Electrochemical measurements details

An aqueous solution of 0.5 M Na₂SO₄ was used as an electrolyte and the working electrode was prepared as below: 5 mg of photocatalyst was dispersed in 1 mL of ethanolic solution contained Nafion (3 v/v%) and then sonicated for 30 min to give a homogenous suspension. Then, the mixed solution was dropped on 2.5×2.5 cm FTO (Fluorine doped tin oxide) substrate by spin coating technique and left under the air to be dried. All electrochemical measurements were conducted under visible light irradiation provided by a 300 W Xe lamp along with a 400 nm cutoff filter. The electrochemical impedance spectra (EIS) were done at the amplitude of 5 mV and frequency ranges of 0.1-105 Hz. The acquired results vs Ag/AgCl were converted to RHE (reversible hydrogen electrode) according to Equations (1) [1]

 $E_{RHE}=E_{AgCl}+E^{0}_{AgCl}\left(1\right)$

Species	Pressure/bar	Temperature/K	E(DFT)/eV	$\Delta G (eV)$	G (eV)
H ₂ (g)	1	298.15			-9.91
$O_2(g)$	1	298.15	-6.78	-0.022	-6.80
$H_2O(l)$	0.035	298.15	-14.20	-0.024	-14.22

Table S1. Values used for the entropy and zero-point energy corrections in determining the free energy of reactants, products and intermediate species adsorbed on catalysts.

atalysts Species	*0	*OH	*OOH
Au/CN-150 (Au ₄)	2.82	1.56	3.71
Au/CN-100(Au ₈)	1.67	1.39	4.49
Au/CN-50(Au ₁₂)	2.27	0.86	4.22

Table S2. Adsorption free energies of *OH, *O, and *OOH on different active sites over catalysts.

Catalysts	$\Delta G_1 (eV)$	$\Delta G_2 (eV)$	$\Delta G_3 \left(eV \right)$	$\Delta G_4 \left(eV \right)$
Au/CN-150 (Au ₄)	-1.21	-0.89	-1.26	-1.56
Au/CN-100 (Au ₈)	-0.43	-2.82	-0.28	-1.39
Au/CN-50 (Au ₁₂)	-0.7	-1.95	-1.41	-0.86

Table S3. Reaction free energy (vs. RHE) of elementary step for 4e- transfer ORR at $U_{RHE} = 0$ V on different catalysts.

Catalysts	$\Delta G_5 (eV)$	$\Delta G_{6} (eV)$
Au/CN-150 (Au ₄)	-1.21	-0.19
Au/CN-100 (Au ₈)	-0.43	-0.97
Au/CN-50 (Au ₁₂)	-0.80	-0.60

Table S4. Reaction free energy (vs. RHE) of elementary step for 2e- transfer ORR at $U_{RHE} = 0$ V on different catalysts.

Table S5. Reaction free energy for potential determining step at equilibrium potential (Δ Gmax) for ORR, reaction free energy of potential determining step for 4e- ORR (Δ G_{H2O}). reaction free energy of potential determining step for 2e- ORR (Δ G_{H2O}).

Catalysts	$\Delta G_{\rm H2O} \left(eV \right)$	$\Delta G_{\rm H2O2} (eV)$	$\Delta G_{\rm H2O} \text{ -} \Delta G_{\rm H2O2} (eV)$
Au/CN-150 (Au ₄)	-0.89	-0.19	-0.70
Au/CN-100 (Au ₈)	-0.28	-0.43	0.15
Au/CN-50 (Au ₁₂)	-0.70	-0.60	-0.10

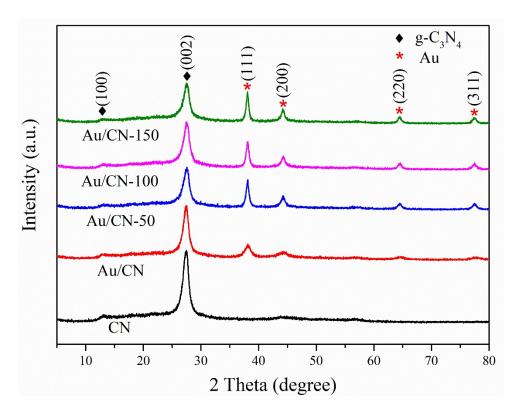


Figure S1. XRD pattern of different samples.

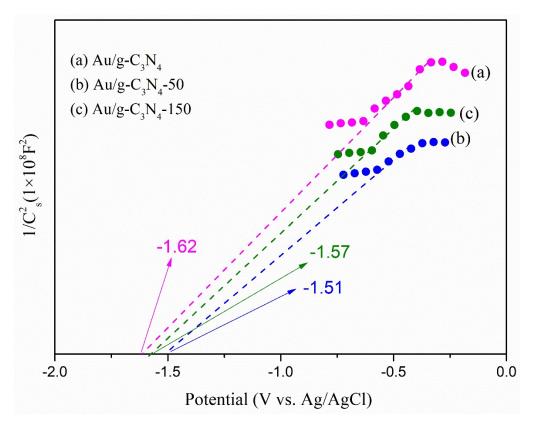


Figure S2. Mott-Schottky polt of of Au/CN, Au/CN-50 and Au/CN-150

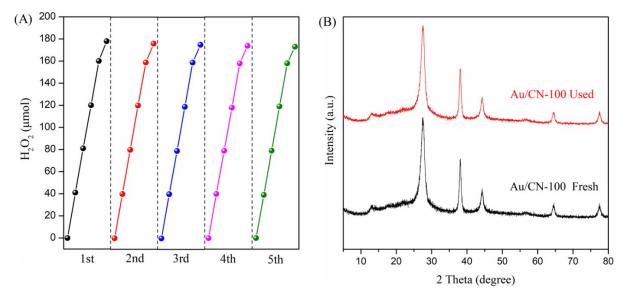


Figure S3. (A) Reusability of Au/CN-100 in the production of H₂O₂;(B) XRD patterns of Au/CN-100 photocatalytic reaction before and after.

