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The complete mass-conserving quartic model

The quartic model is derived by considering the effects of annihilator species conservation 

while determining the rate of triplet sensitization ( ). This model is given by 𝑘𝑠𝑒𝑛𝑠[3𝑆 ∗ ]𝑆𝑆[𝐴]𝑆𝑆

the solution to the following expression for :[3𝐴 ∗ ]𝑆𝑆

                                      

Β𝐼𝑆𝐶𝑘𝑠𝑒𝑛𝑠𝑘𝑒𝑥𝐼[𝑆]0

Β𝐼𝑆𝐶𝑘𝑒𝑥𝐼 + 𝑘𝑠𝑒𝑛𝑠([𝐴]0 ‒ [3
 𝐴

∗ ]𝑠𝑠 ‒  
0.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴[3

 𝐴
∗ ] 2

𝑆𝑆

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'
‒

0.75𝑘𝑇𝑇𝐴[3
 𝐴

∗ ] 2
𝑆𝑆

𝑘𝐼𝐶 + 𝑘𝑅𝐼𝑆𝐶 ) + 𝑘𝑆
𝑇

([𝐴]0 ‒ [3
 𝐴

∗ ]𝑆𝑆 ‒  
0.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴[3

 𝐴
∗ ] 2

𝑆𝑆

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'
‒

0.75𝑘𝑇𝑇𝐴[3
 𝐴

∗ ] 2
𝑆𝑆

𝑘𝐼𝐶 + 𝑘𝑅𝐼𝑆𝐶 ) = 𝑘𝐴
𝑇[3𝐴 ∗ ]𝑆𝑆

+ 1.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴[3
 𝐴

∗ ] 2
𝑆𝑆 ‒ 𝑘𝐼𝑆𝐶

'
0.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴[3

 𝐴
∗ ] 2

𝑆𝑆

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'

(S1)

Rearranging leads to:

 ,                                    (S2) 𝛼1[3
 𝐴

∗ ] 4
𝑆𝑆 + 𝛼2[3

 𝐴
∗ ] 3

𝑆𝑆 + 𝛼3[3
 𝐴

∗ ] 2
𝑆𝑆 + 𝛼4[3

 𝐴
∗ ]𝑆𝑆 + 𝛼5 = 0 

where
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𝛼1 = 𝑘𝑠𝑒𝑛𝑠(𝑘𝐼𝑆𝐶

'
0.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'
‒ 1.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴)(0.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'
+

0.75𝑘𝑇𝑇𝐴

𝑘𝐼𝐶 + 𝑘𝑅𝐼𝑆𝐶)
(S3)

𝛼2

= ‒ 𝑘𝐴
𝑇𝑘𝑠𝑒𝑛𝑠(0.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'
+

0.75𝑘𝑇𝑇𝐴

𝑘𝐼𝐶 + 𝑘𝑅𝐼𝑆𝐶) + 𝑘𝑠𝑒𝑛𝑠(𝑘𝐼𝑆𝐶
'
0.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'
‒ 1.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴)

            (S4)

𝛼3

=‒ 𝑘𝐴
𝑇𝑘𝑠𝑒𝑛𝑠 + (𝑘𝑠𝑒𝑛𝑠[𝐴]0 + Β𝐼𝑆𝐶𝑘𝑒𝑥𝐼 + 𝑘𝑆

𝑇)(𝑘𝐼𝑆𝐶
'
0.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'
‒ 1.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴) +                                                        Β𝐼𝑆𝐶𝑘𝑠𝑒𝑛𝑠𝑘𝑒𝑥

𝐼[𝑆]0(0.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'
+

0.75𝑘𝑇𝑇𝐴

𝑘𝐼𝐶 + 𝑘𝑅𝐼𝑆𝐶)
         (S5)                                        

                                  (S6)𝛼4 = Β𝐼𝑆𝐶𝑘𝑠𝑒𝑛𝑠𝑘𝑒𝑥𝐼[𝑆]0 + 𝑘𝐴
𝑇(𝑘𝑠𝑒𝑛𝑠[𝐴]0 + Β𝐼𝑆𝐶𝑘𝑒𝑥𝐼 + 𝑘𝑆

𝑇)

and

 .                                                           (S7)𝛼5 =‒ Β𝐼𝑆𝐶𝑘𝑠𝑒𝑛𝑠𝑘𝑒𝑥𝐼[𝑆]0[𝐴]0

The general solution to eqn (S2) is cumbersome, but can be represented as: 

,                                                    (S8)
[3

 𝐴
∗ ]𝑆𝑆 =

‒ 𝛼2

4𝛼1
+ 𝑆 +

‒ 4𝑆2 ‒ 2𝑝 ‒
𝑞
𝑆

2
 

where

                                                (S9)
𝑆 =

1
2

‒
2
3

𝑝 + ( 1
3𝛼1

(𝑄 +
∆𝐷0

𝑄 ))

                                                   (S10)
𝑄 = 3

∆𝐷1 + (∆𝐷1
2 ‒ 4∆𝐷0

3)
2

(S11)∆𝐷0 = 𝛼3
2 ‒ 3𝛼2𝛼4 + 12𝛼1𝛼5                                                    
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                          (S12)∆𝐷1 = 2𝛼3
3 ‒ 9𝛼2𝛼3𝛼4 + 27𝛼2

2𝛼5 + 27𝛼1𝛼4
2 ‒ 72𝛼1𝛼3𝛼5

(S13)
𝑞 =

𝛼2
3 ‒ 4𝛼1𝛼2𝛼3 + 8𝛼1

2𝛼4

8𝛼1
3

                                                         

and

 .       (S14)
𝑝 =

8𝛼1𝛼3 ‒ 3𝛼2
2

8𝛼1
2

Note that eqn (S8) represents the only real and positive root to eqn (S2), so the other three 

solutions are not given here. When the expressions for , , , , , , and  through 𝑆 𝑄 𝑝 𝑞 ∆𝐷0 ∆𝐷1 𝛼1

 are substituted into eqn (S8), we obtain a complete solution for the steady-state concentration 𝛼5

of annihilator triplets, which can then be used to obtain the steady-state rate of fluorescence 

under our complete mass-conserving model through 

 .                                            (S15)
𝐹𝑆𝑆 =

𝑘𝑓𝑙(1 + 𝛽𝑅𝐼𝑆𝐶)0.25𝑘𝑇𝑇𝐴[3
 𝐴] 2

𝑆𝑆

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'

Exploring the effects of sensitizer TTA

, and  at steady state can be described as[1𝑆 ∗ ] [3
 𝑆

∗ ]

                                             (S16)
[1𝑆 ∗ ]𝑆𝑆 =

𝑘𝑒𝑥𝐼[𝑆]0

𝑘𝑒𝑥𝐼 + 𝑘𝑁𝑅
𝑆 + 𝑘𝐼𝑆𝐶

                                         (S17)
[3𝑆 ∗ ]𝑆𝑆 =

𝐵𝐼𝑆𝐶𝑘𝑒𝑥𝐼[𝑆]0

𝐵𝐼𝑆𝐶𝑘𝑒𝑥𝐼 + 𝑘𝑠𝑒𝑛𝑠[𝐴] + 𝑘𝑇
𝑆

To introduce and model the effects of sensitizer TTA, eqn (1) and eqn (2) in the main text can 

be modified to read 



S6

       (S18)

