Electronic Supplementary Information

Determination of the highest occupied molecular orbital and conformational structures of morpholine based on its conformer-specific photoionization dynamics

So Young Eom, ${ }^{\text {ta }}$ Yu Ran Lee, ${ }^{\text {b }}$ Sung Man Park ${ }^{\text {a }}$ and Chan Ho Kwon ${ }^{*, a}$

Table S1 Relative energies (RE) and AIEs (in cm^{-1}) of Chair-Eq and Chair-Ax calculated with zero-point energy correction at various DFT and ab-initio calculation levels

Metho d	Basis set	RE ($\left.\mathrm{S}_{0}\right)^{\text {a }}$		$\mathrm{AlE}_{\text {cal }}{ }^{\text {b }}$	
		Eq	Ax	Eq	Ax
B3LYP	cc-pVDZ	0.0	177	61,903	61,726
	cc-pVTZ	0.0	246	62,915	62,670
	aug-cc-pVDZ	0.0	277	63,445	63,168
	aug-cc-pVTZ	0.0	255	63,448	63,193
CAM- B3LYP	cc-pVDZ	0.0	228	62,985	62,757
	cc-pVTZ	0.0	285	64,020	63,735
	aug-cc-pVDZ	0.0	305	64,505	64,201
	aug-cc-pVTZ	0.0	286	64,540	64,254
M062x	cc-pVDZ	0.0	223	63,661	63,438
	cc-pVTZ	0.0	280	64,837	64,557
	aug-cc-pVDZ	0.0	263	64,731	64,468
	aug-cc-pVTZ	0.0	259	65,240	64,981
$\begin{gathered} \text { wB97X } \\ D \end{gathered}$	cc-pVDZ	0.0	176	62,625	62,449
	cc-pVTZ	0.0	227	63,240	63,012
	aug-cc-pVDZ	0.0	233	63,818	63,586
	aug-cc-pVTZ	0.0	218	63,668	63,450
MP2	cc-pVDZ	0.0	267	64,635	64,368
	cc-pVTZ	0.0	315	67,010	66,695
	aug-cc-pVDZ	0.0	310	66,971	66,661
	aug-cc-pVTZ	0.0	308	67,903	67,595

${ }^{\text {a }}$ Calculated ionic transition energy for each conformer in neutral chair form to the axial-like NH conformer in cationic chair form. ${ }^{\mathrm{b}}$ Difference of the calculated adiabatic ionization energies $\left(\mathrm{AIE}_{\text {cal }}(E q)-\mathrm{AIE}\right.$ cal (Ax)) between the equatorial and the axial conformers equals the RE of axial NH conformer, of which the average difference for aug-cc-pVTZ basis set gives $265 \mathrm{~cm}^{-1}$.

[^0]

Figure S1 (a) HR VUV-MATI spectrum of morpholine. Spectra simulated using FC factors and vibrational frequencies calculated at (b) B3LYP, (c) CAM-B3LYP, (d) M062X, and (e) ω B97XD levels with aug-cc-pVTZ basis set for adiabatic ionic transitions between Chair-Ax and Chair-Ax-like ${ }^{+\bullet}$ conformers.

Figure S2 2D PESs of S_{0} and D_{0} states as functions of dihedral angles associated with two ring inversions, describing conformational interconversion between chair and twisted boat forms of morpholine as determined by optimizing remaining geometrical parameters. $\mathrm{AIE}_{\mathrm{cal}}$ is adiabatic ionization energy calculated for each conformer with zero-point energy correction at B3LYP/aug-cc-pVTZ level.

[^0]: ${ }^{a}$ Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
 ${ }^{b}$ Forensic Chemistry Division, National Forensic Service, Wonju 26460, Republic of Korea.
 † Present address: Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
 *Email: chkwon@kangwon.ac.kr (C. H. Kwon)

