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1 Additional results & discussion

1.1 Equation of state and phase diagram

Fig. 1(a) shows the equation of state of the mixture as a function of x1. The equilibrium-NPT

and NEMD results are in excellent agreement, indicating that the local equilibrium hypothesis

is fulfilled in the NEMD simulations. The mixture is expected to have a solid-solution phase

diagram,1 and the thermodynamically stable phase for x1 = 0 is a solid (see Sec. 2.9 below).

Therefore, the mixture crosses three regions of the phase diagram along the (x1; P = 0.46 ϵσ−3,

T = 0.62 ϵk−1
B ) line: a liquid-liquid mixture for xl < x1 < 1 where xl corresponds to the liquidus;

a liquid-solid coexistence region xs ≤ x1 ≤ xl where xs corresponds to the solidus; and a solid-

solid mixture for 0 < x1 < xs. All the results presented in this work correspond to a liquid-liquid

mixture, including x1 ≤ xl for which our simulations are of the metastable supercooled liquid-

liquid mixture. Thus, it is necessary to estimate xl in order to gauge the range of validity of our

results.

For an ideal solution the phase diagram can be estimated using the equations2,3

ln
xs,1

xl,1
=

∆Hfus,1

R

(
1

Tm,1
− 1

T

)
(1)

(a) (b)

Figure 1: Equation of state and phase diagram of the LJ mixture. (a) The number density

ρN for (P = 0.46 ϵσ−3, T = 0.62 ϵk−1
B ) as a function of mole fraction x1, as predicted by

MD(NPT ), GCMC and NEMD simulations. All simulated systems correspond to a liquid, which

is metastable for x1 ≤ xl, where xl is the mole fraction of the liquidus shown in (b). (b) The

estimated solid solution phase diagram of the mixture at P = 0.46 ϵσ−3. The symbols are: S =

solid solution; L = liquid mixture; S+L = solid and liquid coexistence.
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ln
1− xs,1

1− xl,1
=

∆Hfus,2

R

(
1

Tm,2
− 1

T

)
(2)

where R is the gas constant; Tm,i and ∆Hfus,i are the melting temperature and enthalpy of

fusion, respectively, of species i; and xl,1 and xs,1 are the mole fractions of the liquidus and

solidus for end-member 1. Eqs. 1&2 further assume that there is no difference in isobaric heat

capacity between the supercooled liquid and pure solid of species 1 at T .3 The predicted phase

diagram is shown in Fig. 1(b), with xl ≈ 0.21 at T = 0.62 ϵk−1
B . The mixture is near-ideal at

x1 ≈ 0.21 with thermodynamic factor Γ ≈ 0.8, and the assumption of ideal mixing is therefore

expected to be a good approximation. The ST and Γ minima at x1 ∼ 0.5 (see the main text)

are safely within the liquid-liquid mixture region of the phase diagram.

1.2 Ideal and excess contributions to the thermodynamic factor

Figure 2: The thermodynamic factor Γ, and its ideal Γid and excess Γex contributions, as a

function of mole fraction x1. All results correspond to the FEP data.

We split Γ into its excess and ideal gas contributions, Γex and Γid respectively (Fig. 2).

Γid = x1(∂µ
id
1 /∂x1)P,T /(kBT ) = (x1/ρN )(∂ρN/∂x1)P,T + 1 depends only on x1, the total num-

ber density ρN and its derivative, while Γex = x1(∂µ
ex
1 /∂x1)P,T /(kBT ) depends on the excess

chemical potential µex
1 and therefore the inter-particle interactions in the system. Γid mono-

tonically decreases with increasing x1, while Γex possesses a minimum at x
min(Γex)
1 = 0.4 ± 0.1

as determined by fitting a cubic function. Thus, the minimum arises through Γex, although its

position is shifted by ∼ 0.1 (to x1 ∼ 0.5) due to the Γid contribution.
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1.3 Theoretical models

We calculate the Soret coefficient according to the models of Haase4,5 (SH
T ), Kempers5 (SK

T )

Shukla and Firoozabadi6 (SSF
T ), and Artola, Rousseau and Galliéro7 (SARG

T ):

TSH
T,1 =

m1m2

m1x1 +m2x2

(h2 − h0
2)/m2 − (h1 − h0

1)/m1

x1(∂µ1/∂x1)P,T
+

RT 2

x1(∂µ1/∂x1)P,T
S0
T (3)

TSK
T,1 =

v1v2
v1x1 + v2x2

(h2 − h0
2)/v2 − (h1 − h0

1)/v1
x1(∂µ1/∂x1)P,T

+
RT 2

x1(∂µ1/∂x1)P,T
S0
T (4)

TSSF
T,1 =

u1/τ1 − u2/τ2
x1(∂µ1/∂x1)P,T

+
(v2 − v1)(x1u1/τ1 + x2u2/τ2)

(x1v1 + x2v2)x1(∂µ1/∂x1)P,T
(5)

TSARG
T,1 =

∆G‡
2 −∆G‡

1

RT
+

m2 −m1

m2 +m1

∆G‡
2 +∆G‡

1

RT
(6)

where hi, ui and vi are the partial molar enthalpy, internal energy and volume of species i = 1, 2.