𝑑[1𝑆 ∗ ]
𝑑𝑡

= 𝑘𝑒𝑥𝐼[𝑆] ‒ 𝑘 𝑆
𝑁𝑅[1𝑆 ∗ ] ‒ 𝑘𝐼𝑆𝐶[1𝑆 ∗ ] + 0.25𝑘 𝑆

𝑇𝑇𝐴[3𝑆 ∗ ]2

and

  .  (S19)

𝑑[3
 𝑆]

𝑑𝑡
= 𝑘𝐼𝑆𝐶[1𝑆 ∗ ] ‒ 𝑘𝑠𝑒𝑛𝑠[3𝑆 ∗ ][𝐴] ‒ 𝑘𝑆

𝑇[3𝑆 ∗ ] ‒ 1.25𝑘 𝑆
𝑇𝑇𝐴[3𝑆 ∗ ]2

Note that the coefficients in front of the terms originate from spin statistics. Here, 𝑘 𝑆
𝑇𝑇𝐴[3𝑆 ∗ ]2 

IC from higher-order sensitizer triplet states is not considered explicitly. At steady-state, eqn 

(S19) can be expressed as

 𝑘 𝑆
𝑇𝑇𝐴[3𝑆 ∗ ] 2

𝑆𝑆(1.25 + 0.25𝐵𝐼𝑆𝐶)[3𝑆 ∗ ]2(1.25 ‒ 0.25𝐵𝐼𝑆𝐶) +

(S20)𝑘𝑠𝑒𝑛𝑠[3𝑆 ∗ ]𝑆𝑆[𝐴] + 𝑘𝑆
𝑇[3𝑆 ∗ ]𝑆𝑆 + 𝐵𝐼𝑆𝐶𝑘𝑒𝑥𝐼[3𝑆 ∗ ]𝑆𝑆 = 𝐵𝐼𝑆𝐶𝑘𝑒𝑥𝐼[𝑆]0

Eqn (20) can be solved to obtain

[3𝑆 ∗ ]𝑆𝑆

=
‒ (𝑘𝑠𝑒𝑛𝑠[𝐴]𝑆𝑆 + 𝑘𝑒𝑥𝐼 + 𝑘𝑇

𝑆) ‒ (𝑘𝑠𝑒𝑛𝑠[𝐴]𝑆𝑆 + 𝐵𝐼𝑆𝐶𝑘𝑒𝑥𝐼 + 𝑘𝑇
𝑆)2 + 4𝑘 𝑆

𝑇𝑇𝐴𝐵𝐼𝑆𝐶𝑘𝑒𝑥𝐼[𝑆]0

2𝑘 𝑆
𝑇𝑇𝐴

                (S21)

 can be substituted into the following to obtain :[3𝑆 ∗ ]𝑆𝑆 [3𝐴 ∗ ]𝑆𝑆

[3𝑆 ∗ ]𝑆𝑆([𝐴]0 ‒ [3
 𝐴

∗ ]𝑆𝑆 ‒  
0.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴[3

 𝐴
∗ ] 2

𝑆𝑆

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'
‒

0.75𝑘𝑇𝑇𝐴[3
 𝐴

∗ ] 2
𝑆𝑆

𝑘𝐼𝐶 + 𝑘𝑅𝐼𝑆𝐶 )

 
= 𝑘𝐴

𝑇[3𝐴 ∗ ]𝑆𝑆 + 1.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴[3
 𝐴

∗ ] 2
𝑆𝑆 ‒ 𝑘𝐼𝑆𝐶

'
0.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴[3

 𝐴
∗ ] 2

𝑆𝑆

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'
            

(S22)
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Finally, FSS can be obtained by substituting the solution to eqn (S22) into eqn (S15). Note that 

a general solution to eqn (S22) for [3A*] cannot be obtained unless the assumption is made that 

[A]SS ≅ [A]0. However, numerical solutions of eqn (S22) show that the effect of making such 

an approximation is negligible under conditions in which sensitizer TTA becomes influential 

(See Figs. S1c and S1d). 

Figs. S1a and S1b explore the importance of sensitizer TTA (see Table S2 for the 

parameters used in this figure). When ksens is large, sensitizer TTA has no discernable effect on 

the rate of upconverted fluorescence. Typically, [A] is several orders of magnitude larger than 

[3S*]. Therefore the rate of sensitizer TTA, which is proportional to [3S*]2, is generally 

negligible when compared to the rate of triplet sensitization, which is proportional to [3S*][A]. 

Fig. S1b illustrates how sensitizer TTA starts to limit the rate of upconverted fluorescence 

appreciably only when ksens is several orders smaller than . Only in the unrealistic situation 𝑘 𝑆
𝑇𝑇𝐴

in which ksens is three orders of magnitude smaller than  and  is an order of magnitude 𝑘 𝑆
𝑇𝑇𝐴 [𝑆]0

less than  do the effects of sensitizer TTA become begin to become apparent (Fig. S1b). In [𝐴]0

the examples shown in Fig. S1a and S1b, the TTA rate constants are roughly an order of 

magnitude smaller than . Even when these three rate constants are of the same magnitude, 𝑘𝑠𝑒𝑛𝑠

the effects of sensitizer TTA continue to be negligible (not shown). 

Figs. S1c demonstrates that both the quadratic and quartic models give virtually identical 

predictions when sensitizer TTA is present. Even when  is nearly five orders of magnitude 𝑘𝑇𝑇𝐴

smaller than , these two models differ only slightly, near the saturation regime. 𝑘𝑠𝑒𝑛𝑠

Furthermore, as shown in Fig. S1d, in the quartic model with a unrealistically small value of 

, sensitizer TTA makes no difference in a logarithmic plot of the fluorescence rate vs. the 𝑘𝑇𝑇𝐴

irradiance.
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Because sensitizer TTA offers a competitive pathway to eliminate sensitizer triplets for 

certain TTA-UC systems, complete saturation of upconverted fluorescence would be observed 

at much higher irradiances than in cases where sensitizer TTA is not prevalent. At high enough 

irradiances, FSS first develops a square root dependence on I, before complete saturation occurs. 

Despite the delayed onset of complete saturation, sensitizer TTA always leads to reduced rates 

of upconverted fluorescence, and is therefore detrimental to . Although the results of Φ𝑈𝐶

sensitizer TTA are interesting, and deserving of a deeper study with our mass conserving TTA-

UC model, the results presented here make it clear that there are few circumstances in which 

is necessary to incorporate sensitizer TTA in the analysis of TTA plots of the type discussed 

here.

