## Two-Dimensional Metallic SnB Monolayer as an Anode

## Material for Non-lithium-ion Batteries

Yue Kuai<sup>a</sup>, Changcheng Chen<sup>a,\*</sup>, Elyas Abduryim<sup>a</sup>, Shuli Gao<sup>a</sup>, Wen Chen<sup>a</sup>, Ge Wu<sup>a</sup>, Liyuan Wu<sup>b</sup>,

Chao Dong<sup>c</sup>, Weixia Zou<sup>c,\*</sup>, Pengfei Lu<sup>c,\*</sup>

a School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China.

b CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China

c State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China.

Email: chenchangcheng@xauat.edu.cn(C. Chen), wuly@bupt.edu.cn(L. Wu), photon.bupt@gmail.com(P. Lu)



Fig. S1 (a) The comparison of cohesive energy between SnB monolayer and other two-dimensional material. (b) The adhesion energy and adsorption height between  $\delta 6$ -borophene, B<sub>2</sub>N, B<sub>3</sub>N, B<sub>5</sub>N and the Ag (111) substrate. (c) Simulated STM image of SnB monolayer.

The volume expansions of Na<sub>x</sub>SnB, K<sub>x</sub>SnB and Mg<sub>x</sub>SnB at equilibrium volumes were calculated and expressions is given by

$$\Delta V = \frac{V_n - V_0}{V_0} \times 100\%$$
(1)

where,  $V_n$  is the volume of Na<sub>x</sub>SnB, K<sub>x</sub>SnB and Mg<sub>x</sub>SnB.  $V_0$  is the volume of SnB monolayer.



Fig. S2 (a) Adsorption energy in a Na, K, and Mg-ions adsorbed SnB monolayer as afunction of Na, K, and Mg-ions concentration x. (b) Volume expansions of Na<sub>3</sub>SnB, $K_{2.5}SnB$ andMg<sub>1.5</sub>SnB.