R is the gas constant. The Kempers model was derived by considering a non-isothermal two-bulb

system, with the main assumption that the stationary state is the macroscopic state with the

maximum number of microstates. Within this model, SK
T corresponds to the centre-of-volume

frame of reference, while Haase’s earlier educated guess SH
T can be derived in the centre-of-mass

frame.5 h0
i and S0

T correspond to an ideal gas state at the same temperature (calculated from

kinetic theory), and capture the kinetic contribution to ST . The Shukla-Firoozabadi model

was developed with its origins in linear non-equilibrium thermodynamics (LNET), along the

same lines as earlier models8,9 that all correlate the net heat of transport with the activation

energy for viscous flow ∆U‡
η . The parameter τi = ∆Uc,i/∆U‡

η,i, where ∆Uc is the cohesive

energy, is related to the size of the hole required for viscous flow (from the hole theory of

liquids), and is often treated as an adjustable parameter. The Artola-Rousseau-Galliéro model

is Prigogine’s model (SP
T ) modified to include the mass contribution; for m1 = m2 it reduces to

SARG
T,1 = SP

T,1 = (∆G‡
2 −∆G‡

1)/RT 2. In these two kinetic models, thermal diffusion is described

as a coupled diffusion-activated process, for which the elementary process can be summarized as

a swap between two particles of different species along a temperature gradient. The activation

energies ∆G‡
i were calculated from Di = D0

i exp (−∆G‡
i/RT ) (see Fig. 3), where D0

i is a constant

and the self-diffusion coefficients Di have been corrected for finite-size effects (see Sec. 2.6 below).

The molecular motion of a component through the mixture is better identified with self-diffusion

rather than viscous flow; the use of the latter was historically motivated by the scarcity of self-

diffusion data, even for pure components, and justified by the similar activation energies expected

from Eyring’s rate theory applied to liquids.10 By using self-diffusion data, the Artola-Rousseau-

Galliéro model represents a step forward in the modelling of thermal diffusion.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: The Soret coefficient predicted by the Artola-Rousseau-Galliéro and Prigogine models,

S
ARG/P
T , and related quantities. The self-diffusion coefficients Di as a function of temperature

T for species (a) i = 1 and (b) i = 2. lnDi vs. T−1 for species (c) i = 1 and (d) i = 2; the solid

lines show linear fits to lnDi = lnD0
i − ∆G‡

i/(kBT ). (e) The activation energies ∆G‡
i and (e)

S
ARG/P
T as a function of mole fraction x1. Where error bars have not been shown, uncertainties

are smaller than the size of the symbols.

A relevant question for the Shukla-Firoozabadi model is how to best estimate the parameters

τi. Different methods have been proposed, with varying levels of approximations.6,11–14 The

most crude but still a widely adopted15,16 approach is to set τ1 = τ2 = 4.0 or 3.5, stemming

from the observation6 that ∆Uvap/∆U‡
η = 3-4 for many non-associating liquids under normal

boiling point conditions, where ∆Uvap is the energy of vaporization (∆Uvap is an approximation
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(a) (b)

Figure 4: ln(ηi) vs. ∆Uc/(kBT ), where ηi and ∆Uc are the shear viscosity and cohesive energy of

a pure liquid of species i = 1, 2. (a) Species 1 and (b) species 2. The solid lines show linear fits to

ln ηi = lnA+ Uc/(τikBT ). The data points correspond to P = 0.46ϵσ−3 and T/(ϵk−1
B ) = 0.605,

0.61, 0.615, 0.62, 0.625 and 0.63.

to ∆Uc). While permissible for some mixtures, this approach is unsuitable for others and has

been criticised.11,13,14 In this work, we use the method originally proposed6, but not employed,

by Shukla and Firoozabadi with the caveat that they used the approximation ∆Uvap ≈ ∆Uc.

As shown in Fig. 4, we calculate τi of the pure components from ηi = A exp (∆U‡
η,i/RT ) =

A exp (∆Uc,i/τiRT ), where ηi is the shear viscosity, to give (τ1, τ2) = (3.3 ± 0.1, 3.8 ± 0.1), and

use these τi for the entire composition range. This approach does not account for the composition

dependence of τi.
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1.4 Radial distribution functions

(a) (b) (c)

Figure 5: Radial distribution functions gij and coordination number nij of the Lennard-Jones

mixtures: (a) g11 and n11; (b) g22 and n22; (c) g12 and n12. rij is the radial distance between

species i and j. Solid lines show gij (left axis) and the dashed lines show nij (right axis).

1.5 Thermal conductivity

It is well established that the Soret effect reduces the thermal conductivity of the mixture.17

From LNET, the thermal conductivity λ is given in terms of the phenomenological coefficients

Lαβ and L′
αβ as

λ =
1

T 2

(
Lqq −

L1qLq1

L11

)
=

1

T 2

(
L′
qq −

L′
1qL

′
q1

L11

)
(7)

where the enthalpic terms in the primed coefficients cancel exactly to give the same thermal

conductivity as for the unprimed coefficients. λ can therefore be split into two contributions: (1)

the thermal conductivity in the absence of coupling effects, λ0 = Lqq/T
2 or λ′

0 = L′
qq/T

2, and

(2) the mass-heat coupling term, δλ = −L1qLq1/(L11T
2) or δλ′ = −L′

1qL
′
q1/(L11T

2), such that

λ = λ0 + δλ = λ′
0 + δλ′. The Soret effect should always decrease λ, and thus λ = λ0 − |δλ| =

λ′
0 − |δλ′|.