Deriving the characteristics of a simple TTA-UC model

Many of the characteristics of the TTA-UC process in our model can be understood by 

simplification of the expression

Β𝐼𝑆𝐶𝑘𝑠𝑒𝑛𝑠𝑘𝑒𝑥𝐼[𝑆]0

Β𝐼𝑆𝐶𝑘𝑒𝑥𝐼 + 𝑘𝑠𝑒𝑛𝑠[𝐴]𝑆𝑆 + 𝑘𝑆
𝑇([𝐴]0 ‒ [3

 𝐴
∗ ]𝑠𝑠 ‒  

0.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴[3
 𝐴

∗ ] 2
𝑆𝑆

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'
‒

0.75𝑘𝑇𝑇𝐴[3
 𝐴

∗ ] 2
𝑆𝑆

𝑘𝐼𝐶 + 𝑘𝑅𝐼𝑆𝐶 )

                             (S23)                           
= 𝑘𝐴

𝑇[3
 𝐴

∗ ]𝑠𝑠 + 1.25(1 + 𝛽𝑅𝐼𝑆𝐶)𝑘𝑇𝑇𝐴[3
 𝐴

∗ ] 2
𝑆𝑆 ‒ 𝑘𝐼𝑆𝐶

'
0.25𝑘𝑇𝑇𝐴[3

 𝐴
∗ ] 2

𝑆𝑆

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅 + 𝑘𝐼𝑆𝐶

'

We begin by considering the classic irradiance limits of TTA-UC and the expression for the 

irradiance at which the extrapolated limiting behaviors are equal, which is commonly denoted 

. For an ideal TTA-UC system, an expression for  that is derived without the consideration 𝐼𝑡ℎ 𝐼𝑡ℎ

of mass conservation will closely resemble the expression for  from our mass-conserving 𝐼𝑡ℎ
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model. To show this result, we consider a simplified version of eqn (S23) in which we assume 

that , , , and : 𝛽𝑅𝐼𝑆𝐶 = 0 𝑘𝐼𝑆𝐶
' =  0 Β𝐼𝑆𝐶 =  1 𝑘𝑠𝑒𝑛𝑠[𝐴]𝑆𝑆≅𝑘𝑠𝑒𝑛𝑠[𝐴]0

𝑘𝑠𝑒𝑛𝑠𝑘𝑒𝑥𝐼[𝑆]0

𝑘𝑒𝑥𝐼 + 𝑘𝑠𝑒𝑛𝑠[𝐴]0 + 𝑘𝑆
𝑇

([𝐴]0 ‒ [3
 𝐴

∗ ]𝑠𝑠 ‒  
0.25𝑘𝑇𝑇[3

 𝐴
∗ ] 2

𝑆𝑆

𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅

‒
0.75𝑘𝑇𝑇[3

 𝐴
∗ ] 2

𝑆𝑆

𝑘𝐼𝐶 )
 .  (S24)= 𝑘𝐴

𝑇[3
 𝐴

∗ ]𝑠𝑠 + 1.25𝑘𝑇𝑇[3
 𝐴

∗ ] 2
𝑆𝑆

The  term in the denominator of the left-hand side of eqn (S24) arises from the 𝑘𝑒𝑥𝐼

implementation of mass conservation in obtaining the steady-state concentration of sensitizer 

triplets. If we were instead to assume that the concentration of sensitizer triplets is much lower 

than the initial concentration of sensitizers, then  can be approximated as . In this case, [𝑆]𝑠𝑠 [𝑆]0

sensitizer mass conservation is ignored. Similarly, the second term in parentheses arises from 

mass conservation in the annihilator, and is negligible when . We can therefore [𝐴]0 ≫ [3𝐴 ∗ ]𝑆𝑆

re-express eqn (S24) as

 .              (S25)𝛽𝑠𝑒𝑛𝑠𝑘𝑒𝑥𝐼[𝑆]0 = [3𝐴 ∗ ]𝑆𝑆𝑘𝐴
𝑇 + 1.25𝑘𝑇𝑇𝐴[3

 𝐴
∗ ] 2

𝑆𝑆

When the irradiance is small enough, the  term is negligibly small, such that we can [3𝐴 ∗ ] 2
𝑆𝑆

describe steady-state fluorescence in the low-irradiance regime as                                

  .           (S26)
𝐹𝑆𝑆,𝑙𝑜𝑤 = 0.25Φ𝑓𝑙𝑘𝑇𝑇𝐴[3

 𝐴
∗ ] 2

𝑆𝑆 = 0.25Φ𝑓𝑙𝑘𝑇𝑇𝐴(𝛽𝑠𝑒𝑛𝑠𝑘𝑒𝑥𝐼[𝑆]0

𝑘𝐴
𝑇

)2

Thus, the steady-state fluorescence scales as I2 at low enough irradiance. Given the conditions 

that had to be met to reach eqn (S26), it is clear that the irradiance must generally be quite low 

to attain this limit. This fact is not often discussed in the TTA-UC literature, but has important 

ramifications for the experimental determination of .𝐼𝑡ℎ  
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At high irradiance, we can assume that the terms in eqn (S24) that are linear in  are [3
 𝐴]𝑠𝑠

unimportant, yielding

 .                                         (S27)𝛽𝑠𝑒𝑛𝑠𝑘𝑒𝑥𝐼[𝑆]0 = 1.25𝑘𝑇𝑇𝐴[3𝐴 ∗ ] 2
𝑆𝑆

Therefore, the rate of steady-state fluorescence at the high irradiance limit may be expressed 

as

 .  (S28)
𝐹𝑆𝑆,ℎ𝑖𝑔ℎ = 0.25Φ𝑓𝑙𝑘𝑇𝑇𝐴[3

 𝐴
∗ ] 2

𝑆𝑆 =
Φ𝑓𝑙𝛽𝑠𝑒𝑛𝑠𝑘𝑒𝑥𝐼[𝑆]0

5

We find  by setting eqn (S28) equal to eqn (S26) and solving for the irradiance:𝐼𝑡ℎ

 .  (S29)
𝐼𝑡ℎ =

(𝑘𝐴
𝑇)2

1.25𝛽𝑠𝑒𝑛𝑠𝑘𝑒𝑥𝑘𝑇𝑇𝐴[𝑆]0

In deriving our expression for , we have ignored the effects of mass conservation by 𝐼𝑡ℎ

replacing the steady-state concentrations of sensitizers and annihilators with their initial 

concentrations. 

