Supporting Information for "Reactive Quenching of NO ($A^2\Sigma^+$) with H₂O Leads to HONO: A Theoretical Analysis of the Reactive and Nonreactive Electronic Quenching Mechanisms"

Jose L. Guardado,¹ Justin A. Urquilla,¹ Nathanael M. Kidwell², Andrew S. Petit,*¹

¹ Department of Chemistry and Biochemistry, California State University – Fullerton, Fullerton, CA 92834-6866, USA

² Department of Chemistry, The College of William and Mary, Williamsburg, VA 23187-8795, USA

* Author to whom correspondence should be addressed. E-mail: apetit@fullerton.edu

Table of Contents

	Page(s)
Figure S1 : D ₁ and D ₂ electronic energies as a function of r_{OH_A} at the fixed intermolecular distance R_{ON} =1.787 Å as calculated using the multireference method (9,9) NEVPT2/aug-cc-pVTZ.	S 3
Figure S2-S3 : SOMOs for the D ₁ and D ₂ states at R_{ON} =1.787 Å and r_{OH_A} = 1.0 Å or r_{OH_A} = 1.30 Å as calculated using EOM-EA-CCSD/aug-cc-pVTZ and (9,9) NEVPT2/aug-cc-pVTZ.	S4-S5
Figures S4-S9: D ₁ and D ₂ electronic energies as a function of the torsion angle ϕ_{ONOH} at various fixed intermolecular distances, R_{ON} .	S6-S11
Figures S10-S11: D_1 and D_2 electronic energies as a function of the N-O bond length at various fixed intermolecular distances, R_{ON} .	S12-S13
Figure S12-S14: D ₁ and D ₂ electronic energies as a function of r_{OH_A} at various fixed intermolecular distances, R_{ON} .	S14-S16
Figure S15-S19: D ₁ and D ₂ electronic energies as a function of r_{OH_B} at various fixed intermolecular distances, R_{ON} .	S18-S21
Tables S1-S2: Relative electronic energies used to generate Figure 4 and Figure S19.	S22-S23
Tables S3-S8: Relative electronic energies used to generate Figure 7 and Figures S4-S9.	S24-S27
Tables S9-S12: Relative electronic energies used to generate Figure 8 and Figures S10-S11.	S28-S33
Tables S13-S20: Relative electronic energies used to generate Figures 9-10 andFigures S12-S18.	S34-S41
Table S21: Relative electronic energies used to generate Figure S1.	S42

Figure S1. Cuts of the adiabatic PESs for NO+H₂O as a function of the O-H bond length that is nearly perpendicular to the NO, r_{OH_A} at a fixed $R_{ON} = 1.787$ Å. The geometries are the same as in Figure 10. The energies were calculated using (9,9) NEVPT2/aug-cc-pVTZ. These calculations were built off a CASSCF refere wave function with a 9 electrons in 9 orbitals active space and a state-averaging over 3 states. Dynamic electron correlation was included using N-electron valence state perturbation theory. The energies are reported relative to that of D₁ at $r_{OH_A}=1.0$ Å. The calculations were performed using ORCA 5.0.3.^{1,2}

The cuts of the PESs shown above are similar to those presented in Figure 10. Specifically, the energy of the D₁ state increases rapidly as r_{OH_A} increases. In contrast, the energy of D₂ exhibits a much weaker dependence on r_{OH_A} , slightly increasing and then decreasing as the bond is stretched. The D₁ and D₂ electronic states grow closer together as r_{OH_A} increases. Finally, at $r_{OH_A} = 1.0$ Å, $E_{D_2} - E_{D_1}$ is 1.81 eV at the (9,9) NEVPT2/aug-cc-pVTZ level of theory versus 1.90 eV at the EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figures 10 and S1 are not in perfect agreement. The D₂ PES reaches a maximum at a significantly smaller value of r_{OH_A} for (9,9) NEVPT2/aug-cc-pVTZ than for EOM-EA-CCSD/aug-cc-pVTZ. Moreover, Figure S1 does not exhibit a conical intersection but rather an avoided crossing, which we confirmed by analyzing the electronic character of the adiabats above and below $r_{OH_A} = 1.35$ Å. Because $E_{D_2} - E_{D_1}$ is strongly affected by both R_{ON} and r_{OH_A} , the data in Figure S1 suggests that a D₂-D₁ conical intersection exists at the (9,9) NEVPT2/aug-cc-pVTZ level of theory but at a slightly different value of R_{ON} .

Overall, the application of multireference electronic structure methods does not fundamentally

change the mechanistic picture from that presented in Figure 10. Increasing r_{OH_A} is feasible on D₂ because it does not significantly increase E_{D_2} . Moreover, stretching this O-H bond significantly reduces the D₂-D₁ energy gap. Figure S1 displays an avoided crossing between D₂ and D₁, with a D₂-D₁ conical intersection likely occurring at a slightly different value of R_{ON} .

Finally, it is worth noting that Figure S1 is not necessarily more accurate than Figure 10. While a multireference approach was used in Figure S1, dynamic electron correlation was only approximately captured via second-order perturbation theory. EOM-EA-CCSD includes higher-order dynamic electron correlation for states which have dominant single-excitation character from the reference. As discussed in the main text, we verified that this is true for all of the states considered in this study.

Figure S2. Singly occuppied molecular orbitals (SOMOs) of D₁ and D₂ as calculated using the EOM-EA-CCSD/aug-cc-pVTZ and (9,9) NEVPT2/aug-cc-pVTZ levels of theory at an EOM-EA-CCSD/aug-cc-pVTZ optimized geometry with R_{ON} =1.787 Å and r_{OH_A} = 1.0 Å. For the EOM-EA-CCSD data, the SOMOs were obtained using natural transition orbital analysis and plotted using wxMacMolPlt.^{3,4} For the (9,9) NEVPT2/aug-cc-pVTZ data, the SOMOs were plotted using Avogadro.⁵ Note that the electronic characters of D₁ and D₂ are identical for both methods. In particular, the SOMO for the D₂ state is consistent with electron transfer from the NO and to the H₂O.