We show in Fig. 6 the thermal conductivity of the mixture, and the contribution due to heat-

mass coupling. The thermal conductivities calculated via NEMD and equilibrium-MD (EMD)

are in excellent agreement. The thermal conductivity of the mixture decreases with increasing x1.

λ increases with density, consistent with the trend observed for simple fluids, including LJ fluids,

along an isotherm. However, the density dependence of the mixture slightly deviates from the
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(a) (b) (c)

Figure 6: Thermal conductivity λ of the Lennard-Jones mixture. λ as a function of (a) mole

fraction x1 and (b) number density ρN as well as ρ
2/3
N . (c) The decrease in λ due to heat-mass

coupling, |δλ| and δλ′. In (c), circles with dashed lines (--◦--) show the absolute values (left

axis) and downward triangles with dotted lines (· · ▽ · ·) show the values as a percentage of λ

(right axis). Where error bars have not been shown, uncertainties are smaller than the size of

the symbols.

λ ∝ ρ
2/3
N scaling reported18 for pure LJ fluids. The |δλ| and |δλ′| terms both feature a maximum,

which is a direct consequence of the minimum in ST and Γ (indeed, δλ′ = −L′
1qSTΓkB/m1 for

m1 = m2). |δλ| amounts to a reduction of ∼1-3% relative to λ for 0.1 ≤ x1 ≤ 0.9, while |δλ′| is

an order of magnitude smaller with values from 0 to 0.3%. The result that heat-mass coupling

reduces the thermal conductivity by at most a few percent is consistent with previous studies19

examining different LJ mixtures.
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2 Physical properties from simulations

All simulations were performed using the software package LAMMPS20 (v. 3 March 2020).

2.1 Equilibrium molecular dynamics simulations

Equilibrium molecular dynamics (EMD) simulations of the mixture were performed in the NPT,

NVT and NVE ensembles, targeting various thermodynamic states. Unless stated otherwise (i.e.

for the finite-size analyses) a cubic simulation cell containing 5000 particles was used. A timestep

of 0.002τ was used for the NPT and NVT simulations. For the NPT and NVT simulations,

temperature was controlled by the Nosé-Hoover chain thermostat, with 3 chains, and a time

constant of 1 τ . Additionally in the NPT simulations, pressure was controlled using a Nosé-

Hoover chain barostat, also with 3 chains, and a time constant of 4 τ . For the NPT simulations,

a single replica was performed for each (x1, P , T ) state point, consisting of at least 2 × 104 τ

of equilibration, followed by a 1-2×105 τ production run. For the NVT simulations, sampling

consisted of 20-200 replicas for each (x1, ρ, T ) state point depending on the system size, which

varied from N = 1000-120, 000 particles; each replica was equilibrated for 2× 103 τ followed by

104 τ of production. The exceptions to this were the large N = 0.5-5 × 106 systems simulated

for the KBIs (Sec. 2.8 below), which had both equilibration and production times of 103τ .

Simulations in the NVE ensemble targeted different compositions along the (P = 0.46 ϵσ−3,

T = 0.62 ϵk−1
B ) isobar-isotherm. For each state point, replicas were first spawned from NVT

simulations and monitored for an initial 2 × 103 τ . If the average temperature was within

±0.0005 ϵk−1
B of T = 0.62 ϵk−1

B , the replica was continued for a further 2× 104 τ of production.

Replicas were also subsequently started from these successful NVE trajectories. A total of 50-

100 statistically independent replicas were performed for each state point, all of which had an

average temperature ⟨T ⟩NV E within ±0.0005 ϵk−1
B of the target temperature. A smaller timestep

of δt = 0.001 τ was used to improve energy conservation (reduce temperature drift) and therefore

increase the sampling times available in the small ±0.0005 ϵk−1
B temperature window, and also to

reduce the discretization error for the numerical integration of correlation functions (see secs. 2.4

& 2.6 below).

10



2.2 Soret coefficient and thermal conductivity from NEMD

2.2.1 Simulation details

The Soret coefficient ST and thermal conductivity λ were calculated from boundary-driven non-

equilibrium molecular dynamics simulations (NEMD) in the stationary state. An elongated

(tetragonal) simulation cell of dimensions (Lx, Ly, Lz) = (20, 20, 30)σ was used, with 3D periodic

boundary conditions. Two thermostatting regions, hot and cold, were located in the centre and

edges of the simulation, respectively (see Fig. 7). The thermostatting regions had a width

∆z = 3σ and extended over the entire (x, y) plane, such that the temperature gradients were

generated along the z-direction. For the thermostatting procedure, a simple velocity rescaling

algorithm was used to maintain the hot and cold thermostatting regions at temperatures Th

and Tc, respectively. The velocities of all particles in each region were rescaled, every timestep,

by a factor α =
√
Kt/Kc where Kt and Kc are the target and current kinetic energies of the

region. This velocity rescaling procedure does not conserve linear momentum, so the system’s

centre-of-mass velocity was subtracted from each particle at every time step in order to ensure

linear momentum conservation. A timestep of δt = 0.002 τ was used.