Analyzing differences in saturation behavior between the quartic and quadratic models

As discussed in the main text, the quartic and quadratic models deviate most appreciably near 

saturation. The difference between the two models is that the steady-state concentration of 

sensitizer triplets in the quartic model is implicitly dependent on the steady-state concentrations 

of excited annihilator molecules through . In the quadratic model, the steady-state [𝐴]𝑆𝑆

concentration of sensitizer triplets is dependent only on , which is a constant. However, [𝐴]0

the overall rate of sensitization, , still retains a dependence on  under the quadratic 𝑅𝑠𝑒𝑛𝑠 [𝐴]𝑆𝑆

approximation. A result of the substitution of  with  in the quadratic model is that as [𝐴]𝑆𝑆 [𝐴]0
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, the rate of sensitization in the quadratic model drops more quickly than that in the [𝐴]𝑆𝑆→0

quartic model. Ultimately, however, the saturation rate of fluorescence, , is identical in 𝐹𝑆𝑆, 𝑠𝑎𝑡

both models. Hence, saturation occurs more rapidly and at lower irradiances in the quartic 

model, resulting in smaller  values. On the other hand,  is larger in the quartic model under 𝐼𝑠𝑎𝑡 Γ

some conditions. Fig. S3b shows that the discrepancy in  between the two models is larger 𝐼𝑠𝑎𝑡

when  is small. Lower values of /  further exacerbate these discrepancies, as the 𝑘𝑇𝑇𝐴 [𝐴]0 [𝑆]0

approximation that   becomes invalid under these conditions. Interestingly, the [𝐴]𝑆𝑆 = [𝐴]0

trend in the discrepancies in  between the two models is not monotonic, unlike that for the Γ

discrepancies in . In Fig. S3c, the quantity  is plotted as a function of 𝐼𝑠𝑎𝑡 Γ𝑞𝑢𝑎𝑟𝑡𝑖𝑐 ‒ Γ𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐

 for different values of  and . When  is small enough that the irradiance at 𝑘𝑇𝑇𝐴 [𝐴]0 [𝑆]0 𝑘𝑇𝑇𝐴

which efficient TTA is expected is much larger than the irradiance at which 0,  is [𝐴]𝑆𝑆→ Γ

larger in the quadratic model than in the quartic model. This behavior arises from the fact that 

the quadratic model exhibits a smoother transition in local slope, from a value of 1 to a value 

of 0, with increasing irradiance. On the other hand, under the quartic model, the local slope 

drops from a value of ~1 to 0 almost instantly once . The smooth transition that is [𝐴]𝑆𝑆→0

predicted by the quadratic model, results in a larger . When  is increased, this effect Γ 𝑘𝑇𝑇𝐴

vanishes, and the discrepancy in  increases in favor of the quartic model. Due to the inherent Γ

uncertainty in determining  and  for the quartic model at low ,  𝐼0.9 𝐼1.1 𝑘𝑇𝑇𝐴 Γ𝑞𝑢𝑎𝑟𝑡𝑖𝑐 ‒ Γ𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐

values for  are omitted from Fig. S3c. Once  is large enough, 𝑘𝑇𝑇𝐴 < 1 × 105 𝑀 ‒ 1𝑠 ‒ 1 𝑘𝑇𝑇𝐴

however, another form of saturation is achieved, i.e. the condition  is 𝑘𝑒𝑥𝐼 > 𝑘𝑠𝑒𝑛𝑠[𝐴]𝑆𝑆

satisfied, before  is allowed to reach 0. This phenomenon explains why the difference in [𝐴]𝑆𝑆

 between the two models begins to drop once more, finally settling at 0. The discrepancy in Γ

 values is more pronounced in systems with lower / . Γ [𝐴]0 [𝑆]0
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Exploring deviations in the transition width  for specific values of  and Γ 𝑘𝑇𝑇𝐴 [𝐴]0

In specific cases, the relationship between  and  or  is nonlinear, which would not be Γ 𝑘𝑇𝑇𝐴 [𝐴]0

expected given our basic analysis based on the transition width . In Fig. S6, we log (𝐼𝑠𝑎𝑡/𝐼𝑡ℎ)

see that within the region between the dotted lines, the relationship between  and  is Γ 𝑘𝑇𝑇𝐴

different than that at higher values of . Specifically, we find that  within this 𝑘𝑇𝑇𝐴 Γ ∝ (𝑘𝑇𝑇𝐴)1.6

region. When  is small, the TTA-UC process can never proceed efficiently, because at the 𝑘𝑇𝑇𝐴

values of irradiances at which the TTA process would become more dominant than the intrinsic 

triplet quenching mechanism, fluorescence saturation starts to occur. However, as  is 𝑘𝑇𝑇𝐴

increased, not only is the irradiance at which the TTA-UC process becomes efficient reduced, 

but the irradiance at which saturation occurs increases, because the rate at which annihilator 

states are made available for triplet sensitization increases. A similar observation can be made 

with respect to  and . The latter observation can be explained by use of the quantity Γ [𝐴]0

. In the quadratic model,  always increases with increasing , because the log (𝐼𝑠𝑎𝑡/𝐼𝑡ℎ) 𝐼𝑠𝑎𝑡 [𝐴]0

steady-state concentration of annihilators in the ground state is assumed to be  for the [𝐴]0

purposes of determining the rate of triplet sensitization. On the other hand, when  is small, [𝐴]0

the sensitization branching ratio  is less than 1, and so , which is inversely proportional 𝛽𝑠𝑒𝑛𝑠 𝐼𝑡ℎ

to , decreases as  increases. The simultaneous decrease in  and increase in  lead 𝛽𝑠𝑒𝑛𝑠 [𝐴]0 𝐼𝑡ℎ 𝐼𝑠𝑎𝑡

to a nonlinear growth in  with . Γ [𝐴]0

The origin of saturation in the quadratic model

As mentioned in the main text, in the quadratic model fluorescence saturation arises primarily 

due to the effects of sensitizer mass conservation. Because  is typically much larger than [𝐴]0
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, we rarely encounter cases in which the accumulation of annihilator triplets stifles any [3
 𝐴

∗ ]𝑠𝑠

growth in the rate of triplet sensitization, as was seen in the comparison of the quartic and 

quadratic models. In Fig. S2 we plot  for a range of system parameters. These plots [3𝐴 ∗ ]𝑆𝑆

reveal that only when the rate of triplet sensitization is on the order of 1013 M-1s-1 does 

 approach . In this situation, the term within the brackets of eqn (S24) drops almost [3𝐴 ∗ ]𝑆𝑆 [𝐴]0

to 0, thus removing the dependence of  on I.  [3𝐴 ∗ ]𝑆𝑆

Expanding and analyzing the expression for n(I) from the kinetic model

Recall that n(I) is derived from 

.                                         (S30)

𝑑(log (𝐹𝑠𝑠))

𝑑(log (𝐼))
=

𝑑(log (𝐹𝑠𝑠))

𝑑𝐹𝑠𝑠

𝑑(log (𝐼))
𝑑𝐼

=
𝐼

𝐹𝑠𝑠
∙

𝑑𝐹𝑠𝑠

𝑑𝐼
 

To evaluate this derivative analytically in a facile manner, we represent the solution to eqn 

(S24) as

 ,                                         (S31)
[3𝐴 ∗ ]𝑆𝑆 =

𝑐1𝐼 + 𝑐2

𝑐3𝐼 + 𝑐4( 1 +
𝑐5𝐼2 + 𝑐6𝐼

𝑐7𝐼2 + 𝑐8𝐼 + 𝑐9

‒ 1)
where 

(S32)𝑐1 = 𝑘𝐴
𝑇𝑘𝑒𝑥 + 𝑘𝑠𝑒𝑛𝑠𝑘𝑒𝑥[𝑆]0((𝑘𝑓𝑙 + 𝑘 𝐴

𝑁𝑅)𝑘𝐼𝐶)                                    