Figure S3. Singly occuppied molecular orbitals (SOMOs) of D₁ and D₂ as calculated using the EOM-EA-CCSD/aug-cc-pVTZ and (9,9) NEVPT2/aug-cc-pVTZ levels of theory at an EOM-EA-CCSD/aug-cc-pVTZ optimized geometry with R_{ON} =1.787 Å and r_{OH_A} = 1.30 Å. For the EOM-EA-CCSD data, the SOMOs were obtained using natural transition orbital analysis and plotted using wxMacMolPlt.^{3,4} For the (9,9) NEVPT2/aug-cc-pVTZ data, the SOMOs were plotted using Avogadro.⁵ Note that the electronic characters of D₁ and D₂ are identical for both methods. In particular, the SOMO for the D₂ state is consistent with electron transfer from the NO and to the H₂O.

Figure S4. Cuts of the adiabatic PESs of the D₂ ($A^2\Sigma^+$) and D₁ ($X^2\Pi$) states for ON+H₂O as a function of torsion angles -165° $\leq \phi_{ONOH} \leq 180^\circ$ at a fixed intermolecular distance of $R_{ON} = 1.56$ Å. All energies are reported relative to D₂ ($A^2\Sigma^+$) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S5: Cuts of the adiabatic PESs of the D₂ ($A^2\Sigma^+$) and D₁ ($X^2\Pi$) states for ON+H₂O as a function of torsion angles -165° $\leq \phi_{ONOH} \leq 180^\circ$ at a fixed intermolecular distance of $R_{ON} = 1.61$ Å. All energies are reported relative to D₂ ($A^2\Sigma^+$) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S6: Cuts of the adiabatic PESs of the D₂ ($A^2\Sigma^+$) and D₁ ($X^2\Pi$) states for ON+H₂O as a function of torsion angles $-165^\circ \le \phi_{ONOH} \le 180^\circ$ at a fixed intermolecular distance of $R_{ON} = 1.71$ Å. All energies are reported relative to D₂ ($A^2\Sigma^+$) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S7: Cuts of the adiabatic PESs of the D₂ ($A^2\Sigma^+$) and D₁ ($X^2\Pi$) states for ON+H₂O as a function of torsion angles $-165^\circ \le \phi_{ONOH} \le 180^\circ$ at a fixed intermolecular distance of $R_{ON} = 1.81$ Å. All energies are reported relative to D₂ ($A^2\Sigma^+$) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S8: Cuts of the adiabatic PESs of the D₂ ($A^2\Sigma^+$) and D₁ ($X^2\Pi$) states for ON+H₂O as a function of torsion angles -165° $\leq \phi_{ONOH} \leq 180^\circ$ at a fixed intermolecular distance of $R_{ON} = 1.91$ Å. All energies are reported relative to D₂ ($A^2\Sigma^+$) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S9: Cuts of the adiabatic PESs of the D₂ ($A^2\Sigma^+$) and D₁ ($X^2\Pi$) states for ON+H₂O as a function of torsion angles $-165^\circ \le \phi_{ONOH} \le 180^\circ$ at a fixed intermolecular distance of $R_{ON} = 2.01$ Å. All energies are reported relative to D₂ ($A^2\Sigma^+$) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S10: Cuts of the adiabatic PESs of the D₁ (X²Π) and D₂ (A²Σ⁺) states for NO+H₂O as a function of N-O bond length at a fixed intermolecular distance $R_{ON} = 1.71$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S11: Cuts of the adiabatic PESs of the D_1 (X² Π) and D_2 (A² Σ^+) states for NO+H₂O as a function of N-O bond length at a fixed intermolecular distance $R_{ON} = 1.81$ Å. All energies are reported relative to D_2 (A² Σ^+) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S12. Cuts of the adiabatic PESs of the D₁ (X²Π) and D₂ (A²Σ⁺) states for NO+H₂O as a function of the O-H bond length that is nearly perpendicular to the NO, r_{OH_A} at a fixed $R_{ON} = 1.76$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S13. Cuts of the adiabatic PESs of the D₁ (X²Π) and D₂ (A²Σ⁺) states for NO+H₂O as a function of the O-H bond length that is nearly perpendicular to the NO, r_{OH_A} at a fixed $R_{ON} = 1.81$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S14. Cuts of the adiabatic PESs of the D₁ (X²Π) and D₂ (A²Σ⁺) states for NO+H₂O as a function of the O-H bond length that is nearly perpendicular to the NO, r_{OH_A} at a fixed $R_{ON} = 1.91$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S15. Cuts of the adiabatic PESs of the D₁ (X²Π) and D₂ (A²Σ⁺) states for NO+H₂O as a function of the O-H bond length that is nearly parallel to the NO, r_{OH_B} at a fixed $R_{ON} = 1.76$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S16. Cuts of the adiabatic PESs of the D₁ (X²Π) and D₂ (A²Σ⁺) states for NO+H₂O as a function of the O-H bond length that is nearly parallel to the NO, r_{OH_B} at a fixed $R_{ON} = 1.787$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S17. Cuts of the adiabatic PESs of the D₁ (X²Π) and D₂ (A²Σ⁺) states for NO+H₂O as a function of the O-H bond length that is nearly parallel to the NO, r_{OH_B} at a fixed $R_{ON} = 1.81$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S18. Cuts of the adiabatic PESs of the D₁ (X²Π) and D₂ (A²Σ⁺) states for NO+H₂O as a function of the O-H bond length that is nearly parallel to the NO, r_{OH_B} at a fixed $R_{ON} = 1.91$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Figure S19: Cuts of the adiabatic PESs of the first six lowest electronic states for NO+H₂O as a function of intermolecular distance, R_{ON}. The PESs represent benchmarking between two different basis sets used for the geometry optimizations. All energies are reported relative to D₂ ($A^{2}\Sigma^{+}$) at R_{ON} = 10 Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory for the solid curves and at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVDZ level of theory for the dashed curves.

Table S1: Relative electronic energies of the first six electronic states for NO+H₂O as a function of the distance between the N of NO and the O of H₂O, R_{ON}. This intermolecular distance is the only constraint for these geometry optimizations; all other degrees of freedom were optimized on D₂. These states are labeled based on their electronic character at RON = 10 Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVDZ level of theory.

