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S1. Supplementary Method

S1.1 Genetic algorithm

In the genetic algorithm, each value in search space is denoted by a chromosome to mimic 

the natural selection process of living beings. The algorithm starts with a set of chromosomes 

called population. New chromosomes are generated in each iteration, called a generation. The 

optimizing object is called fitness, and a chromosome with higher fitness is likely to be chosen 

for the next generation. In each iteration, two chromosomes are picked, and they switch their 

genetic information to generate two new chromosomes. Then, new chromosomes are modified 

by the mutation operation. These steps repeat until the same number as the population size is 

picked. Detailed steps used in this work are shown as follows. 

Encoding: The search space xi was transferred to bits of chromosomes by 

. The superscripts u and l denote upper and lower limits in each dimension, ⌈ log2 [(𝑥𝑢
𝑖 ‒ 𝑥𝑙

𝑖)/𝑝] ⌉

while p is the precision and “  ” indicates the ceiling function. For integers and real numbers, ⌈ ⌉

p values were chosen as 1 and 10-7. The Gray code was used to convert numbers into bits 

because of its Hamming distance properties to keep bits of closer numbers similar.

Selection: Tournament selection with a size of 3 was used for choosing parents’ 

chromosomes to generate the next generation. 3 chromosomes were randomly chosen, and the 

one with maximum fitness was picked as a parent’s chromosome. 

Crossover: Two-point crossover was used. Two points were randomly chosen, and bits 

between the two points were swapped between two parents’ chromosomes.

Mutation: Each bit (0 or 1) was randomly changed to the counterpart with a probability 

of 0.005.

S1.2 Particle swarm optimization

The particle swarm optimization is based on the social behavior of the movement of 

organisms. The algorithm searches the optimized solution by a population of particles, and 

each particle denotes a point in the search space. The motion of each particle is determined by 

its local best-known position and the global best-known position. The position of particles 

moves by the following equations:
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In Equations S1 and S2, , , , and  denote the velocity, particle identification, 𝑣 𝑝 𝑑 𝑘

dimension, and iteration number.  is the position, while  and denote the optimal local 𝑥 𝑥𝑙𝑜𝑐
𝑝,𝑑 𝑥𝑔𝑙𝑜

𝑑

position of the particle  and optimal global position. and  are two uniform random numbers 𝑝 𝑟1 𝑟2

in the range of 0 and 1 for each dimension and particle. Inertial weight , cognitive coefficient 𝜔

, and social coefficient  are adjustable model parameters. Here, these parameters were fixed 𝑐1 𝑐2

to 0.8, 2, and 2 during the iteration process. The initial velocities were randomly generated 

between  and .𝑥𝑙
𝑖 ‒ 𝑥𝑢

𝑖 𝑥𝑢
𝑖 ‒ 𝑥𝑙

𝑖

S1.3 Simulated annealing

The simulated annealing algorithm originates from annealing in metallurgy, as the 

particles of materials become orderly by slow cooling. Very fast simulated annealing method1 

was used with an initial temperature  as 1. In each step, the current position  transfers to 𝑇0 𝑥𝑘
𝑑

the next position  by the following equation:𝑥𝑘 + 1
𝑑
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 and  are the current and next value respecting to positions. The “sgn” means the 𝑦𝑘 𝑦𝑘 + 1

sign function, and  or  is from the uniform distribution U[0, 1]. The temperature decreases 𝑠 𝑟

with the iteration number  as:𝑘

𝑇𝑘 = 𝑇0𝑒
‒ 𝑐⌊𝑘

𝑙 ⌋𝑑

 #(𝑆4)