(S33)𝑐2 = 𝑘𝐴
𝑇(𝑘𝑠𝑒𝑛𝑠[𝐴]0 + 𝑘𝑆

𝑇)                                                    

(S34)𝑐3 = 2.5𝑘𝑇𝑇𝐴𝑘𝑒𝑥(𝑘𝑓𝑙 + 𝑘𝑁𝑅)𝑘𝐼𝐶 + 𝑘𝑠𝑒𝑛𝑠𝑘𝑒𝑥[𝑆]0(0.25𝑘𝐼𝐶 + 2(𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅)         

(S35)𝑐4 = 𝑘𝐴
𝑇𝑘𝐼𝐶(𝑘𝑠𝑒𝑛𝑠[𝐴]0 + 𝑘𝑆

𝑇)(𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅)                                  
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                           (S36)𝑐5 = 5𝑘𝑠𝑒𝑛𝑠𝑘𝑇𝑇𝐴𝑘𝑒𝑥
2[𝑆]0[𝐴]0(𝑘𝑓𝑙 + 𝑘 𝐴

𝑁𝑅)𝑘𝐼𝐶

𝑐6 = 4𝑘𝑠𝑒𝑛𝑠𝑘𝑒𝑥𝑘𝑇𝑇[𝑆]0[𝐴]0𝑘𝐼𝐶(𝑘𝑠𝑒𝑛𝑠[𝐴]0 + 𝑘𝑆
𝑇)(𝑘𝑓𝑙 + 𝑘 𝐴

𝑁𝑅)

                                                       (S37)+ 𝑘𝑠𝑒𝑛𝑠𝑘𝑒𝑥𝐼[𝑆]0(0.25𝑘𝐼𝐶 + 2(𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅)

                                (S38)𝑐7 = 𝑘𝐴
𝑇𝑘𝑒𝑥𝑘𝑠𝑒𝑛𝑠𝑘𝑒𝑥[𝑆]0(𝑘𝑓𝑙 + 𝑘 𝐴

𝑁𝑅)𝑘𝐼𝐶

                  (S39)𝑐8 = 2𝑘𝐴
𝑇𝑘𝑠𝑒𝑛𝑠𝑘𝑒𝑥[𝑆]0(𝑘𝑠𝑒𝑛𝑠[𝐴]0 + 𝑘𝑆

𝑇)(𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅)𝑘𝐼𝐶

and

  .                      (S40)𝑐9 = (𝑘𝐴
𝑇(𝑘𝑠𝑒𝑛𝑠[𝐴]0 + 𝑘𝑆

𝑇))2(𝑘𝑓𝑙 + 𝑘 𝐴
𝑁𝑅)𝑘𝐼𝐶

The local slope n(I) can then be expressed as

  .

 𝑛(𝐼) = 𝐼( (𝑐5𝑐8𝐼2 + 2𝑐5𝑐9𝐼 ‒ 𝑐6𝑐7𝐼2 + 𝑐6𝑐9

(𝑐7𝐼2 + 𝑐8𝐼 + 𝑐9)2 )
( 1 +

𝑐5𝐼2 + 𝑐6𝐼

𝑐7𝐼2 + 𝑐8𝐼 + 𝑐9

‒ 1) 1 +
𝑐5𝐼2 + 𝑐6𝐼

𝑐7𝐼2 + 𝑐8𝐼 + 𝑐9

+ 2
𝑐1𝑐4 ‒ 𝑐2𝑐3

(𝑐1𝐼 + 𝑐2)(𝑐3𝐼 + 𝑐4))
(S41)

In the limit in which I is small, eqn (S41) reduces to 

 .                                            (S42)

𝑛(𝐼) =

𝑐6

𝑐9
𝐼

1 +
𝑐6𝐼

𝑐9
‒ 1

+ 2𝐼
(𝑐1𝑐4 ‒ 𝑐2𝑐3)

𝑐2𝑐4

If the second term in the radicand is much less than 1, this expression becomes 
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 .                           (S43)

𝑛(𝐼) =

𝑐6

𝑐9
𝐼

𝑐6𝐼

2𝑐9

+ 2𝐼
(𝑐1𝑐4 ‒ 𝑐2𝑐3)

𝑐2𝑐4
= 2 + 2𝐼

(𝑐1𝑐4 ‒ 𝑐2𝑐3)

𝑐2𝑐4
≅2

Therefore, at low enough irradiance, the local slope is 2, as expected. At a high enough 

irradiance, it must be the case that , and so eqn (S41) becomes 
1 +

𝑐5𝐼2 + 𝑐6𝐼

𝑐7𝐼2 + 𝑐8𝐼 + 𝑐9

≫ 1

 .                             
𝑛(𝐼) = 𝐼( 𝑐5𝑐8𝐼2 + 2𝑐5𝑐9𝐼 ‒ 𝑐6𝑐7𝐼2 + 𝑐6𝑐9

(𝑐7𝐼2 + 𝑐8𝐼 + 𝑐9)(𝑐7𝐼2 + 𝑐8𝐼 + 𝑐9 + 𝑐5𝐼2 + 𝑐6𝐼)
+ 2

𝑐1𝑐4 ‒ 𝑐2𝑐3

(𝑐1𝐼 + 𝑐2)(𝑐3𝐼 + 𝑐4))
(S44)

The irradiance at which the local slope attains a value of 1 can be calculated from eqn (S44). 

Because eqn (S44) is a 6th-order polynomial in I, a general solution for I at n = 1 cannot be 

found. However, in the limit in which I is large enough that the quadratic terms dominate eqn 

(S44), we find that 

 .                                    (S45)
𝑛(𝐼) =

𝑐5𝑐8 ‒ 𝑐6𝑐7

(𝑐5 + 𝑐7)𝑐7𝐼
+ 2

𝑐1𝑐4 ‒ 𝑐2𝑐3

𝑐1𝑐3𝐼

Thus,  in the limit that .𝑛(𝐼)→0 𝐼→∞

Dependence of  on n(I)Φ̅𝑈𝐶

We showed in the main text that, by definition,  attains a value of 1 when n = 1. Fig. S8 Φ̅𝑈𝐶

shows that as  is increased and  is decreased,  increases smoothly with n. A 𝑘𝑇𝑇𝐴 𝑘𝐴
𝑇 Φ̅𝑈𝐶

representative plot of  vs. n, from which we had obtained our inverse exponential Φ̅𝑈𝐶

relationship between  and n, is shown in Fig. S9. Φ̅𝑈𝐶
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Exploring the influence of  and  on 𝑘𝑇𝑇𝐴 𝑘𝐴
𝑇 [3𝐴 ∗ ]𝑆𝑆

We found in the main text that under a typical scenario in which  is large and  is small, 𝑘𝑇𝑇𝐴 𝑘𝐴
𝑇

 and  have negligible impact on the steady-state rate of fluorescence at high irradiance. 𝑘𝑇𝑇𝐴 𝑘𝐴
𝑇