Ron (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D5 (eV)
		~ /				
1 51	-1 93	0.29	0.43	2 17	2 61	2 68
1.515	-2.30	0.05	0.37	1.79	2.26	2.35
1.52	-2.52	-0.03	0.30	1.60	2.10	2.22
1.53	-2.60	-0.07	0.19	1.52	2.05	2.16
1.54	-2.64	-0.13	0.09	1.47	2.01	2.11
1.545	-2.65	-0.17	0.04	1.45	1.99	2.08
1.56	-2.67	-0.29	-0.08	1.36	1.92	1.99
1.57	-2.69	-0.39	-0.15	1.30	1.87	1.93
1.61	-2.80	-0.80	-0.32	1.13	1.69	1.70
1.71	-3.26	-1.79	-0.48	0.92	1.28	1.42
1.81	-3.70	-2.62	-0.54	0.77	0.94	1.16
1.91	-4.06	-3.27	-0.56	0.63	0.71	0.97
2.01	-4.32	-3.73	-0.56	0.49	0.61	0.84
2.11	-4.52	-4.07	-0.54	0.39	0.55	0.75
2.21	-4.64	-4.31	-0.50	0.41	0.56	0.77
2.31	-4.74	-4.47	-0.48	0.43	0.54	0.82
2.41	-4.82	-4.60	-0.45	0.44	0.55	0.83
2.51	-4.87	-4.70	-0.41	0.46	0.57	0.85
2.61	-4.91	-4.77	-0.38	0.50	0.60	0.87
2.71	-4.93	-4.82	-0.34	0.54	0.63	0.91
2.81	-4.95	-4.86	-0.30	0.58	0.67	0.95
2.91	-4.96	-4.89	-0.27	0.63	0.71	1.00
3.01	-4.97	-4.91	-0.23	0.68	0.75	1.04
3.11	-4.97	-4.93	-0.20	0.72	0.79	1.08
3.21	-4.97	-4.94	-0.17	0.76	0.86	1.12
3.31	-4.97	-4.95	-0.15	0.79	0.89	1.15
3.41	-4.98	-4.97	-0.10	0.84	0.99	1.22
3.51	-4.98	-4.97	-0.09	0.86	1.00	1.23
3.61	-4.99	-4.97	-0.07	0.88	1.02	1.24
3.71	-4.99	-4.97	-0.06	0.90	1.04	1.26
3.81	-4.99	-4.98	-0.05	0.92	1.05	1.26
3.91	-5.00	-4.98	-0.04	0.93	1.07	1.27
4.01	-5.00	-4.98	-0.04	0.94	1.07	1.26
10.00	-4.98	-4.98	0.00	1.02	1.03	1.12

Table S2: Relative electronic energies of the first six electronic states for NO+H₂O as a function of the distance between the N of NO and the O of H₂O, R_{ON}. This intermolecular distance is the only constraint for these geometry optimizations; all other degrees of freedom were optimized on D₂. These states are labeled based on their electronic character at RON = 10 Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Ron (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D ₅ (eV)
		· · ·	~ ~ ~		~ ~ ~	~ /
1.51	-2.27	0.07	0.41	1.73	2.18	2.28
1.515	-2.43	0.01	0.36	1.59	2.07	2.19
1.53	-2.53	-0.06	0.18	1.48	1.99	2.10
1.54	-2.55	-0.11	0.08	1.43	1.95	2.05
1.545	-2.56	-0.14	0.03	1.40	1.93	2.02
1.55	-2.57	-0.18	-0.02	1.37	1.91	1.99
1.56	-2.58	-0.26	-0.10	1.31	1.86	1.92
1.57	-2.60	-0.35	-0.16	1.26	1.81	1.86
1.61	-2.73	-0.75	-0.32	1.10	1.63	1.64
1.71	-3.19	-1.73	-0.48	0.90	1.21	1.36
1.81	-3.62	-2.55	-0.55	0.74	0.88	1.10
1.91	-3.96	-3.16	-0.57	0.59	0.67	0.91
2.01	-4.21	-3.62	-0.57	0.45	0.57	0.79
2.11	-4.40	-3.95	-0.55	0.36	0.52	0.71
2.21	-4.51	-4.17	-0.51	0.38	0.53	0.73
2.31	-4.60	-4.32	-0.49	0.40	0.51	0.80
2.41	-4.67	-4.45	-0.46	0.41	0.52	0.80
2.51	-4.72	-4.55	-0.42	0.44	0.54	0.82
2.61	-4.76	-4.62	-0.39	0.47	0.57	0.85
2.71	-4.78	-4.67	-0.35	0.51	0.60	0.89
2.81	-4.80	-4.70	-0.31	0.56	0.64	0.92
2.91	-4.80	-4.73	-0.28	0.60	0.68	0.97
3.01	-4.81	-4.75	-0.25	0.65	0.72	1.01
3.11	-4.81	-4.77	-0.22	0.69	0.76	1.05
3.21	-4.82	-4.78	-0.19	0.73	0.79	1.08
3.31	-4.82	-4.79	-0.17	0.76	0.82	1.11
3.41	-4.82	-4.80	-0.15	0.79	0.85	1.14
3.51	-4.82	-4.81	-0.13	0.82	0.88	1.16
3.61	-4.82	-4.81	-0.11	0.84	0.90	1.18
3.71	-4.82	-4.82	-0.10	0.87	0.93	1.20
3.81	-4.82	-4.82	-0.08	0.89	0.95	1.21
3.91	-4.82	-4.82	-0.07	0.91	0.97	1.22
4.01	-4.83	-4.83	-0.06	0.92	0.98	1.23
10.00	-4.82	-4.82	0.00	1.02	1.02	1.13

Table S3: Relative electronic energies, of the first 6 electronic states, for NO+H₂O as a function of torsion angles $-165^{\circ} \le \phi_{\text{ONOH}} \le 180^{\circ}$ at a fixed intermolecular distance of $R_{\text{ON}} = 1.56$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{\text{ON}} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