(a)

(b)

Figure 7: Representative (a) temperature T and number density ρN profiles, and (b) mole

fraction, x1 and x2, profiles for the NEMD simulations. The blue (cold) and red (hot) indicate

the location of the thermostatting regions in the simulation cell.
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For each system, the average density, mole fraction and thermostat temperatures were chosen

to give ⟨Pzz⟩ within ±0.001 ϵσ−3 of the target pressure P = 0.46 ϵσ−3, where Pzz is the pressure

tensor component parallel to the heat flux vector. Relatively small (by simulation standards) tem-

perature differences ∆T = Th−Tc ≈ 0.04 ϵk−1
B and resulting gradients ∇T ≈ 2.9×10−3 ϵk−1

B σ−1

were used to accurately target the thermodynamic state. For each system, 10 statistically inde-

pendent replicas were generated, each consisting of an initial 2×104τ to establish the stationary

state, followed by 2× 106τ for data collection.

In the stationary state, this set-up results in two equal but opposite temperature gradients,

and therefore in equal and opposite heat fluxes, such that the system is completely periodic. The

heat flux across the system, Jq = (0, 0,±Jq), can be obtained from the continuity equation

Jq =
|⟨∆U⟩|
2δtA

(8)

where A = Lx×Ly is the cross-sectional area of the simulation cell, δt is the timestep, and ∆U is

the internal energy exchanged at each timestep. The employed simple rescaling thermostat only

changes the kinetic energy such that ∆U = ∆K. The factor of 2 in the denominator accounts

for the two heat fluxes (equal magnitude and opposite direction) generated in this setup. The

thermal conductivity λ was then calculated using Fourier’s Law:

Jq = −λ∇T (9)

where ∇T is the local temperature gradient. The Soret coefficient ST was calculated using Eq. 1

in the main text, again employing local values of the gradients ∇T and ∇x1. Local densities ρ,

mol fractions x1 and temperatures T were determined from a 1σ bin close to the centre of each

NVE compartment. The position of the bin was chosen such that T = 0.62 ϵk−1
B . The local

values of ∇T and ∇w1 were determined by fitting straight lines to the temperature and mole

fraction profiles within a range of ±2.5σ around the selected state point.

2.2.2 Linear response

We demonstrate in Fig. 8 that the magnitude of temperature gradients used in this work are

within the linear regime. For these additional simulations, production runs of length 1.5× 106τ

and 106τ were used for the ∇T ≈ 1.5 × 10−3 ϵk−1
B σ−1 and ∇T ≈ 4.4 × 10−3 ϵk−1

B σ−1 systems,

respectively. The values for ST and λ for x1 = 0.5, 0.9 were calculated by fitting to their linear

response (Fig. 8).
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(a) (b)

(c) (d)

Figure 8: Linear response of the Soret coefficient ST and thermal conductivity λ: (a) mole

fraction gradient ∇x1, (b) ST , (c) heat flux Jq and (d) λ as a function of temperature gradient

∇T . The solid lines show fits to ∇x1 = −x1x2ST∇T in (a) and (b), and to Fourier’s law

−Jq = λ∇T in (c) and (d). In (a) and (c), statistical uncertainties are smaller than the size of

the symbols. In (b) and (d) the shaded areas show the uncertainty associated with the fits.

2.2.3 Finite-size effects

We show in Fig. 9 that the lateral simulation cell length L⊥ = Lx = Ly has a significant effect

on ST . While all but one (L⊥/σ = 10, 20 for x1 = 0.3) ST values agree to within their statistical

uncertainties, |ST | systematically decreases with L⊥: by ∼0-10% (∼3-6%) when increasing L⊥

from 10σ to 20σ (20σ to 40σ). Nevertheless, fitting cubic functions to the L⊥/σ = 10, 20, 40

data gives x
min(ST )
1 = 0.5 ± 0.1, and further increasing L⊥ is not expected to significantly shift

the position of the minimum. Finite-size effects in ST are expected from those observed in self-

diffusion coefficients (Sec. 2.6 below) and D12.
21,22 The impact of finite-size effects on DT is less

well known.

We do not observe appreciable finite-size effects for the thermal conductivity. This is consis-
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Figure 9: Finite-size effects on the Soret coefficient ST calculated from NEMD simulations.

L⊥ = Lx = Ly is the length of the simulation cell in the direction perpendicular to the heat flux.

Solid lines show cubic functions fit to ST (x1) where x1 is the mole fraction of species 1.

tent with the mechanism of thermal transport in molecular liquids (and liquid mixtures), which

is dominated by collisions between nearest neighbors, setting a characteristic length scale for

heat transport at ∼ 1σ.

The additional simulations for L⊥ = 10σ and L⊥ = 40σ had production lengths of 4× 106τ

and 3× 105τ , respectively.

2.3 Partial molar properties

Partial molar properties zi were calculated using the equations z1 = Z + (1− x1)(∂Z/∂x1)PTN2

and z2 = Z − x1(∂Z/∂x1)PTN2 , where Z is the corresponding extensive property. Z(x1) were

calculated from MD simulations in the NPT ensemble. At each selected x1, two additional

simulations were performed at x1 ± 0.01, and (∂Z/∂x1)PTN2
was then calculated by fitting a

straight line through these three points.
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(a) (b) (c)

Figure 10: Partial molar properties zi of component i = 1, 2 as a function of mole fraction x1:

(a) partial molar enthalpy hi; (b) partial molar internal energy ui; and (c) partial molar volume

vi. Statistical uncertainties are smaller or comparable to the size of the symbols.

2.4 Onsager’s phenomenological coefficients

The phenomenological coefficients Lαβ were calculated using the Green-Kubo integral formula

Lαβ =
V

3kB
lim

t′→∞

∫ t′

0

⟨Jα(t) · Jβ(0)⟩dt (10)

where V is the volume of the simulation cell, and the factor of 3 in the denominator averages

the contributions from each spatial dimension. In order to calculate Lqq, L1q, Lq1 and L11, the

expressions for the heat flux Jq and mass flux J1 in terms of microscopic quantities are required.