However, this situation need not hold under atypical TTA-UC conditions, in which  Φ𝑈𝐶, 𝑚𝑎𝑥

and  may depend on  and . To illustrate this behavior, we consider the second term 𝐼𝑠𝑎𝑡 𝑘𝑇𝑇𝐴 𝑘𝐴
𝑇

within the radicand of eqn (S31), . Figure S10 shows that under ideal conditions,  is 𝜌 𝜌

maximized at low irradiance at which saturation does not occur. However, under nonideal 

conditions,  is only ever maximized at high irradiance, and often at its saturation value, at 𝜌

which . Note that only when  does the rate of fluorescence at high 𝑘𝑒𝑥𝐼 > 𝑘𝑠𝑒𝑛𝑠[𝐴]0 𝜌 ≫ 1

irradiances become completely independent of  and . Therefore, when  peaks at smaller 𝑘𝑇𝑇𝐴 𝑘𝐴
𝑇 𝜌

values and at higher irradiances,  and  start to have an effect on  and . 𝑘𝑇𝑇𝐴 𝑘𝐴
𝑇 Φ𝑈𝐶, 𝑚𝑎𝑥 𝐼𝑠𝑎𝑡

Fitting literature data on upconverted fluorescence from TTA-UC solutions 

Typically, fluorescence intensities are reported in arbitrary units. Therefore, to facilitate the 

curve-fitting process, experimental fluorescence intensity data were normalized by dividing 

each data set by the highest value of fluorescence intensity measured in that data set. 

Representative quadratic fits of data from the literature are shown in Figs. S14, S15, and S17-

S20. 

The robustness of Ith to changes in fitting parameters

Although the combination of extracted system parameters from best fits to literature data may 

not be unique, the performance factors that are calculated from the two different sets of 

extracted rate parameters are nearly identical as long as both fits are equally good. In essence, 
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best fits to experimental data give insights into the ratios of rate parameters such as kTTA, kex, 

and . Because Ith is proportional to , there are numerous different combinations of 𝑘𝐴
𝑇

(𝑘𝐴
𝑇)2

𝑘𝑇𝑇𝐴𝑘𝑒𝑥

reasonable values of , , and  that result in the same Ith. Because a small degree of 𝑘𝑇𝑇𝐴 𝑘𝑒𝑥 𝑘𝐴
𝑇

uncertainty in fitting experimental data always exists (no experimental dataset can be fit 

perfectly), minor deviations in Ith will unavoidably arise when fitting constraints are modified. 

However, as we show below, the deviations in Ith that arise from an uncertainty in fitting, are 

only minor. 

As an example, we fit experimental data from Ogawa et al.1 to obtain a  of 3  109 𝑘𝑇𝑇𝐴  ×

M-1 s-1, a  of 2039 s-1, and a  of 10.09 cm2/mJ (See Table S1 for the other parameters). 𝑘𝐴
𝑇 𝑘𝑒𝑥

When we constrained  to a value of 3  108 M-1s-1
 instead,  was reduced to 1894 s-1, 𝑘𝑇𝑇𝐴  × 𝑘𝐴

𝑇

and a  was increased to 85.7 cm2/mJ (the other parameters did not change). The goodness 𝑘𝑒𝑥

of the fit improved slightly (R2 = 0.9998 vs. 0.9997). Despite the change in parameters, the 

value of Ith obtained from the fit changed only from 11.0 mW/cm2 to 11.1 mW/cm2. 

As another example, our fits to experimental data from Gray et al.2, yielded an Ith of 33.02 

mW/cm2 with an extracted  of 3  109 M-1 s-1, a  of 326.8 s-1, and a  of 0.0576 𝑘𝑇𝑇𝐴  × 𝑘𝐴
𝑇 𝑘𝑒𝑥

cm2/mJ (See Table S1 for the other parameters). When  was constrained to be 3  108 𝑘𝑇𝑇𝐴  ×

M-1 s-1 instead,  was reduced to 245.6 s-1, and  was increased to 0.3239 cm2/mJ (the other 𝑘𝐴
𝑇 𝑘𝑒𝑥

parameters did not change). The R2 was identical in each case, and Ith changed to 33.16 

mW/cm2. Therefore, different combinations in rate parameters that are extracted from equally 

good fits to experimental data with our TTA-UC model do not result in significant changes to 

Ith.
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Simulation and curve-fitting methodology (MATLAB)

MATLAB code that was used to generate logarithmic TTA-UC curves, compute expressions 

for n(I) and corresponding n(I) vs. I curves, calculate  and  values, and calculate Φ𝑈𝐶 Φ𝑈𝐶, 𝑚𝑎𝑥

 and many other system parameters is available via GitHub. Table S3 provides a summary Γ

description of the files found in the GitHub folder.

Curve-fitting toolbox and example 

The curve-fitting toolbox can be accessed from the ‘APPS’ tab in MATLAB. With the toolbox 

opened, x-axis data (irradiance, not ), and y-axis data (fluorescence output) should be 𝑙𝑜𝑔⁡(𝐼)

loaded. An appropriate weighting scale should be applied to ensure that fluorescence emission 

values at low irradiances (which are exponentially smaller than those at high irradiances) will 

be considered equally in performing the fit. In our work, we use a weighting factor of 

, where  represents fluorescence output values that are normalized such that the 1/𝐹̅𝑆𝑆(𝐼) 𝐹̅𝑆𝑆(𝐼)

highest possible value is 1. To begin the fitting process, the ‘Custom Equation’ option must be 

selected from the drop-down menu found at the top of the curve fitting toolbox. A custom 

quadratic model fitting equation, containing known system parameters as well unknown fitting 

parameters, can be generated using the Matlab code titled ‘FittingShow.m’ (See Table S3).  

The fitting equation should then be used to replace the default custom equation that appears at 

the top of curve fitting toolbox. Please note that the fitting variable should be changed from the 

default ‘x’ to ‘I’ for fitting to proceed. Following this step, one may open the ‘fitting options’ 

dialog box to enter guess values for the various rate constants and coefficients involved in the 

TTA-UC process, as well as to create specific upper/lower bounds. MATLAB should begin 

fitting automatically, and will update its best fit as new guess values are entered. Once a 

satisfactory fit is obtained (the goodness of any particular fit is given by the R2 value which 
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Matlab provides in the toolbox), the obtained rate constants and system parameters can be 

copied for plotting with the code found in ‘FssShow.m’ (See Table. S3). Fig. S21 illustrates 

MATLAB’s curve-fitting toolbox as TTA-UC data from a solution mixture of PtOEP and DPA 

is being fit.  
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Table S1. Parameters used in figures in the main text and Supporting Information.