фолон (°)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D 5 (eV)
-165	-2 62	-0.34	0.04	1 27	1.85	1 99
-150	-2 60	-0.31	0.08	1 31	1.87	2 04
-135	-2.59	-0.29	0.10	1.34	1.88	2.08
-120	-2.58	-0.28	0.10	1.35	1.88	2.08
-105	-2.59	-0.30	0.08	1.32	1.88	2.06
-90	-2.61	-0.33	0.05	1.29	1.87	2.02
-75	-2.62	-0.35	0.00	1.26	1.86	1.97
-60	-2.63	-0.35	-0.04	1.25	1.84	1.92
-45	-2.63	-0.33	-0.07	1.26	1.83	1.90
-30	-2.60	-0.28	-0.09	1.30	1.84	1.91
-15	-2.55	-0.22	-0.09	1.34	1.89	1.95
0	-2.53	-0.18	-0.05	1.38	1.96	2.01
15	-2.57	-0.17	0.02	1.40	2.00	2.08
30	-2.61	-0.16	0.09	1.43	2.04	2.15
45	-2.62	-0.13	0.13	1.46	2.07	2.21
60	-2.62	-0.12	0.13	1.47	2.08	2.22
75	-2.59	-0.13	0.09	1.46	2.07	2.19
90	-2.57	-0.15	0.03	1.44	2.04	2.13
105	-2.55	-0.18	-0.03	1.40	1.99	2.05
120	-2.55	-0.21	-0.07	1.36	1.93	1.98
135	-2.57	-0.25	-0.09	1.32	1.87	1.93
150	-2.60	-0.30	-0.09	1.28	1.83	1.90
165	-2.63	-0.34	-0.06	1.24	1.82	1.89
180	-2.63	-0.35	-0.01	1.24	1.83	1.93

Table S4: Relative electronic energies, of the first 6 electronic states, for NO+H₂O as a function of torsion angles $-165^{\circ} \le \phi_{\text{ONOH}} \le 180^{\circ}$ at a fixed intermolecular distance of $R_{\text{ON}} = 1.61$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{\text{ON}} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

фолон (°)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D5 (eV)
-165	-2 72	-0.69	-0.28	1 11	1.66	1 78
-150	-2 72	-0.67	-0.25	1.11	1.65	1.70
-135	-2 71	-0.66	-0.24	1.15	1.65	1.83
-120	-2 71	-0.66	-0.24	1 15	1.65	1.83
-105	-2.71	-0.66	-0.25	1.14	1.66	1.83
-90	-2.72	-0.69	-0.27	1.12	1.67	1.79
-75	-2.73	-0.71	-0.30	1.10	1.66	1.75
-60	-2.74	-0.73	-0.31	1.09	1.65	1.69
-45	-2.73	-0.75	-0.32	1.09	1.63	1.65
-30	-2.71	-0.75	-0.32	1.11	1.63	1.64
-15	-2.69	-0.73	-0.30	1.13	1.66	1.67
0	-2.68	-0.69	-0.27	1.17	1.71	1.74
15	-2.68	-0.64	-0.22	1.20	1.77	1.84
30	-2.69	-0.60	-0.18	1.23	1.81	1.92
45	-2.70	-0.58	-0.15	1.25	1.83	1.97
60	-2.70	-0.57	-0.15	1.26	1.84	1.98
75	-2.68	-0.58	-0.17	1.26	1.83	1.96
90	-2.66	-0.61	-0.21	1.24	1.81	1.90
105	-2.66	-0.66	-0.26	1.20	1.76	1.81
120	-2.68	-0.71	-0.29	1.16	1.69	1.72
135	-2.71	-0.74	-0.31	1.12	1.65	1.66
150	-2.73	-0.75	-0.32	1.10	1.63	1.64
165	-2.74	-0.74	-0.32	1.08	1.64	1.67
180	-2.73	-0.72	-0.30	1.09	1.65	1.73

Table S5: Relative electronic energies, of the first 6 electronic states, for NO+H₂O as a function of torsion angles $-165^{\circ} \le \phi_{\text{ONOH}} \le 180^{\circ}$ at a fixed intermolecular distance of $R_{\text{ON}} = 1.71$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{\text{ON}} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

фолон (°)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D5 (eV)
-165	-3.17	-1.68	-0.47	0.90	1.23	1.41
-150	-3.17	-1.66	-0.46	0.91	1.22	1.42
-135	-3.18	-1.66	-0.45	0.92	1.21	1.43
-120	-3.18	-1.66	-0.45	0.93	1.21	1.43
-105	-3.17	-1.66	-0.46	0.92	1.22	1.43
-90	-3.16	-1.67	-0.47	0.91	1.24	1.42
-75	-3.18	-1.70	-0.48	0.90	1.23	1.39
-60	-3.19	-1.74	-0.48	0.90	1.21	1.35
-45	-3.20	-1.77	-0.48	0.90	1.19	1.32
-30	-3.19	-1.78	-0.47	0.92	1.18	1.31
-15	-3.18	-1.77	-0.45	0.94	1.20	1.34
0	-3.16	-1.74	-0.42	0.96	1.25	1.40
15	-3.15	-1.70	-0.39	0.98	1.30	1.47
30	-3.15	-1.66	-0.36	1.00	1.34	1.53
45	-3.16	-1.63	-0.35	1.01	1.36	1.57
60	-3.15	-1.63	-0.34	1.01	1.37	1.58
75	-3.15	-1.64	-0.36	1.01	1.36	1.56
90	-3.14	-1.67	-0.38	1.00	1.33	1.51
105	-3.15	-1.71	-0.41	0.98	1.28	1.44
120	-3.17	-1.75	-0.44	0.96	1.23	1.38
135	-3.18	-1.77	-0.46	0.94	1.20	1.34
150	-3.19	-1.77	-0.48	0.92	1.19	1.32
165	-3.19	-1.75	-0.48	0.90	1.21	1.34
180	-3.18	-1.71	-0.48	0.90	1.22	1.38

Table S6: Relative electronic energies, of the first 6 electronic states, for NO+H₂O as a function of torsion angles $-165^{\circ} \le \phi_{ONOH} \le 180^{\circ}$ at a fixed intermolecular distance of $R_{ON} = 1.81$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