These are:

J1 =
1

V

N1∑
i=1

mivi (11)

where the sum runs over all N1 particles of species 1, and in the case of two-body interactions

the Irving-Kirkwood formula for heat flux is

Jq =
1

V

(
N∑
i=1

Uivi −
N∑
i=1

Sivi

)
=

1

V

 N∑
i=1

(Vi +Ki)vi −
1

2

N∑
i=1

N∑
j ̸=i

(vi · Fij)rij

 (12)

where Ui is the per-particle internal energy which can be split into potential Vi = (1/2)
∑

j ̸=i uij(rij)

and kinetic energy Ki = (1/2)miv
2
i contributions; Si is the per-particle stress tensor; Fij is the

force exerted on particle i by particle j; and rij = rj − ri where ri is the position vector of

particle i.

The unprimed coefficients were calculated from simulations in the NVE ensemble. A correla-

tion time of tc = 10τ was used for the upper limit of Eq. 10. Selecting this integration limit is a

compromise between sampling efficiency and minimizing the resulting truncation error. We show

15



(a) (b)
(i)

(ii)

(iii)

(i)

(ii)

(iii)

Figure 11: (a) Correlation functions ⟨Jα(t) · Jβ(0)⟩ as a function of time lag t. (b) Convergence

of the phenomenological coefficients Lαβ(tc) with the correlation time tc used as the upper limit

of the integral in Eq. 10. In (a)(ii) and (b)(ii): solid lines show ⟨J1(t) · Jq(0)⟩ and L1q; dotted

lines show ⟨Jq(t) · J1(0)⟩ and Lq1

in Fig. 11 that 10 τ is sufficiently long to achieve a well-converged integral, while the exhaustive

extent of our sampling is reflected in the associated uncertainty.

The primed coefficients L′
αβ were then obtained from Lαβ using the formulas

L′
qq = Lqq − (L1q + Lq1)(hs,1 − hs,2) + L11(hs,1 − hs,2)

2 (13)

L′
1q = L1q − L11(hs,1 − hs,2) (14)

L′
q1 = Lq1 − L11(hs,1 − hs,2) (15)

L′
11 = L11 (16)
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where hs,i is the specific molar enthalpy of component i = 1, 2. These formulas can be derived

by comparing expressions for entropy production in LNET, or trivially from the Green-Kubo

integral formula (Eq. 10) noting that J ′
q = Jq − (hs,1 − hs,2)J1.

19,23 The difference between J ′
q

and Jq corresponds to the heat transported due to diffusion.

We show in Fig. 12 the values of coefficients Lαβ and L′
αβ . Consistent with Onsager’s recip-

rocal relations, L′
1q = L′

q1 and L1q = Lq1 to within their associated uncertainties. We therefore

average over both reciprocal coefficients to give a single value each for L′
1q = L′

q1 and L1q = Lq1.

(a)

(b) (c)

(d) (e)

Figure 12: The phenomenological coefficients as a function of the mole fraction x1: (a) Lqq and

L′
qq; (b) L1q = Lq1; (c) L11; and (d) L′

1q = L′
q1. (e) The difference in specific partial enthalpies

hs,1 − hs,2, where hs,i is the specific partial enthalpy of component i. Where error bars are not

shown, the statistical uncertainty is smaller than the size of the symbol.

2.5 Chemical potentials

The chemical potential of species i was calculated in terms of its ideal (id) and excess (ex)

contributions, µi = µid
i + µex

i . The ideal gas contribution µid
i is given by the formula

µid
i = kBT ln (ρN,iΛ

3
i ) (17)

where ρN,i = xiρN and Λi are the number density and thermal de Broglie wavelength of species

i, respectively. The densities were obtained from MD simulations in the NPT ensemble. By
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convention we set Λ2 = h/
√
2πm2kBT = 1 ⇒ ln(Λ3

2) = 0 (note that Λ1 = Λ2 since m1 = m2) for

T = 0.62 ϵk−1
B , and in doing so fix the energy scale by assigning a value to Planck’s constant h in

Lennard-Jones units. This amounts to a constant shift in µi and does not affect (∂µi/∂x1)P,T .

The excess chemical potential µex
i was calculated from MD simulations at constant T and P

using a free energy perturbation (FEP) method. A single particle was inserted into the simulation

cell via (n − 1) small “steps” along a reversible alchemical thermodynamic path, analogous to

slowly “growing” the particle. The Gibbs free energy change for this particle insertion, ∆N+1
N Gex,

is given by

µex
i ≈ ∆N+1

N Gex = −kBT

n−1∑
i=0

ln
⟨V exp (−∆

ζi+1

ζi
V/kBT )⟩ζi

⟨V ⟩ζi
(18)

where V is the volume of the simulation cell, ∆
ζi+1

ζi
V(ζ, r) = Vζi+1(ζ, r) − Vζi(ζ, r) and ζ is a

coupling parameter that connects the reference (N) and perturbed (N + 1) systems according

to V(ζ, r) = ζVN+1(r) + (1 − ζ)VN (r), with ζ taking values from 0 to 1. In order to avoid

singularities when ζ → 0, the FEP simulations were performed using a soft-core version24 of the