Parameters
Figure  𝑘𝑠𝑒𝑛𝑠

(M-1s-1)
 𝑘𝑇𝑇𝐴

(M-1s-1)
𝑘𝐴

𝑇
(s-1)

*𝑘𝑒𝑥

(cm2/mJ)
 [𝑆]0

(mM)
[𝐴]0 
(𝑚𝑀)

 𝑘𝐼𝐶
(s-1)

* 𝑘𝑓𝑙

(s-1)
*𝑘𝑁𝑅

(s-1)
* (s-𝑘𝑆

𝑇
1)

2a 1.63 × 109 3.6 × 108 200 5 -- 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

2b 1.63 × 109 3.6 × 104 200 5 -- 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

3 1.63 × 109 3.6 × 108 200 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

4 1.63 × 109 3.6 × 108 200 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

5 1.63 × 109 3.6 × 108 200 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

6 1.63 × 109 3.6 × 108 200 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

7 1.63 × 108 3.6 × 109 2 × 104 5 0.014 1000 2 × 108 1.36 × 108 5.037 × 105 2 × 103

8a 2 × 109 2.8 × 108 1.1 × 
104 44.7 0.05 1 2 × 108 2 × 108 4.8 × 10-1 2 × 103

8b 2.3 × 109 2.5 × 108 1.2 × 
105 725 0.075 0.091 2 × 108 6.84 × 106 1.15 × 103 2 × 103

S2 -- 3.6 × 108 200 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S3a 1.63 × 109 3.6 × 105 200 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S3b,c 1.63 × 109 -- 200 5 -- -- 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S4a,b,d 1.63 × 109 3.6 × 108 200 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S5c,e 1.63 × 109 3.6 × 108 2 × 104 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S6 1.63 × 109 3.6 × 108 200 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S7 1.63 × 109 3.6 × 108 200 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S8 1.63 × 109 3.6 × 108 200 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S9 1.63 × 109 3.6 × 108 200 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S11 1.63 × 109 3.6 × 108 -- 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S12 1.63 × 109 3.6 × 109 2 × 104 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S13 1.63 × 109 3.6 × 109 2 × 104 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S14 1.63 × 109 3.6 × 108 -- 5 0.014 100 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S15 2.3 × 109 3 × 108 1 × 105 861 0.075 0.091 2 × 108 3 × 108 9.5 × 10-1 2 × 103

S161 1 × 109 3 × 109 2039 10.09 0.01** 10** 2 × 108 1.8 × 108 1 × 104 2 × 103

S163 1.8 × 109** 3 × 109 180** 0.1234 0.006** 1** 2 × 108 1.4 × 
108** 999.7 2 × 103

S164 1.9 × 109** 3 × 109 207.2 0.01076 0.016** 0.5** 2 × 108 1.88 × 108 1 × 104 2 × 103

S165 1 × 109 2 × 109 1.6 × 
104 0.007536 1** 5** 2 × 108 1.8 × 108 1000 2 × 103

S166 1 × 109 3 × 108 2003 153.9 0.005** 0.15** 2 × 108 2 × 108 1000 2 × 103

S162 2.2 × 109** 3 × 109 326.8 0.0576 0.015** 0.5** 2 × 108 1.8 × 108 1000 2 × 103

S167 1.4 × 109** 3 × 108 1288 2.1 0.038** 0.78** 2 × 108 2 × 108 5.8 × 10-1 2 × 103

*These parameters are never changed or varied for any simulations

**These parameters were reported by the authors of the experimental data

Bolded figure numbers indicate parameters extracted from the best fits to TTA-UC data
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Table S2. Rate parameters used in simulating the effects of sensitizer TTA

Parameters

Figure
𝑘𝑠𝑒𝑛𝑠

(M-1s-1)
𝑘 𝑆

𝑇𝑇𝐴
(M-1s-1) 𝐵𝐼𝑆𝐶

 𝑘𝑇𝑇𝐴
(M-1s-1)

𝑘𝐴
𝑇

(s-1)
𝑘𝑒𝑥

(cm2/mJ)
 [𝑆]0

(mM)
[𝐴]0

(𝑚𝑀)
𝑘𝐼𝐶
(s-1)

𝑘𝑓𝑙
(s-1)

𝑘𝑁𝑅
(s-1)

𝑘𝑆
𝑇

(s-1)
S1a 1.63 × 109 2 × 108 1 3.6 × 108 200 5 -- 10 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S1b 1.63 × 105 2 × 108 1 3.6 × 108 200 5 -- 10 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S1c 1.63 × 109 2 × 108 1 -- 200 5 0.014 10 2 × 108 1.36 × 108 5.037 × 105 2 × 103

S1d 1.63 × 109 2 × 108 1 3.6 × 104 200 5 0.014 10 2 × 108 1.36 × 108 5.037 × 105 2 × 103

Table S3. Summary of the MATLAB code available on Github: 
https://github.com/kabhi17/TTA-model.git

File name Content and purpose

‘FssShow.m’ Simulating logarithmic FSS vs. I curves

‘LocalSlopeShow.m’ Computing n(I) and calculating irradiance values for specific values 

of n

‘TWShow.m’ Calculating  and the analytical quantity Γ log (𝐼𝑠𝑎𝑡/𝐼𝑡ℎ)

‘QYShow.m’ Calculating values of  and Φ𝑈𝐶 Φ𝑈𝐶, 𝑚𝑎𝑥

‘FittingShow.m’ Preparing experimental data for fitting
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Fig. S1 Exploring the influence of sensitizer TTA. (a) Log-log plot of fluorescence versus 

irradiance with sensitizer TTA events included (solid lines) and excluded (dashed lines) for 

 = 0.014 mM (A) and for  = 0.14 mM. Here  M-1 s-1. (b) Same as [𝑆]0 [𝑆]0 𝑘𝑠𝑒𝑛𝑠 = 1.63 × 109

(a), except  M-1 s-1. (c) Log-log plot of fluorescence versus irradiance for 𝑘𝑠𝑒𝑛𝑠 = 1.63 × 105

the quartic (solid lines) and quadratic (dashed lines) model for different annhilator TTA rate 

constants. (d) Log-log plot of fluorescence versus irradiance for the quartic model, with 

sensitizer TTA events included (solid line) and excluded (dahsed line).
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Fig. S2 The dependence of the steady-state annihilator triplet concentration  on [3𝐴 ∗ ]𝑆𝑆

irradiance for different values of . The values of all of the other parameters are given in 𝑘𝑠𝑒𝑛𝑠

Table S1. The dashed line indicates the value of [A]0.
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Fig. S3 Comparison of saturation in the quadratic and quartic models. (a) Representative 

TTA-UC curves in the quadratic (blue) and quartic (red) models. The dashed lines of the 

corresponding colors indicate the value of Isat. The dotted line is the saturation level of 

fluorescence. (b) Logarithm of the ratio of the saturation irradiance as a function of  in 𝑘𝑇𝑇𝐴

the quartic model to that in the quadratic model for two different sets of annihilator and 

sensitizer concentrations. The quartic model always saturates at a lower irradiance. (c) The 

value of  as a function of  in the quartic model minus that in the quadratic model for 𝑘𝑇𝑇𝐴

two different sets of annihilator and sensitizer concentrations. In this region of the parameter 

space, the transition width in the quartic model is larger than that in the quadratic model. See 