фолон (°)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D5 (eV)
-165	-3.62	-2.52	-0.54	0.74	0.88	1.12
-150	-3.62	-2.51	-0.53	0.74	0.87	1.13
-135	-3.62	-2.50	-0.52	0.75	0.85	1.14
-120	-3.62	-2.50	-0.52	0.76	0.85	1.14
-105	-3.62	-2.51	-0.53	0.75	0.87	1.14
-90	-3.62	-2.52	-0.54	0.74	0.88	1.13
-75	-3.61	-2.54	-0.55	0.74	0.88	1.11
-60	-3.62	-2.56	-0.55	0.74	0.87	1.09
-45	-3.62	-2.58	-0.54	0.76	0.86	1.07
-30	-3.61	-2.58	-0.53	0.78	0.86	1.07
-15	-3.60	-2.58	-0.51	0.79	0.87	1.09
0	-3.59	-2.55	-0.49	0.80	0.91	1.14
15	-3.58	-2.52	-0.47	0.81	0.95	1.20
30	-3.58	-2.49	-0.45	0.82	0.98	1.25
45	-3.58	-2.47	-0.44	0.83	1.01	1.28
60	-3.58	-2.47	-0.44	0.83	1.01	1.29
75	-3.57	-2.48	-0.45	0.83	1.00	1.27
90	-3.57	-2.51	-0.47	0.83	0.97	1.23
105	-3.58	-2.53	-0.48	0.82	0.94	1.18
120	-3.59	-2.56	-0.50	0.81	0.90	1.13
135	-3.60	-2.57	-0.52	0.80	0.88	1.09
150	-3.61	-2.57	-0.54	0.77	0.87	1.08
165	-3.62	-2.56	-0.54	0.75	0.88	1.09
180	-3.62	-2.54	-0.55	0.74	0.88	1.11

Table S7: Relative electronic energies, of the first 6 electronic states, for NO+H₂O as a function of torsion angles $-165^{\circ} \le \phi_{\text{ONOH}} \le 180^{\circ}$ at a fixed intermolecular distance of $R_{\text{ON}} = 1.91$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{\text{ON}} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

фолон (°)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D ₅ (eV)
-165	-3.96	-3.15	-0.56	0.58	0.65	0.92
-150	-3.97	-3.14	-0.56	0.59	0.64	0.93
-135	-3.97	-3.14	-0.55	0.59	0.63	0.93
-120	-3.97	-3.14	-0.55	0.59	0.63	0.93
-105	-3.97	-3.14	-0.55	0.59	0.64	0.93
-90	-3.96	-3.15	-0.56	0.59	0.65	0.93
-75	-3.96	-3.16	-0.57	0.59	0.66	0.92
-60	-3.95	-3.17	-0.57	0.60	0.67	0.91
-45	-3.95	-3.18	-0.56	0.61	0.67	0.89
-30	-3.94	-3.18	-0.55	0.62	0.68	0.90
-15	-3.94	-3.18	-0.54	0.64	0.68	0.92
0	-3.93	-3.16	-0.52	0.67	0.69	0.96
15	-3.92	-3.14	-0.51	0.69	0.70	1.01
30	-3.92	-3.11	-0.50	0.69	0.73	1.05
45	-3.91	-3.10	-0.50	0.70	0.75	1.08
60	-3.91	-3.10	-0.49	0.70	0.75	1.08
75	-3.91	-3.11	-0.50	0.70	0.74	1.07
90	-3.91	-3.12	-0.51	0.70	0.72	1.03
105	-3.92	-3.15	-0.52	0.69	0.70	0.99
120	-3.93	-3.16	-0.53	0.66	0.70	0.94
135	-3.94	-3.18	-0.55	0.63	0.69	0.91
150	-3.95	-3.18	-0.56	0.62	0.68	0.90
165	-3.95	-3.17	-0.57	0.60	0.68	0.91
180	-3.96	-3.16	-0.57	0.59	0.67	0.92

Table S8: Relative electronic energies, of the first 6 electronic states, for NO+H₂O as a function of torsion angles $-165^{\circ} \le \phi_{ONOH} \le 180^{\circ}$ at a fixed intermolecular distance of $R_{ON} = 2.01$ Å. All energies are reported relative to D₂ (A²Σ⁺) at $R_{ON} = 10$ Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

фолон (°)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D5 (eV)
-165	-4.22	-3.61	-0.56	0 44	0.55	0 79
-150	-4.23	-3.61	-0.56	0.43	0.55	0.79
-135	-4.23	-3.61	-0.55	0.42	0.53	0.79
-120	-4.23	-3.61	-0.55	0.42	0.53	0.79
-105	-4.23	-3.61	-0.56	0.43	0.54	0.79
-90	-4.22	-3.61	-0.56	0.44	0.55	0.79
-75	-4.22	-3.62	-0.57	0.44	0.56	0.79
-60	-4.21	-3.62	-0.56	0.45	0.58	0.78
-45	-4.20	-3.63	-0.56	0.46	0.59	0.77
-30	-4.20	-3.63	-0.55	0.47	0.60	0.78
-15	-4.19	-3.62	-0.54	0.49	0.60	0.80
0	-4.18	-3.60	-0.54	0.51	0.60	0.84
15	-4.18	-3.59	-0.53	0.54	0.60	0.88
30	-4.17	-3.57	-0.52	0.56	0.60	0.92
45	-4.17	-3.56	-0.52	0.57	0.60	0.94
60	-4.17	-3.56	-0.52	0.58	0.60	0.94
75	-4.17	-3.57	-0.52	0.57	0.61	0.93
90	-4.17	-3.58	-0.53	0.55	0.61	0.90
105	-4.18	-3.60	-0.53	0.52	0.61	0.86
120	-4.19	-3.61	-0.54	0.50	0.61	0.82
135	-4.19	-3.62	-0.55	0.48	0.61	0.79
150	-4.20	-3.62	-0.56	0.47	0.60	0.78
165	-4.21	-3.62	-0.56	0.46	0.59	0.78
180	-4.21	-3.62	-0.57	0.45	0.57	0.79