Lennard-Jones potential (LJSC)

VLJSC
ij (r; ζ, n, α) = ζn4ϵij

{
1

[α(1− ζ)2 + (r/σij)6]
2 − 1

α(1− ζ)2 + (r/σij)6

}
(19)

truncated and shifted at a cutoff radius of rc = 2.5σ such that VLJSCTS
ij (r) = (VLJSC

ij (r) −

VLJSC
ij (rc))θ(rc − r) with θ being the Heaviside step function. Values of n = 1 and scaling

constant α = 0.5 were used. For ζ = 1, Eq. 19 reduces to the standard Lennard-Jones potential,

and in the limit ζ → 0 no work is required to change from α = 0 to 0 < α < ∞ (i.e. the two

potentials have equivalent initial states). Therefore, the soft-core version gives the same free

energy difference as the standard LJ (or LJTS) potential.24

Each FEP simulation used a cubic simulation cell containing 5000 particles, and additionally

the single particle being inserted. The systems were equilibrated for 20τ in the NVT ensemble,

then for 2 × 103τ in the NPT ensemble. The particle insertion was then performed in steps of

0.01ζ over a 104τ production run. A timestep of 0.002τ was used. Temperature (pressure) was

controlled using the Nosé-Hoover chain thermostat (barostat), with 3 chains, and a time constant

of 1τ (5τ). Sampling consisted of 1700-2000 replicas for µex
1 , and 500-600 replicas for µex

2 .

The chemical potentials and the derivative (∂µ1/∂x1)P,T = (∂µid
1 /∂x1)P,T + (∂µex

1 /∂x1)P,T

are shown in Fig. 13. (∂µid
1 /∂x1)P,T and (∂µex

1 /∂x1)P,T were evaluated at x1 by fitting a straight

line through the three points within x1 ± 0.01 and x1 ± 0.05, respectively.
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(a) (b)

Figure 13: The chemical potential and its derivative as a function of mole fraction xi. (a) Total

µi, ideal µ
id
i and excess µex

i chemical potentials µi of species i = 1, 2. (b) (∂µ1/∂x1)P,T and its

ideal and excess contributions. In (a), statistical uncertainties are smaller than the size of the

symbols.

2.6 Self-diffusion coefficients and shear viscosity

The self-diffusion coefficients Di of species i = 1, 2 were calculated from the average mean square

displacement (MSD) using the Einstein relation

Di =
1

2d
lim
t→∞

⟨|ri(t+ t0)− ri(t0)|2⟩
t

(20)

where ri is the position vector of a particle of species i, t is the elapsed time from arbitrary

starting time t0, and d = 3 is the number of spatial dimensions. Di was therefore calculated

by fitting to the equation ⟨|ri(t) − ri(0)|2⟩ = 6tDi, excluding the first 10 τ of data to ensure

only the diffusive regime was sampled (as opposed to the ballistic regime). In order to account

for finite-size effects, the “infinite-size” diffusion coefficient Di,0 was calculated by extrapolation

to L−1 = 0, where L is the length of the cubic simulation cell. This finite-size analysis is

shown in Fig. 14, and follows from the equation derived by Yeh and Hummer25 using a simple

hydrodynamic model of a particle surrounded by a solvent of viscosity ηYH in a periodically

replicated simulation cell,

Di,PBC = − ξkBT

6πηYH
L−1 +Di,0 (21)

whereDi,PBC are the finite-size diffusion coefficients calculated from our MD simulations, and ξ is

a dimensionless constant equal to 2.837297 for a cubic simulation cell with 3D periodic boundary
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(a) (b)

(c) (d)

Figure 14: Self-diffusion coefficients and shear viscosities of the Lennard-Jones mixtures. (a)

Mean-square displacement (MSD) vs. time t for the x1 = 0.5 and N = 1000 system. (b) Finite-

size analysis for the x1 = 0.5 mixture: Di,PBC is the finite-size diffusion coefficient of species i

and L is the length of the cubic simulation cell. Symbols: circles (◦) and diamonds (⋄) show the

data from NVT and NVE MD simulations, respectively. Solid lines show a linear fit to the NVT

data; dashed lines show a straight line through the single NVE data point with the gradient

determined from ηGK. (c) The viscosities η as a function of mole fraction x1, as determined from

the different methods (see main text). (d) “Infinite-size” diffusion coefficients Di,0 of species i as

a function of x1. Di,0 from the two methods, NVT simulations with direct extrapolation (ηYH)

and NVE simulations with ηGK, cannot be distinguished on the scale of the plot. Where error

bars are not explicitly shown, the statistical uncertainty is smaller than the size of the symbol.

conditions.25 The same expression was obtained earlier26 by Dünweg and Kremer using a closely

related derivation. For each state point, the i = 1 and i = 2 data sets were simultaneously fit to

Eq. 21, giving a single viscosity ηYH for the mixture.

The shear viscosity η was additionally calculated using the Green-Kubo integral formula

ηGK =
V

kBT
lim

t′→∞

∫ t′

0

⟨Pαβ(t)Pαβ(0)⟩dt (22)
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(a) (b)

Figure 15: (a) Autocorrelation functions ⟨Pαβ(t)Pαβ(0)⟩ as a function of time lag t. (b) Conver-

gence of shear viscosity η(tc) with the correlation time tc used as the upper limit of the integral

in Eq. 22.

where α ̸= β such that Pαβ are the off-diagonal elements of the pressure tensor. Results were

averaged over (α, β) = (x, y), (x, z) and (y, z). A correlation time of tc = 10τ was used for the

upper limit of the integral, which is sufficient to obtain well-converged integrals (see Fig. 15).