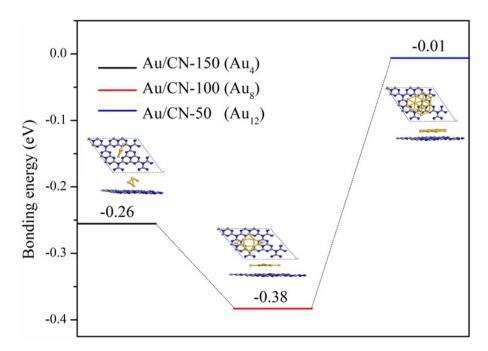


Figure S4. Optimized structures and the free energies of CN combine with Au_4 , Au_8 and Au_{12} .

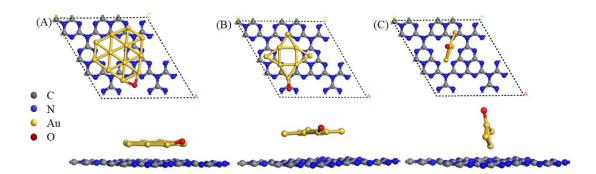


Figure S5. Top and side views of the optimized *O adsorption stability model for (A)Au/CN-50(Au₁₂), (B)Au/CN-100(Au₈), (C) Au/CN-150(Au₄) structures

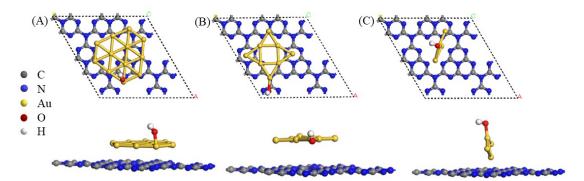


Figure S6. Top and side views of the optimized *OH adsorption stability model for (A)Au/CN-50(Au₁₂), (B)Au/CN-100(Au₈), (C) Au/CN-150(Au₄) structures

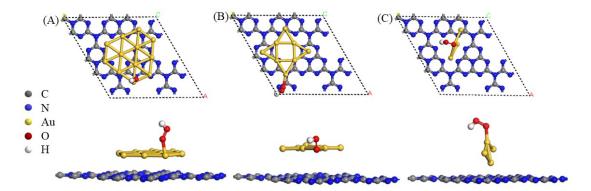


Figure S7. Top and side views of the optimized ·OOH adsorption stability model for (A)Au/CN-50(Au₁₂), (B)Au/CN-100(Au₈), (C) Au/CN-150(Au₄) structures

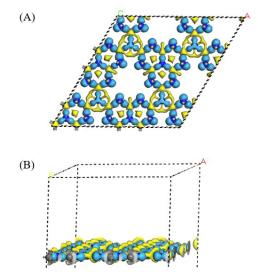


Figure S8. Charge density difference of Au/CN-100 Top(A) and side(B)

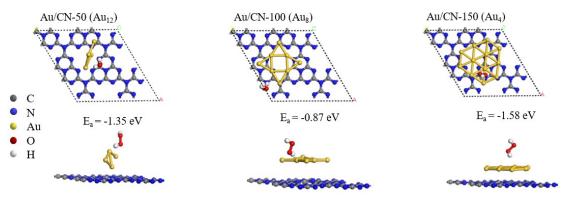


Figure S9. Top and side views of the optimized H_2O_2 adsorption structures

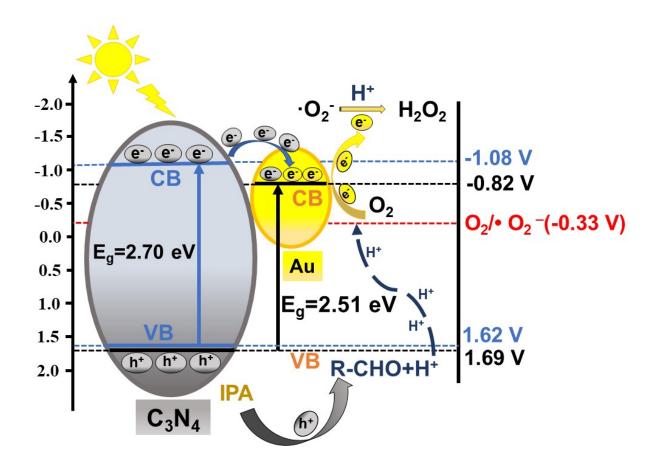


Figure S10. Reaction mechanism on Au/CN-100

^[1] Tang, R.; Gong, D.; Zhou, Y.; Deng, Y.; Feng, C.; Xiong, S.; Huang, Y.; Peng, G.; Li, L.; Zhou, Z., Unique g-C₃N₄/PDI-g-C₃N₄ homojunction with synergistic piezophotocatalytic effect for aquatic contaminant control and H₂O₂ generation under visible light. *Appl. Catal. B: Environ.* 2022, 303, 120929.