Table S9: Relative electronic energies of the first six electronic states for NO+H₂O as a function of the N-O bond length for R_{ON} =1.61 Å. All energies are reported relative to the D₂ state at R_{ON} = 10 Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

r _{NO} (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D3 (eV)	D4 (eV)	D5 (eV)
1.06	-2.08	-0.19	-0.07	1.31	1.71	1.74
1.07	-2.23	-0.32	-0.15	1.23	1.66	1.68
1.08	-2.36	-0.44	-0.22	1.17	1.62	1.65
1.09	-2.47	-0.53	-0.26	1.14	1.60	1.62
1.1	-2.56	-0.62	-0.30	1.11	1.60	1.61
1.11	-2.65	-0.69	-0.32	1.10	1.60	1.62
1.12	-2.72	-0.74	-0.32	1.09	1.62	1.63
1.13	-2.77	-0.79	-0.32	1.10	1.65	1.66
1.14	-2.82	-0.82	-0.31	1.12	1.69	1.70
1.15	-2.85	-0.84	-0.28	1.15	1.74	1.74
1.16	-2.87	-0.85	-0.25	1.19	1.79	1.80
1.17	-2.88	-0.86	-0.21	1.23	1.85	1.86
1.18	-2.89	-0.85	-0.17	1.29	1.92	1.93

Table S10: Relative electronic energies of the first six electronic states for NO+H₂O as a function of the N-O bond length for R_{ON} =1.71 Å. All energies are reported relative to the D₂ state at R_{ON} = 10 Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

r _{NO} (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D ₅ (eV)
1.06	-2.71	-1.29	-0.35	0.99	1.23	1.38
1.07	-2.85	-1.42	-0.40	0.95	1.20	1.35
1.08	-2.96	-1.53	-0.44	0.91	1.18	1.33
1.09	-3.06	-1.62	-0.47	0.90	1.18	1.33
1.1	-3.14	-1.69	-0.48	0.89	1.20	1.34
1.11	-3.21	-1.75	-0.48	0.90	1.23	1.37
1.12	-3.27	-1.80	-0.47	0.92	1.26	1.40
1.13	-3.31	-1.84	-0.45	0.95	1.31	1.44
1.14	-3.34	-1.87	-0.42	0.99	1.36	1.49
1.15	-3.36	-1.88	-0.38	1.03	1.42	1.55
1.16	-3.36	-1.89	-0.34	1.09	1.50	1.62
1.17	-3.36	-1.88	-0.28	1.15	1.58	1.69
1.18	-3.35	-1.87	-0.22	1.22	1.66	1.77

Table S11: Relative electronic energies of the first six electronic states for NO+H₂O as a function of the N-O bond length for R_{ON} =1.81 Å. All energies are reported relative to the D₂ state at R_{ON} = 10 Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

r _{NO} (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D ₅ (eV)
1.06	-3.25	-2.19	-0.47	0.79	0.88	1.11
1.07	-3.38	-2.32	-0.51	0.75	0.86	1.09
1.08	-3.49	-2.42	-0.53	0.74	0.86	1.09
1.09	-3.58	-2.51	-0.55	0.74	0.87	1.09
1.1	-3.65	-2.58	-0.54	0.75	0.89	1.12
1.11	-3.71	-2.64	-0.53	0.77	0.93	1.15
1.12	-3.75	-2.68	-0.51	0.80	0.98	1.19
1.13	-3.79	-2.72	-0.48	0.85	1.03	1.24
1.14	-3.81	-2.74	-0.43	0.90	1.10	1.31
1.15	-3.82	-2.75	-0.38	0.96	1.17	1.38
1.16	-3.81	-2.75	-0.32	1.02	1.25	1.45
1.17	-3.80	-2.74	-0.26	1.10	1.34	1.54
1.18	-3.78	-2.72	-0.18	1.18	1.44	1.63

Table S12: Relative electronic energies of the first six electronic states for NO+H₂O as a function of the N-O bond length for R_{ON} =1.91 Å. All energies are reported relative to the D₂ state at R_{ON} = 10 Å. The calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

r _{NO} (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D5 (eV)
1.06	-3.68	-2.88	-0.52	0.60	0.68	0.92
1.07	-3.80	-3.00	-0.55	0.58	0.66	0.90
1.08	-3.90	-3.11	-0.57	0.58	0.66	0.91
1.09	-3.99	-3.19	-0.57	0.60	0.67	0.92
1.1	-4.06	-3.26	-0.55	0.62	0.70	0.95
1.11	-4.11	-3.32	-0.53	0.66	0.74	1.00
1.12	-4.15	-3.36	-0.50	0.71	0.79	1.05
1.13	-4.17	-3.39	-0.45	0.76	0.86	1.11
1.14	-4.19	-3.41	-0.40	0.83	0.93	1.18
1.15	-4.19	-3.41	-0.34	0.90	1.01	1.26
1.16	-4.18	-3.41	-0.27	0.98	1.10	1.35
1.17	-4.16	-3.40	-0.19	1.07	1.19	1.44
1.18	-4.13	-3.37	-0.11	1.16	1.30	1.54

Table S13: Relative electronic energies of the first six electronic states for NO+H₂O as a function of r_{OH_A} at a fixed $R_{ON} = 1.76$ Å. All energies are reported relative to D₂ at $R_{ON} = 10$ Å and the calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

r _{он_а} (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D5 (eV)
1.00	-3.45	-2.22	-0.52	0.79	0.99	1.18
1.05	-3.34	-2.08	-0.51	0.87	1.11	1.30
1.10	-3.15	-1.87	-0.48	1.03	1.29	1.50
1.125	-3.03	-1.75	-0.46	1.13	1.41	1.61
1.15	-2.91	-1.62	-0.45	1.23	1.53	1.74
1.175	-2.77	-1.48	-0.43	1.35	1.67	1.88
1.20	-2.63	-1.33	-0.43	1.47	1.81	2.02
1.225	-2.48	-1.18	-0.42	1.60	1.96	2.17
1.25	-2.33	-1.03	-0.42	1.73	2.11	2.32
1.275	-2.18	-0.87	-0.43	1.87	2.27	2.48
1.30	-2.02	-0.71	-0.44	2.02	2.43	2.64
1.325	-1.86	-0.54	-0.45	2.18	2.61	2.82

