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EXPERIMENTAL SECTION

Preparation of Samples. 

The synthesis of C3N4: 10 g melamine was pressed into a pellet under a pressure 

of 20 MPa. The pellet was transferred to a quartz boat covered with a quartz cap and 

calcined at 600 °C for 0.5 h in N2 atmosphere. Then the obtained yellow powder was 

collected as the carbon and nitrogen precursor for the preparation of Fe3C@NCNT.

The in situ synthesis of Fe3C@NCNT arrays: 2 g FeC2O4·2H2O and 5 g C3N4 

were added to 5 mL aqueous solution under tempestuously stirring to form a yellow 

slurry. Then, the colloidal compounds were milled continually to form a yellow 

paste, following the evaporation of water. The obtained yellow paste was dried at 80 

°C for 24 h and manually ground into powder. The powder was transferred to a 

semiclosed quartz boat and heated at 350 °C for 1 h at a heating rate of 2 °C min-1 in 

a tubular furnace under N2 flow, and the temperature was increased to 700 °C at 2 °C 

min-1 and kept at 700 °C for 3 h, followed by cooling to room temperature naturally.

The in situ synthesis of Fe2O3@NCNT arrays: The obtained Fe3C@NCNT 

powder was calcined in a muffle furnace in air at 300 °C for 0.5 h with a heating rate 

of 10 °C min-1, and the final product was obtained.

The synthesis of Fe2O3/CB: 2 g FeC₂O₄·2H2O and 0.5 g carbon black was 

dispersed in 3 mL deionized water and ground by mortar and pestle to form a slurry. 

Then the slurry was dried at 80 °C in oven overnight. The obtained powder was 

transferred to a quartz boat and covered by a quartz cap. Then heat treated at 300 °C 

for 0.5 h in air to form Fe2O3/CB.

Material Characterization

The crystalline structure of the products was characterized by X-ray diffraction (XRD) 

on a Rigaku SmartLab9 powder diffractometer equipped with Cu Kα radiation (λ = 
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1.541 Å). Thermogravimetric analysis (TGA) was performed on a TA SDT Q600 

analyser in air with a heating rate of 10 K min-1. The morphology of the products was 

observed by field emission scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM). The SEM was carried out on a ZEISS SUPRA 55 

microscope equipped with a secondary electron detector and the applied acceleration 

voltage was 3 kV. Transmission electron microscope (TEM) images and elemental 

mapping were taken on a Tecnai G2 F20 microscope with an accelerating voltage of 

200 KV. X-ray photoelectron spectroscopy (XPS) was conducted using a Kratos Axis 

Ultra DLD (delay line detector) spectrometer equipped with a monochromatic Al Kα 

X-ray source (1486.6 eV). Raman spectra were collected on a Renishaw-1000 

spectrometer by exciting a 514.5 nm Ar ion laser. N2 adsorption-desorption isotherms 

were recorded at 77 K on a Quantachrome NOVA 2000e sorption analyzer. Optical 

absorption spectroscopy was performed in the 300-700 nm range in 1 nm steps on an 

ultraviolet-visible-near-infrared, double beam spectrophotometer (America 

PerkinElmer Lambda 950).

Electrochemical Characterization 

Fe2O3@NCNT or Fe2O3/CB and polyvinylidene fluoride (PVDF) binder in a 

weight ratio of 9 : 1 were mixed in N-methylpyrrolidone (NMP) and stirred for 24 h 

to make a slurry. The slurry was then spread on a Cu foil (13 mm in diameter, 0.3 mm 

in thickness) with a surface density of 1.0 mg cm-2 (electrode thickness: 9.7 μm, Fig. 

S4) and dried at 120 °C for 24 h to fabricate the working electrodes in vacuum. 

Lithium foil was used as both the reference electrode and the counter electrode (13 

mm in diameter, 0.5 mm in thickness). 1.0 M LiPF6 in a 1:1 (v/v) mixture of ethylene 

carbonate (EC) and diethyl carbonate (DEC) was employed as the electrolyte. Celgard 

2300 membrane (25 μm-thick polyethylene) was adopted as a separator. The 

assembly of CR2032-type coin cells was conducted in a high-purity Ar filled 

glovebox. Three cells were assembled in each batch for every sample and the tested 

average value was used for plotting the graph. Galvanostatic cycling was performed 
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between 0.01 and 3 V vs Li+/Li at various C rates on a Land Battery Tester (Wuhan, 

China), where 1 C corresponds to 1000 mA g-1. Cyclic voltammetry (CV) was 

conducted between 0.01 and 3 V at 0.1 mV s-1 using a CHI660E electrochemical 

workstation. Electrochemical impedance spectroscopy (EIS) was performed on the 

same electrochemical system over the frequency range from 100 kHz to 100 mHz 

with a perturbation voltage of 5 mV. The Nyquist impedance plots were fitted by 

Zview 2 software based on the equivalent circuit diagram. All of the electrochemical 

measurements were performed at 25 °C in an ambient atmosphere.

20 30 40 50 60 70

In
te

ns
ity

 (a
.u

.)

2Theta (deg.)

Fig. S1 XRD pattern of Fe3C@NCNT
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Fig. S2 XPS survey spectrum of Fe2O3@NCNT hybrid.
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Fig. S3 Absorption spectrum of Fe2O3@NCNT hybrid.
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Fig. S4 The cross-sectional SEM image of Fe2O3@NCNT electrode layer on Cu 

current collector.
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Fig. S5 Top-view SEM images of Fe2O3@NCNT electrode (a) before and (b) after 
800 cycles.

Table S1 Comparison of Li/Fe2O3@NCNT half-cell results with literature reports.

Reference Material Specific capacity
(mAh g-1)

Rate-capacity
(mAh g-1)

This work Fe2O3@NCNT 0.5 C/1075 for 60 cycles 5 C/907
1 Fe2O3/C 0.2 C/790 for 100 cycles 4 C/390
2 Fe2O3/graphene 0.8 C/711 for 50 cycles 1.6 C/660
3 Fe2O3/graphene 0.5 C/780 for 40 cycles 2 C/420
4 Fe2O3/C 0.5 C/734 for 60 cycles 3 C/480
5 Fe2O3/Fc@SWCNT 0.5 C/650 for 25 cycles 1.2 C/550
6 YS-γ-Fe2O3@G-GS 0.5 C/737 for 30 cycles 5 C/443
7 Fe2O3/HCNF 0.2 C/816 for 100 cycles 2 C/602
8 Fe2O3/rGO 0.3 C/881 for 90 cycles 2 C/611
9 Fe2O3@CNFs 0.2 C/612 for 300 cycles 2 C/390
10 3D graphene/a-Fe2O3 1 C/674 for 420 cycles 5 C/336
11 HI-CNT/Fe2O3 0.1 C/651 for 100 cycles 5 C/420
12 γ-Fe2O3@graphene 1 C/833 for 100 cycles 2 C/551
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