Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Electronic supplementary information

Title

Theoretical investigation of selective CO_2 capture and desorption controlled by the electric field

Authors

Koki Saegusa^a, Kenshin Chishima^a, Hiroshi Sampei^a, Kazuharu Ito^a, Kota Murakami^a, Jeong Gil Seo^b, and Yasushi Sekine^a*

Affiliation:

a: Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555 Japan

^bDepartment of Chemical Engineering, Hanyang University, Wangsimniro-222, Seongdong-gu, Seoul, 04768 Republic of Korea

* Corresponding author: Yasushi Sekine, ysekine@waseda.jp

Table S1 The formation energy of oxygen vacancy in each doped cation.

Amount of $O_{vac}/$ -			ΔE	E(O _{vac}) / eV					
	without dopant	Ca^{2+}	Sr^{2^+}	Ba^{2+}	Al ³⁺	Ga ³⁺	Sc^{3+}	Y^{3+}	Zr^{4+}
1	2.98	-0.80	-0.66	-0.71	0.59	-0.63	-0.95	-0.72	1.92
2		-1.41	-1.23	-0.61		0.08	0.76	2.36	
3		0.83	1.25	2.49					

Fig. S1 The surface model for elucidating various factors. Yellow is Ce, red is O, orange is Ca, pink is Sr, green is Ba, blue is Ga.

Fig. S2 The effect of each factor on change of CO_2 adsorption energy in +0.50 eV Å⁻¹.

The amount of change in CO_2 adsorption energy (a) by applying EF, (b) by charge transfer,

(c) by changing CO₂ molecule structure, and (d) by relaxation of surface structure.

Fig. S3 The relationship between the amount of change in CO₂ adsorption energy by applying EF and the amount of change in CO₂ adsorption energy

(a) by charge transfer in -0.50 eV Å⁻¹, (b) by CO₂ structural relaxation in -0.50 eV Å⁻¹, (c) by surface structural relaxation in -0.50 eV Å⁻¹, (d) by charge transfer in +0.50 eV Å⁻¹, (e) by CO₂ structural relaxation in +0.50 eV Å⁻¹, and (f) by surface structural relaxation in +0.50 eV Å⁻¹,