Table S14: Relative electronic energies of the first six electronic states for NO+H₂O as a function of r_{OH_A} at a fixed $R_{ON} = 1.787$ Å. All energies are reported relative to D₂ at $R_{ON} = 10$ Å and the calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

r _{он_а} (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D3 (eV)	D4 (eV)	D5 (eV)
1.00	-3.56	-2.42	-0.53	0.75	0.91	1.12
1.05	-3.44	-2.28	-0.53	0.84	1.03	1.24
1.10	-3.25	-2.08	-0.49	1.00	1.21	1.44
1.125	-3.14	-1.96	-0.47	1.10	1.33	1.56
1.15	-3.01	-1.83	-0.45	1.21	1.45	1.68
1.175	-2.88	-1.69	-0.43	1.32	1.59	1.82
1.20	-2.74	-1.54	-0.42	1.45	1.73	1.96
1.225	-2.59	-1.39	-0.41	1.57	1.87	2.11
1.25	-2.44	-1.24	-0.41	1.71	2.02	2.26
1.275	-2.29	-1.08	-0.41	1.84	2.18	2.42
1.30	-2.13	-0.92	-0.41	1.98	2.33	2.57
1.325	-1.98	-0.76	-0.42	2.12	2.49	2.73
1.35	-1.82	-0.60	-0.43	2.27	2.66	2.90
1.36	-1.75	-0.53	-0.44	2.34	2.73	2.97
1.365	-1.72	-0.50	-0.44	2.37	2.77	3.01

Table S15: Relative electronic energies of the first six electronic states for NO+H₂O as a function of r_{OH_A} at a fixed $R_{ON} = 1.81$ Å. All energies are reported relative to D₂ at $R_{ON} = 10$ Å and the calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

r _{он_а} (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D5 (eV)
1.00	-3.64	-2.58	-0.54	0.72	0.85	1.07
1.05	-3.53	-2.45	-0.53	0.82	0.96	1.19
1.10	-3.33	-2.24	-0.49	0.98	1.15	1.39
1.125	-3.22	-2.12	-0.46	1.08	1.26	1.51
1.15	-3.09	-1.99	-0.44	1.19	1.39	1.64
1.175	-2.96	-1.85	-0.42	1.31	1.52	1.77
1.20	-2.82	-1.71	-0.40	1.43	1.66	1.92
1.225	-2.67	-1.56	-0.39	1.56	1.81	2.06
1.25	-2.53	-1.41	-0.39	1.69	1.96	2.21
1.275	-2.37	-1.25	-0.39	1.82	2.11	2.37
1.30	-2.22	-1.09	-0.39	1.96	2.26	2.52
1.325	-2.06	-0.93	-0.40	2.10	2.42	2.68
1.35	-1.91	-0.78	-0.41	2.24	2.58	2.84
1.36	-1.85	-0.71	-0.41	2.30	2.64	2.90
1.365	-1.81	-0.68	-0.41	2.33	2.67	2.93
1.37	-1.78	-0.65	-0.41	2.36	2.70	2.96

Table S16: Relative electronic energies of the first six electronic states for NO+H₂O as a function of r_{OH_A} at a fixed $R_{ON} = 1.91$ Å. All energies are reported relative to D₂ at $R_{ON} = 10$ Å and the calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

r _{он_а} (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D ₅ (eV)
1.00	-3.97	-3.17	-0.57	0.58	0.66	0.90
1.05	-3.84	-3.04	-0.54	0.71	0.76	1.03
1.10	-3.65	-2.84	-0.48	0.90	0.93	1.23
1.125	-3.53	-2.72	-0.44	1.02	1.04	1.35
1.15	-3.40	-2.59	-0.40	1.13	1.16	1.48
1.175	-3.27	-2.45	-0.36	1.25	1.30	1.62
1.20	-3.13	-2.31	-0.33	1.38	1.44	1.76
1.225	-2.99	-2.16	-0.31	1.50	1.59	1.91
1.25	-2.79	-2.01	-0.29	1.76	2.15	2.65
1.275	-2.69	-1.86	-0.27	1.77	1.90	2.21
1.30	-2.54	-1.71	-0.26	1.90	2.05	2.37
1.325	-2.38	-1.55	-0.25	2.04	2.20	2.52
1.35	-2.23	-1.40	-0.25	2.17	2.36	2.67
1.36	-2.17	-1.33	-0.25	2.23	2.42	2.74
1.365	-2.14	-1.30	-0.25	2.26	2.45	2.77
1.37	-2.11	-1.27	-0.25	2.28	2.48	2.80

Table S17: Relative electronic energies of the first six electronic states for NO+H₂O as a function of r_{OH_B} at a fixed $R_{ON} = 1.76$ Å. All energies are reported relative to D₂ at $R_{ON} = 10$ Å and the calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

r _{он_в} (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D3 (eV)	D4 (eV)	D5 (eV)
1.00	-3.41	-2.16	-0.52	0.81	1.03	1.23
1.05	-3.31	-2.05	-0.49	0.85	1.13	1.32
1.10	-3.14	-1.87	-0.42	0.95	1.30	1.49
1.125	-3.03	-1.76	-0.39	1.02	1.41	1.60
1.15	-2.91	-1.64	-0.35	1.10	1.53	1.71
1.175	-2.79	-1.51	-0.32	1.20	1.66	1.84
1.20	-2.65	-1.37	-0.30	1.30	1.80	1.98
1.225	-2.51	-1.23	-0.28	1.41	1.94	2.12
1.25	-2.37	-1.08	-0.27	1.52	2.09	2.27
1.275	-2.22	-0.93	-0.27	1.65	2.24	2.42
1.30	-2.06	-0.77	-0.27	1.77	2.39	2.57
1.325	-1.91	-0.61	-0.28	1.90	2.55	2.72

r _{он_в} (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D ₅ (eV)
1.00	-3.52	-2.37	-0.54	0.77	0.95	1.16
1.05	-3.42	-2.26	-0.50	0.81	1.05	1.26
1.10	-3.24	-2.08	-0.43	0.92	1.23	1.43
1.125	-3.13	-1.97	-0.39	0.99	1.34	1.54
1.15	-3.02	-1.85	-0.35	1.08	1.46	1.66
1.175	-2.89	-1.72	-0.32	1.17	1.59	1.79
1.20	-2.75	-1.58	-0.29	1.27	1.73	1.92
1.225	-2.61	-1.43	-0.27	1.38	1.87	2.06
1.25	-2.47	-1.29	-0.25	1.50	2.02	2.21
1.275	-2.32	-1.13	-0.25	1.62	2.17	2.36
1.30	-2.17	-0.98	-0.25	1.74	2.32	2.51
1.325	-2.02	-0.82	-0.25	1.87	2.47	2.66
1.35	-1.86	-0.66	-0.25	2.01	2.63	2.81
1.36	-1.80	-0.60	-0.26	2.06	2.69	2.87
1.365	-1.77	-0.57	-0.26	2.09	2.72	2.91