The annealing process was performed every  step, and “ ” indicates the floor function. 𝑙 ⌊ ⌋

 and  are two parameters set as 1 to control the cooling speed.𝑐 𝑑

S1.4 Descriptor of ligands



%Vbur (min) - 3 · HOMO-LUMO gap (eV)2 was used as the descriptor for ligands in the 

used dataset. %Vbur (min) is the minimum value of the percent buried volume (%Vbur) of a 

ligand’s conformers. %Vbur denotes the percent of the overlap volume between a metal sphere 

and ligand relative to the volume of the sphere. The steric descriptor %Vbur (min) effectively 

classifies active and inactive ligands3, and is a parameter of the empirical formula for predicting 

reaction outcomes4. All ligands exist in the kraken library5, so conformers of these ligands can 

be directly obtained from the library, where conformers were optimized at the PBE(D3BJ)/6-

31+G(d,p)6-8 level with the SMD9 model to present the CHCl3 environment implicitly. In this 

library, putative metal atoms were introduced to construct ligand-metal structures, as shown in 

Figure S2. In detail, the metal sphere with a radius of R is centered on the metal atom, bonded 

with the ligand with a bond length d. In addition, the ligand’s volume is the sum of non-

hydrogen atoms’ volumes. The Bondi radii scaled by 1.17, 3.5 Å, and 2.28 Å were chosen as 

the atom radii, R-value, and d-value.



Figure S1. Chemical structures of reagents in Buchwald-Hartwig reactions.



Figure S2. The definition of %Vbur (a). The grey, white, orange, and green balls denote C, H, 

P, and metal atoms, respectively. The method of locating the putative metal atom (b). The 

black, orange, and green circles denote atoms bonded with P, P, and metal atoms, respectively. 

The grey-filled circle is the center of three atoms bonded with P. 

       



Figure S3.  The distributions of yields of 105 samplings by four different methods. The mean 

and standard deviation (SD) of yields (%) are shown.



Figure S4. Best yield (%) and cost change of PSO versus the iteration with uniform initiation 

averaged by repeating 1000 times. The legends with different colors denote the population 

sizes. NE (a, b), MFE (c, d), and RDE (e, f) denote numerical, molecular fingerprint, and 

reaction descriptor encoding, correspondingly. The black dashed line represents the yield of 

95%, and the red dashed line (b) denotes the lowest cost to reach the 95% yield in each set of 

parameters.



Figure S5. Best yield (%) and cost change of SA with the iteration averaged by repeating 1000 

times. The legends with different colors denote the required step for decreasing temperature 

one time, and zero iteration means the initiation. NE (a, b), MFE (c, d), and RDE (e, f) denote 

numerical, molecular fingerprint, and reaction descriptor encoding, correspondingly. The black 

dashed line represents the yield of 95%, and the red dashed lines (b) and (f) denote the lowest 

cost to reach the 95% yield in each set of parameters.



Figure S6. Best yield (%) and cost change of PSO with NE encoding versus the iteration in the 

subsets 2d (a, b) and 2e (c, d) by repeating 1000 times. The legends with different colors denote 

the population sizes. The black dashed line represents the yield of 95%, and the red dashed 

lines (b) and (d) denote the lowest cost to reach the 95% yield in each set of parameters.

 



Table S1. The reaction conditions reached a 95% yield for the Buchwald–Hartwig reactions. 

These numbers denote molecular structures shown in Figure S1, while 0 means no additive is 

added.

Base Ligand Aryl Halide Additive Yield (%)

3 2 11 4 97.29

3 2 12 0 95.42

3 2 12 1 100.00

3 2 12 2 97.57

3 2 12 3 95.39

3 2 12 4 99.62

3 2 14 0 98.04

3 2 14 2 98.73

3 2 15 0 99.69

3 2 15 2 98.29

3 3 11 4 96.59

3 3 12 0 98.03

3 3 12 1 100.00

3 3 12 4 97.95

3 3 12 5 98.85

3 3 12 6 98.18

3 3 15 0 96.15

3 4 11 4 95.56

3 4 12 2 95.07

3 4 12 4 99.03

3 4 12 5 95.75

3 4 12 6 95.68

3 4 12 9 96.13

3 4 14 3 95.13

3 4 15 0 96.92
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