Electronic Supplementary Information

Theoretical analysis of the absorption of CO2 and CO on pristine and Al-

doped C₃B

Lu-Qi Tao ,Simin Zou * , Guanya Wang ,Zhirong Peng , Congcong Zhu and Hao Sun

siminzou1998@cqu.edu.cn

Table S1The change in lattice constant

Material	Lattice	constants	calculated	Lattice	constants	calculated
	using PE	BE		using PE	Esol	
C3B	a = b = 10.355 Å		a = b = 10.321 Å			
Al-doped C3B	a = b = 1	l0.536 Å		a = b = 1	.0.501 Å	

Note 1 From the results in **Table S1**, we can find that the lattice constant slightly increases after the introduction of AI doping in the PBE function calculations. It is due to the fact that the atomic radius of the AL element is larger than that of the B element and the stretching lattice strain occurs during doping, such a phenomenon is also observed in the al-doped BN.¹ Moreover, since the PBEsol function is more accurate in the calculation of the structural parameters, we used PBEsol to re-optimize both structures. The obtained lattice parameters showed no significant difference from the results of the PBE function and also show a trend of increasing lattice constants after al-doping.

	Atom	Χ(Δ)	V(Å)	7(Å)
1	C	2 577564	2.045200	<u>در</u> م، ۹ 521 <i>4</i> 25
1		2.577504	0.700626	0.321423
2	C	1.229125	0.709636	8.521425
3	C	3.926002	0.709636	8.521425
4	C	0.000000	1.419272	8.521425
5	Ĺ	1.348438	3.754835	8.521425
6	l	-1.348438	3.754835	8.521425
/	В	2.577564	1.488157	8.521425
8	В	0.000000	2.976314	8.521425
9	С	7.732691	3.045200	8.521425
10	C	6.384252	0.709636	8.521425
11	С	9.081129	0.709636	8.521425
12	С	5.155127	1.419272	8.521425
13	С	6.503566	3.754835	8.521425
14	С	3.806689	3.754835	8.521425
15	В	7.732691	1.488157	8.521425
16	В	5.155127	2.976314	8.521425
17	С	0.000000	7.509671	8.521425
18	С	-1.348438	5.174107	8.521425
19	С	1.348438	5.174107	8.521425
20	С	-2.577564	5.883743	8.521425
21	С	-1.229125	8.219306	8.521425
22	С	-3.926002	8.219306	8.521425
23	В	0.000000	5.952628	8.521425
24	В	-2.577564	7.440785	8.521425
25	С	5.155127	7.509471	8.521425
26	С	3.806689	5.174107	8.521425
27	С	6.503566	5.174107	8.521425
28	С	2.577564	5.883743	8.521425
29	С	3.926002	8.219306	8.521425
30	С	1.229125	8.219306	8.521425
31	В	5.155127	5.952628	8.521425
32	В	2.577564	7.440785	8.521425

Table S2Atomic coordinates in C3B

	Atom	X(Å)	Y(Å)	Z(Å)
1	С	2.547358	3.138213	5.189144
2	С	1.244877	0.718730	5.189144
3	С	3.991451	0.636970	5.189144
4	С	0.000000	1.442694	5.189144
5	С	1.326657	3.857980	5.189144
6	С	-1.326657	3.857890	5.189144
7	В	2.619867	1.512581	5.189144
8	В	0.000000	3.045603	5.189144
9	С	7.989070	3.138213	5.189144
10	С	6.544977	0.636970	5.189144
11	С	9.291551	0.718730	5.189144
12	С	5.268214	1.235204	5.189144
13	С	6.832603	3.944805	5.189144
14	С	3.703825	3.944805	5.189144
15	В	7.916561	1.512581	5.189144
16	AI	5.268214	3.041605	5.189144
17	С	0.000000	7.652142	5.189144
18	С	-1.358736	5.298743	5.189144
19	С	1.358736	5.298743	5.189144
20	С	-2.590433	6.046905	5.189144
21	С	-1.263776	8.344742	5.189144
22	С	-4.018804	8.403467	5.189144
23	В	0.000000	6.083209	5.189144
24	В	-2.630644	7.602013	5.189144
25	С	5.268214	7.687354	5.189144
26	С	3.824121	5.349631	5.189144
27	С	6.712307	5.349631	5.189144
28	С	2.590433	6.046905	5.189144
29	С	4.018804	8.403467	5.189144
30	С	1.263776	8.344742	5.189144
31	В	5.268214	6.099652	5.189144
32	В	2.630644	7.602013	5.189144