Table S18: Relative electronic energies of the first six electronic states for NO+H₂O as a function of r_{OH_B} at a fixed $R_{ON} = 1.787$ Å. All energies are reported relative to D₂ at $R_{ON} = 10$ Å and the calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

r _{онь} (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D3 (eV)	D4 (eV)	D5 (eV)
on _B ()		- ()	- ()			
1.00	-3.61	-2.54	-0.55	0.74	0.88	1.11
1.05	-3.50	-2.42	-0.51	0.79	0.99	1.21
1.10	-3.33	-2.24	-0.43	0.90	1.17	1.39
1.125	-3.22	-2.13	-0.39	0.97	1.28	1.49
1.15	-3.10	-2.01	-0.35	1.06	1.40	1.61
1.175	-2.97	-1.88	-0.31	1.15	1.53	1.74
1.20	-2.84	-1.74	-0.28	1.25	1.67	1.88
1.225	-2.70	-1.60	-0.25	1.36	1.81	2.02
1.25	-2.55	-1.45	-0.24	1.48	1.96	2.17
1.275	-2.40	-1.30	-0.22	1.60	2.11	2.32
1.30	-2.25	-1.14	-0.22	1.72	2.27	2.47
1.325	-2.10	-0.99	-0.22	1.85	2.42	2.62
1.35	-1.95	-0.83	-0.22	1.98	2.57	2.77
1.36	-1.88	-0.77	-0.22	2.04	2.64	2.83
1.365	-1.85	-0.74	-0.23	2.06	2.67	2.86
1.37	-1.82	-0.71	-0.23	2.09	2.70	2.89

Table S19: Relative electronic energies of the first six electronic states for NO+H₂O as a function of r_{OH_B} at a fixed $R_{ON} = 1.81$ Å. All energies are reported relative to D₂ at $R_{ON} = 10$ Å and the calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

	•					
r _{он_в} (Å)	D ₀ (eV)	D ₁ (eV)	D ₂ (eV)	D ₃ (eV)	D4 (eV)	D5 (eV)
1.00	-3.95	-3.15	-0.57	0.59	0.68	0.93
1.05	-3.83	-3.03	-0.51	0.67	0.79	1.04
1.10	-3.64	-2.83	-0.42	0.80	0.97	1.22
1.125	-3.53	-2.72	-0.36	0.88	1.09	1.34
1.15	-3.41	-2.60	-0.31	0.97	1.21	1.46
1.175	-3.28	-2.47	-0.26	1.07	1.35	1.59
1.20	-3.15	-2.33	-0.21	1.17	1.49	1.73
1.225	-3.01	-2.19	-0.17	1.29	1.63	1.87
1.25	-2.86	-2.04	-0.14	1.40	1.78	2.02
1.275	-2.71	-1.89	-0.11	1.53	1.93	2.17
1.30	-2.57	-1.74	-0.09	1.65	2.09	2.32
1.325	-2.41	-1.59	-0.07	1.78	2.24	2.47
1.35	-2.26	-1.44	-0.06	1.91	2.39	2.63
1.36	-2.20	-1.38	-0.06	1.96	2.46	2.69
1.365	-2.17	-1.35	-0.06	1.99	2.49	2.72
1.37	-2.14	-1.32	-0.06	2.02	2.52	2.75

Table S20: Relative electronic energies of the first six electronic states for NO+H₂O as a function of r_{OH_B} at a fixed $R_{ON} = 1.91$ Å. All energies are reported relative to D₂ at $R_{ON} = 10$ Å and the calculations were performed at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

Table S21: Relative electronic energies of the D₁ and D₂ electronic states for NO+H₂O as a function of r_{OH_A} at a fixed $R_{ON} = 1.787$ Å. All energies are reported relative to D₁ at $r_{OH_A}=1.0$ Å. The calculations were performed at either the (9,9) NEVPT2/aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory or the EOM-EA-CCSD/aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVTZ level of theory.

r _{онв} (Å)	D1 (eV) NEVPT2	D2 (eV) NEVPT2	D1 (eV) EOM-EA- CCSD	D2 (eV) EOM-EA- CCSD
1.00	0.00	1.81	0.00	1.90
1.05	0.18	1.84	0.14	1.91
1.10	0.36	1.83	0.34	1.95
1.125	0.46	1.82	0.46	1.97
1.15	0.58	1.81	0.59	1.99
1.175	0.70	1.80	0.73	2.00
1.20	0.84	1.78	0.88	2.01
1.225	0.98	1.76	1.03	2.02
1.25	1.12	1.73	1.18	2.02
1.275	1.26	1.71	1.34	2.02
1.30	1.40	1.69	1.50	2.01
1.325	1.54	1.68	1.66	2.00
1.35	1.60	1.76	1.82	1.99
1.36	1.61	1.80	1.89	1.99
1.365	1.61	1.83	1.93	1.99

References

- Schapiro, I.; Sivalingam, K.; Neese, F. Assessment of N-Electron Valence State Perturbation Theory for Vertical Excitation Energies. J. Chem. Theory Comput. 2013, 9 (8), 3567–3580. https://doi.org/10.1021/ct400136y.
- Neese, F. Software Update: The <scp>ORCA</Scp> Program System—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12 (5). https://doi.org/10.1002/wcms.1606.
- (3) Bode, B. M.; Gordon, M. S. MacMolPlt: A Graphical User Interface for GAMESS. J. Mol. Graph. Model. 1998, 16 (3), 133–138. https://doi.org/10.1016/S1093-3263(99)00002-9.
- Plasser, F.; Wormit, M.; Dreuw, A. New Tools for the Systematic Analysis and Visualization of Electronic Excitations. I. Formalism. J. Chem. Phys. 2014, 141 024106. https://doi.org/10.1063/1.4885819.
- Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4 (1), 17. https://doi.org/10.1186/1758-2946-4-17.