In order to accurately target a specific thermodynamic states when calculating Di,PBC, the

NVT ensemble was sampled using a temperature-control algorithm that alters dynamics com-

pared to the Newtonian dynamics of the NVE ensemble. It is therefore necessary to check

whether the employed global Nosé–Hoover (three chains) thermostat affects the computed self-

diffusion coefficients. We show in Fig. 14(b)&(c) that it does not: all diffusion coefficients

and viscosities calculated from NVT and NVE simulations, and using the different methods

(Eqs. 21&22) agree to within their associated uncertainties. This is consistent with previous

work that shows that “global” velocity scaling thermostats, including the Nosé–Hoover-chain

thermostat, do not significantly alter diffusion coefficients or viscosity.27,28

2.7 Kirkwood-Buff integrals from grand canonical Monte Carlo

KBIs were calculated from grand canonical Monte Carlo simulations. For each simulation, the

temperature of the ideal gas reservoir was set to T = 0.62 ϵk−1
B , and the input chemical po-

tentials µ1 and µ2 were determined from the free-energy perturbation simulations described in

Sec. 2.5. In all cases, a cubic simulation cell with length L = 20σ was used. Each MC step, 100

trial displacement and 100 trial exchanges (insertions or deletions with equal probability) were

attempted. For the displacement moves, a maximum translation distance of 1.0σ was allowed.
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Trial moves were accepted/rejected using the standard Metropolis criterion. Each replica was

first equilibrated in an NVT MD simulation at the target x1 and ρN for 200 τ , followed by

105 MC steps, and finally a production run of 107 MC steps. Sampling consisted of 400-500

statistically independent replicas for each state point.

The Kirkwood-Buff integrals Gij were calculated from the particle number fluctuations ac-

cording to

Gij = V
⟨NiNj⟩ − ⟨Ni⟩⟨Nj⟩

⟨Ni⟩⟨Nj⟩
− V

δij
⟨Nj⟩

(23)

where Ni is the number of particles of species i and V is the volume of the simulation cell.

The average pressures are within ±0.008ϵσ−3 of P = 0.46 ϵσ−3, corresponding to differences

in number density on the order of δρN ∼ 10−4σ−3 relative to those calculated from NPT MD

simulations (see Fig. 1(a)). Differences in Gij and subsequently Γ due to the slightly different

thermodynamic states being sampled are expected to be insignificant compared to their associ-

ated statistical uncertainties.

2.8 Kirkwood-Buff integrals from molecular dynamics (NVT) simula-

tions

For an infinitely large and open three-dimensional system, the KBI for mixture components i

and j is defined as

Gij = 4π

∫ ∞

0

[gµV T
ij (r)− 1]r2dr (24)

where r is the radial distance between particles i and j. The infinite-size KBIs were calculated

from a finite-size analysis of finite-volume KBIs

GV
ij =

∫
V

[gµV T
ij (r)− 1]w(r)dr (25)

defined for finite and open subvolumes embedded in a reservoir.29 For spherical symmetry w(r) =

4πr2(1− 3x/2 + x3/2) valid for x < 1, where x = r/(2R) and R is the radius of the subvolume.

gµV T
ij is the pair correlation function in the thermodynamic limit. It has been shown that GV

ij

scales linearly with R−1 and that the infinite-size Gij can be obtained by extrapolating the linear

regime to R−1 = 0.29–31

We calculate the RDFs from simulations of N = 105 to N = 5 × 106 particles in the NVT

ensemble. Because fluctuations transform between ensembles, gµV T
ij cannot be formally replaced

with gNV T
ij . However, for a sufficiently large system, the correlation lengths of particle density
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(a) (b)

(c)

Figure 16: Extrapolation of the finite-volume Kirkwood-Buff integrals GV
ij to R−1 = 0, where R

is the radius of the subvolume: (a) GV
11, (b) GV

22 and (c) GV
12. The data shown corresponds to

mole fraction x1 = 0.5 and a system size of N = 5× 106 particles. Symbols: circles (· · ◦ · ·) and

downward triangles (· · ▽ · ·) denote the use of pair correlation function gij (uncorrected) and

the corrected gGV
ij , respectively, although these cannot be easily distinguished on the scale of the

plots.

fluctuations are small compared to the linear dimension of the simulation cell, and local corre-

lations are expected to be well reproduced. In addition to a large system size, we apply the tail

correction31 of Ganguly and van der Vegt to ensure the correct asymptotic limit (limr→∞ gij = 1)

of the RDF.

gGV
ij (r) = gij(r)

(
Njh(r)

Njh(r)− nex
ij (r)− δij

)
(26)

h(r) = 1− 4πr3

3V
(27)

where Nj is the total number of particles j in the simulation cell of volume V . However, we

note that in our simulations, this correction does not have an appreciable effect on the linear

regime and subsequently the extrapolated Gij (see Fig. 16). Other corrections32,33 to the RDFs

for calculating KBIs have been proposed; the correction of Ganguly and van der Vegt was found

to be the most accurate for a WCA system, relative to a larger reference system (L = 80σ).30

We show in Fig. 17 a finite-size analysis of the infinite-size KBIs. The final values for Gij

in the main text were taken from the largest system size, and the associated uncertainties were

estimated from the convergence with system size.
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(a) (b)

(c) (d)

Figure 17: Finite-size analysis of the infinite-size Kirkwood-Buff integrals Gij as a function of

simulation cell length L, for different mole fractions x1. (a) G11, (b) G22, (c) G12, and (d)

thermodynamic factor Γ.

