Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting Information

Excited state proton transfer in the triplet state of 8-hydroxy-5-nitroquinoline : A transient absorption and time-resolved resonance Raman spectroscopic study

Ran Wang^a, Fengjin Zhang^a, Xinghang Pan^a, Xuming Zheng^a, Jiadan Xue^{a,d*} Yong Du^{b*}, Binbin Xie^{c*}

^aDepartment of Chemsitry, Zhejiang Sci-Tech University, Hangzhou, 310018, China ^bCenter for THz Research, China Jiliang University, Hangzhou, 310018, China ^cZhejiang Normal University, Hangzhou Institute of Advanced Studies, Hangzhou 310018, China ^dKey Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China

*Author to whom correspondence should be addressed. E-mail: jenniexue@zstu.edu.cn

Content

Fig.1S (a) UV-Vis spectra of 8-hydroxy-5-nitroquinoline in acetonitrile:water=1:1(v/v) in the presence of various concentrations of perchloric acid. (b) Measurements of pKa for HO-QN-NO2 in Fig.2S TA spectra recorded at 0 ns after 355 nm laser excitation of 5-nitroquinoline in acetonitrile Fig.3S Plot of kinetics data at wavelengths 390-590 nm. The data were collected immediately after Fig.5S UV-Vis absorption spectra of 8-hydroxy-5-nitroquinoline in acetonitrile in the presence of Fig.6S Nanosecond TA spectra after excitation of 8-hydroxy-5-nitroquinoline under argon condition in acetonitrile solution containing (a) 3.79 mM TBA and (b) 5.68 mM TBA......6 Fig.7S Fitting mono-exponential functions to the kinetics of 8-hydroxy-5-nitroquinoline under argon condition at 400 nm obtained in acetonitrile containing various concentrations of TBA......7 Fig.8S Nanosecond TA spectra and kinetic data at 630 nm obtained after excitation of 4-nitro-1naphthol under argon condition in acetonitrile solution containing various concentrations of TBA. .8 Fig.10S (A) Nanosecond TA spectra recorded after excitation of 8-hydroxy-5-nitroquinoline under air condition in MeCN:H2O=9:1 (v/v). (B) A comparison of the TA spectrum recorded at 0 ns under air condition in MeCN:H2O=9:1 (v/v) to the difference spectrum by subtracting the scaled 500 ns spectrum from the 0 ns spectrum in graph A.....10 **Table 1S** Tentative vibrational assignments for T_1 state of NO₂-QN-O⁻ in ACN......11 Ttransition state of transformation of NO₂-QN-OH to NO₂-QNH-O with the help of water in

Fig.1S (a) UV-Vis spectra of 8-hydroxy-5-nitroquinoline in acetonitrile:water=1:1(v/v) in the presence of various concentrations of perchloric acid. (b) Measurements of pK_a for HO-QN-NO₂ in acetonitrile:water=1:1(v/v) solution.

Fig.2S TA spectra recorded at 0 ns after 355 nm laser excitation of 5-nitroquinoline in acetonitrile under argon saturated conditions with 0.5 M HClO_4 and without acid present.

These spectra are assigned to the neutral and protonated triplets, respectively.

Fig.3S Plot of kinetics data at wavelengths 390–590 nm. The data were collected immediately after 355 nm laser excitation of 8-hydroxyquinoline in argon saturated acetonitrile.

Fig.4S Normalized nanosecond TA spectra recorded in acetonitrile under air condition (A) immediately (0 ns) after the laser excitation with different gate width setups, and (B) with gate width of 15 ns.

Fig.5S UV-Vis absorption spectra of 8-hydroxy-5-nitroquinoline in acetonitrile in the presence of various concentrations of (A) tetra-butylammonium hydroxide and (B) *t*-butylamine.

Fig.6S Nanosecond TA spectra after excitation of 8-hydroxy-5-nitroquinoline under argon condition in acetonitrile solution containing (a) 3.79 mM TBA and (b) 5.68 mM TBA.

Fig.7S Fitting mono-exponential functions to the kinetics of 8-hydroxy-5-nitroquinoline under argon condition at 400 nm obtained in acetonitrile containing various concentrations of TBA.

Fig.8S Nanosecond TA spectra and kinetic data at 630 nm obtained after excitation of 4-nitro-1-naphthol under argon condition in acetonitrile solution containing various concentrations of TBA.

Fig.9S (A) Nanosecond TA spectra recorded at 0 ns in acetonitrile with varying argon purged time and (B) Nanosecond TA spectra recorded at 0 ns in acetonitrile under argon and air conditions. The spectra were normalized using the ground state bleaching. The difference spectrum is obtained by subtracting spectrum under argon from the one under air by removing the ground state bleaching.

