl ₂ Ca•••C ₂ H ₄	0.0166	48.6
Cl ₂ Ca•••OHCH ₃	0.0375	103.3
Cl ₂ Ca•••PH ₃	0.019	52.0
Cl_2Ca ••• $O(CH_3)_2$	0.0377	106.4
H_2Ca ••• SH_2	0.0166	40.0
$H_2Ca \bullet \bullet \bullet NH_3$	0.0289	85.0
H ₂ Ca•••NCH	0.0238	63.0
H ₂ Ca•••CO	0.0151	27.3
H_2Ca ••• OCH_2	0.0283	70.1
$H_2Ca \bullet \bullet C_2H_4$	0.0134	34.6
H ₂ Ca•••OHCH ₃	0.0328	85.6
$H_2Ca \bullet \bullet PH_3$	0.0148	37.1
$H_2Ca \bullet \bullet O(CH_3)_2$	0.0345	88.3
H ₂ Ca•••CH ₃ CN	0.0267	77.6

Table D6. Electron density at BCP (au) and binding energy (kJ/mol) data for Ca-bonded complexes.

Figure D6. Binding energy (kJ/mol) versus electron density at BCP (au) plot for Ca- bonded complexes.