Table S1 for the values of the other parameters.
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Fig. S4 The dependence of the transition width, , on (a) , (b) , (c) , (d) , 𝑘𝑠𝑒𝑛𝑠 𝑘𝐴
𝑇 𝑘𝑇𝑇𝐴 [𝑆]0

and (e) . The values of all other parameters are given in Table S1. The dashed lines are [𝐴]0

guides for the eye.
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Fig. S5 The dependence of  on (a) , (b) , (c) , (d) , and (e) log (𝐼𝑠𝑎𝑡/𝐼𝑡ℎ) 𝑘𝑠𝑒𝑛𝑠 𝑘𝐴
𝑇 𝑘𝑇𝑇𝐴 [𝑆]0

. The values of all other parameters are given in Table S1. The dashed lines are guides [𝐴]0

for the eye.
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Fig. S6 The dependence of the transition width, , on (a) the rate constant  and (b) 𝑘𝑇𝑇𝐴

the annihilator concentration . The values of all of the other parameters are given in [𝐴]0

Table S1. Within the regions between the dashed lines, .Γ ∝ (𝑘𝑇𝑇𝐴)1.6
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Fig. S7 The dependence of the upconversion quantum yield and its slope on irradiance for 

(a) and (b), respectively, different combinations of values of  and , and (c) and (d), [𝐴]0 [𝑆]0

respectively, different values of . The open and filled circles indicate the irradiances at 𝑘𝑠𝑒𝑛𝑠

which the local slope is 1.1 and 0.9, respectively. See Table S1 for the values of the other 

parameters.
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Fig. S8 (original) The dependence of the upconversion quantum yield and the normalized 

upconversion quantum yield on the local slope n for (a) and (b), respectively, different values 

of , and (c) and (d), respectively, different values of . The quantum yield always 𝑘𝐴
𝑇 𝑘𝑇𝑇𝐴

increases monotonically with the local slope until that slope attains a value of 1, after which 

the quantum yield decreases. See Table S1 for the values of the other parameters.
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Fig. S8 (corrected) The dependence of the upconversion quantum yield and the normalized 

upconversion quantum yield on the local slope n for (a) and (b), respectively, different values 

of , and (c) and (d), respectively, different values of . The quantum yield always 𝑘𝐴
𝑇 𝑘𝑇𝑇𝐴

increases monotonically with the local slope until that slope attains a value of 1, at which point 

the quantum yield begins to saturate. See Table S1 for the values of the other parameters.
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Fig. S9 (original) An empirical fit of the dependence of the upconversion quantum yield 

on the local slope to eqn (37) for n values ≥ 1.
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Fig. S9 (corrected) An empirical fit of the dependence of the upconversion quantum yield on 

the local slope to eqn (37) for n values ≥ 1.
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Fig. S10 The dependence of , the second term in the radicand in eqn (14), on irradiance 

for different values of . See Table S1 for the values of the other parameters.𝑘𝐴
𝑇
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Fig. S11 (original) The dependence of the maximum upconversion quantum yield on (a) 

 and (b)  for several values of . See Table S1 for the values of the other parameters.𝑘𝑠𝑒𝑛𝑠 𝑘𝐼𝐶 𝑘𝐴
𝑇
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Fig. S11 (corrected) The dependence of the maximum upconversion quantum yield on (a) 

 and (b)  for several values of . See Table S1 for the values of the other parameters.𝑘𝑠𝑒𝑛𝑠 𝑘𝐼𝐶 𝑘𝐴
𝑇
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Fig. S12 (original) The normalized upconversion quantum yield at irradiances Ith and 2Ith 

as a function of (a) , (b) , (c) , (d) , and (e) . See Table S1 for the values 𝑘𝑠𝑒𝑛𝑠 𝑘𝐴
𝑇 𝑘𝑇𝑇𝐴 [𝑆]0 [𝐴]0

of the other parameters.
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Fig. S12 (corrected) The normalized upconversion quantum yield at irradiances Ith and 2Ith as 

a function of (a) , (b) , (c) , (d) , and (e) . See Table S1 for the values of 𝑘𝑠𝑒𝑛𝑠 𝑘𝐴
𝑇 𝑘𝑇𝑇𝐴 [𝑆]0 [𝐴]0

the other parameters.
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Fig. S13 (a) Representative calculated TTA-UC curves for different values of , along 𝑘𝐴
𝑇

with Ith values. In the case of the highest value of , Ith is outside of the range of irradiances. 𝑘𝐴
𝑇

Predicted errors in Ith and n(Ith) for different values of (b) , (c) , (d) , and (e) . 𝑘𝐴
𝑇 𝑘𝑇𝑇𝐴 [𝑆]0 [𝐴]0

See Table S1 for the values of the other parameters.
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Fig. S14 Fits of the quadratic model (solid line) to literature TTA-UC data in solution 

(symbols) from (a) Olesund et al.3, (b) Gray et al.2, (c) Han et al.6, and (d) Lin et al.6
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Fig. S15 Fits of the quadratic model (solid line) to literature TTA-UC data in solution 

(symbols) from (a) Ogawa et al.1, (b) Haefele et al.7, and (c) Gray et al.4
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  Fig. S16 Values of  for the experimental data in Figs. 
𝛿𝐼 =

𝐼𝑡ℎ,𝑓𝑖𝑡 ‒ 𝐼𝑡ℎ,𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑

𝐼𝑡ℎ,𝑓𝑖𝑡
∙ 100%

S14 and S15.
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Fig. S17 Fits of the quadratic model (solid line) to literature TTA-UC data (symbols) for 

(a) nanocrystal-sensitized systems,8 and (b) and (c) upconverting core/shell nanoparticles.9, 10
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Fig. S18 Fits of the quadratic model (solid line) to literature TTA-UC data (symbols) for 

(a) perovskite-sensitized annihilator/acceptor solid films,11 (b) dispersed sensitizer/annihilator 

assemblies,12 and (c) and (d) spin-coated thin films.13, 14
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Fig. S19 Fits of the quadratic model (solid line) to literature TTA-UC data (symbols) for 

self-assembled layers for acceptors (a) 1, (b) 2, and (c) 3 from Zhou et al.15 Note that the two 

data points at the lowest irradiances in (a) were not in the original paper.
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Fig. S20 Fits of the quadratic model (solid line) to literature TTA-UC data (symbols) for 

the gel-based systems of (a) Vadrucci et al.16 and (b) Barbosa de Mattos et al.17
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Fig. S21 An example of curve fitting being performed on experimental TTA-UC data. 

Note that the linear data is being fit, not the logarithmic data. The rate constants obtained 

from the fit are shown in the 'Results' box.
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Fig. S22 Local slopes of the rates of annihilator fluorescence, n(I) (black) and sensitizer 

excitation, q(I), (red) as a function of irradiance for (a)  and (b) . 𝑘𝐴
𝑇 = 2 × 102 𝑠 ‒ 1 𝑘𝐴

𝑇 = 2 × 105 𝑠 ‒ 1

The values for all other rate parameters are the same as for Figs. 3, 4, 5, 6, and 7 (See Table 

S1). The vertical dashed lines indicate the irradiance at which n(I) = 1.