2.9 Melting points of the pure components

The melting temperatures Tm of the pure components i = 1, 2 were determined using the direct

coexistence method in the NPzT ensemble. This involves preparing a solid-liquid interface at a

given (T, P ) state point and observing whether the system completely melts, freezes, or remains

in coexistence. In MD simulations, cooling a homogeneous liquid below its melting point usually

results in a metastable supercooled liquid; freezing is not observed unless prohibitively long

simulations are performed. Likewise, heating a solid slightly above its melting point results in a

superheated solid. The presence of the interface lowers the kinetic barrier for melting/freezing.
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First, the densities of the solid and liquid phases were determined from NPT simulations.

Initial configurations were prepared by joining two half-boxes, one of the FCC-solid the other

of the liquid, each containing N = 5324 particles and equilibrated in the NVT ensemble. The

combined N = 10648 system was then equilibrated for 20τ , ensuring that the solid phase did not

melt by restraining each solid particle to its equilibrium position r0 with a harmonic potential,

V(r) = k(r − r0)
2/2 of force constant k = 10 ϵσ−2. A 4 × 104τ production run in the NPzT

ensemble was then performed, applying a barostat only to the direction parallel to the surface

normal (the z-direction). A Nosé-Hoover chain barostat was used, with 3 chains, and a time

constant of 4 τ . Likewise, a Nosé-Hoover chain thermostat was used, also with 3 chains, and

a time constant of 1 τ . Sampling consisted of an initial 10 statistically independent replicas,

followed by an additional 40 replicas if the initial set did not all either melt or freeze. In all

cases, a homogeneous phase was observed by the end of the production run.

The simulations were performed in the NPzT ensemble, and as such the simulation cell di-

mensions (Lx and Ly) were chosen to be consistent with the density of the solid at the (T, P ) state

point. Otherwise, the solid phase would possess internal stress,34,35 corresponding to a higher free

energy, and resulting in the overestimation of the coexistence pressure and/or underestimation

of the melting temperature.

Each replica was determined to have either frozen or melted using the Q6 (l = 6) bond-

orientational order parameter. The Steinhardt order parameters Ql were introduced to charac-

terize local orientational order in atomic structures,36 and are given by

Ql =

√√√√ 4π

2l + 1

+l∑
m=−l

ȲlmȲ ∗
lm (28)

Ȳlm =
1

Nn

Nn∑
j=1

Ylm(θ(rij), ϕ(rij)) (29)

for each particle i, where Ylm(θ, ϕ) are the spherical harmonics, θ and ϕ are the polar angles

of ”bond” vector rij between i and neighbour j, and Nn is the number of nearest neighbours

to particle i. Ql is therefore a rotationally invariant non-negative amplitude. Ql adopt well-

defined values for high-symmetry structures; for a perfect FCC crystal (Fm3̄m) and Nn = 12,

Q6 = 0.575.37 We show in Fig. 18 that the Q6 order parameter can be used to distinguish between

the FCC solid and liquid phases. The replica was determined to have frozen if ⟨Q6⟩ > 0.496, or

melted if ⟨Q6⟩ < 0.375. The average ⟨Q6⟩ was taken over the last 10 τ of the trajectory.

In the thermodynamic limit, a solid melts at T > Tm, and a liquid freezes for T < Tm.

However, a finite-size system may stochastically melt or freeze with probabilities Pm and Pf =
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(a)

(b)

(c)

Figure 18: Melting points of the pure components determined using the direct coexistence

method. (a) Snapshot of the simulation cell in the process of melting/freezing. (b) Lennard-Jones

liquids and FCC solids at temperatures T characterized by their average Q6 order parameter.

Species 1 (species 2) is shown in red (blue) and on the left (right) axis. (c) Probability of freezing

Pf as a function of temperature T for species 1 (left) and 2 (right). Solid lines show the fitted

sigmoid-like functions (Eq. 30).
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1−Pm respectively. For each component, Tm was determined by fitting Pf (T ) to the sigmoid-like

function (Fig. 18):

Pf (T ) =
1

2
− 1

2
tanh [(T − Tm)/d] (30)

where d controls the sharpness of the probability profile, with δ10−90 = 2.178d being the width

of the interval where Pf goes from 0.1 to 0.9. The melting (coexistence) temperature is defined

by Pm(Tm) = Pf (Tm) = 0.5. The melting temperatures are shown in Table 1 alongside other

coexistence properties (coexistence densities and enthalpies were determined by interpolating

data from the NPT simulations).

Table 1: Solid-liquid coexistence properties of the pure LJ components at P = 0.46 ϵσ−3: the

melting temperature Tm; coexistence number densities of the FCC solid and liquid phases, ρN,s

and ρN,l, respectively; and the enthalpy of fusion ∆Hfus

.

Species Tm [ϵk−1
B ] ρN,s [σ−3] ρN,l [σ

−3] ∆Hfus [ϵ]

1 0.4115(5) 0.9550(2) 0.8500(3) 0.523(3)

2 0.6598(3) 0.9509(1) 0.8419(2) 0.927(3)
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