Table S3 Atomic coordinates in Al-doped C3B

Table S4 Comparison of adsorption energy

Ref	Material	Eads(CO)	Eads(CO2)
2	B-N@Graphene	-0.110 eV	-0.120 eV
3	MoS ₂ -nanotubes	-0.440 eV	-0.120 eV
4	Au-doped VO ₂	-0.450 eV	+0.030 eV
5	β-SnSe	-0.202 eV	-0.175 eV
6	In-doped SnO ₂	-0.346 eV	/
7	SiGe monolayer	-0.241 eV	-0.200 eV
8	SnP ₃ sheets	-0.338 eV	-0.221 eV
9	PtSe ₂ monolayer	-0.141 eV	-0.182 eV
Our work	Al-doped C ₃ B	-0.401 eV	-0.590 eV

Fig. S1. Energy fluctuation of monolayer Al-C_3B in molecular dynamics simulations at 300K

Fig.S2 Fluctuation of adsorption energy at room temperature (300 K) for (a)CO/Al-C₃B system (b) $CO_2/Al-C_3b$ system.

Reference

- H. Ahmoum, M. Boughrara and M. Kerouad, Electronic and magnetic properties of Al doped (w –
 BN) with intrinsic vacancy, Superlattices Microstruct, 2019, 127, 186–190.
- 2 I. Choudhuri, N. Patra, A. Mahata, R. Ahuja and B. Pathak, B-N@Graphene: Highly Sensitive and Selective Gas Sensor, Journal of Physical Chemistry C, 2015, 119, 24827–24836.
- 3 N. Baildya, N. N. Ghosh and A. P. Chattopadhyay, Environmentally hazardous gas sensing ability of MoS2-nanotubes: an insight from the electronic structure and transport properties, Nanoscale Adv, 2021, 3, 4528–4535.
- R. Joy, Z. Han, K. Xu, X. Pan, N. Liao and H. Zhou, DFT investigation of gas sensing characteristics of Au-doped vanadium dioxide, Physics Letters, Section A: General, Atomic and Solid State Physics, , DOI:10.1016/j.physleta.2020.126823.
- 5 T. Liu, H. Qin, D. Yang and G. Zhang, First principles study of gas molecules adsorption on monolayered β-SnSe, Coatings, , DOI:10.3390/COATINGS9060390.
- 6 W. H. Yang, W. C. Lu, X. Y. Xue and Q. J. Zang, A theoretical study on CO sensing mechanism of Indoped SnO2 (110) surface, Comput Theor Chem, 2015, 1069, 119–124.
- X. Sun, K. Liang, F. Dong, Z. Wang and S. Liu, in 2019 20th International Conference on Electronic
 Packaging Technology, ICEPT 2019, Institute of Electrical and Electronics Engineers Inc., 2019.
- 8 J. Du and G. Jiang, First-principle study on monolayer and bilayer SnP3 sheets as the potential sensors for NO2, NO, and NH3 detection, Nanotechnology, , DOI:10.1088/1361-6528/ab8c04.
- 9 Q. Wu, L. Cao, Y. S. Ang and L. K. Ang, Superior and tunable gas sensing properties of Janus PtSSe monolayer, Nano Express, , DOI:10.1088/2632-959X/ab95e6.