Fig.10S (A) Nanosecond TA spectra recorded after excitation of 8-hydroxy-5-nitroquinoline under air condition in MeCN:H₂O=9:1 (v/v). (B) A comparison of the TA spectrum recorded at 0 ns under air condition in MeCN:H₂O=9:1 (v/v) to the difference spectrum by subtracting the scaled 500 ns spectrum from the 0 ns spectrum in graph A.

The two spectra in graph B appear to agree in the region of 430-500 nm, indicating that T_1 state NO₂-QN-O⁻ is generated in MeCN:H₂O=9:1 (v/v) mixed solution.

Mode	Calculation		Experimental		Assiginment (PED%)	
				frequency (cm-1)		
	Frequency (cm-1) Ran		Raman	435 nm	266 nm	
	Original	Calibrated	activity	probe	probe	
υ ₄₆	1618	1645	344	1627	1630	$\nu C_{10}C_8(23) + \nu N_{19}C_{11}(11) + \nu N_{19}C_3(15) + \nu C_4C_8(15)$
υ ₄₅	1580	1604	357		1608	$\nu C_{11}C_{10}(26) + \nu C_4C_8(13) + \delta C_3N_{19}C_{11}(12)$
υ ₄₄	1558	1581	3487	1592	1592	vO ₁₅ C ₂ (68)
v ₄₃	1532	1553	371	1555		$vC_1C_6(37)+vC_5C_4(10)$
υ_{42}	1492	1511	565	1505	1497	$\nu N_{19}C_3(12) + \nu C_6C_5(13) + \nu C_4C_8(10) + \delta H_{14}C_{11}N_{19}(16)$
υ ₄₁	1454	1471	101	1477	1464	$\nu C_6 C_5(12) + \delta H_9 C_6 C_1(11) + \delta H_7 C_1 C_6(19) + \delta H_{13} C_{10} C_{11}(14)$
υ ₄₀	1416	1430	115		1431	$\delta H_9 C_6 C_1(11) + \delta H_{12} C_8 C_{10}(18) + \delta H_{14} C_{11} N_{19}(17) +$
						$\delta N_{19}C_{11}C_{10}(10)$
U39	1372	1384	199	1386	1387	$\nu C_5 C_4(22)$
υ ₃₈	1328	1337	725		1329	vN ₁₉ C ₁₁ (39)
υ ₃₇	1304	1312	420			$\nu N_{19}C_3(10) + \nu O_{17}N_{16}(15) + \nu N_{16}C_5(25)$
υ ₃₆	1292	1299	368	1290	1294	$vN_{19}C_3(33)+\delta H_{14}C_{11}N_{19}(10)$
v ₃₅	1230	1233	223		1230	$\nu C_2 C_1(20)$
υ ₃₄	1190	1191	234			$\nu C_6 C_5(18) + \delta H_9 C_6 C_1(22)$
v ₃₃	1167	1167	1403	1153		$\nu O_{17} N_{16}(38) + \nu O_{18} N_{16}(28) + \delta H7C1C6(13)$
v ₃₂	1152	1151	155		1149	$\nu C_{10}C_8(16) + \delta H_{12}C_8C_{10}(21) + \delta H_{13}C_{10}C_{11}(22)$
υ ₃₁	1138	1136	267		1138	$\nu O_{18}N_{16}(34) + \delta C_3N_{19}C_{11}(10) + \delta H_7C_1C_6(14)$
υ ₃₀	1102	1098	25			$\nu C_1 C_6(11) + \nu C_2 C_1(12) + \delta C_3 N_{19} C_{11}(14) + \delta H_9 C_6 C_1(14)$
υ ₂₉	1065	1058	164		1055	$vC_{11}C_{10}(38)$
υ_{28}	1010	1000.6	0.3			$\rho t H_{12}C_8C_{10}C_{11}(25) + \rho t H_{13}C_{10}C_{11}N_{19}(45) + \rho t H_{14}C_{11}N_{19}C_3(16)$
)+ $\rho t N_{19} C_{11} C_{10} C_8(10)$
υ_{27}	990	979	161	980		$vO_{17}N_{16}(10)+vN_{16}C_5(12)+\delta C_4C_8C_{10}(10)$

Table 1S Tentative vibrational assignments for T_1 state of NO₂-QN-O⁻ in ACN.

a: B3LYP/6-311+G(d,p) calculated frequency; b: Calibration equation: y=1.06x-70;

v:stretch; δ : in-plane bending; ρ t:torsion; PED: potential energy distribution; only contributions larger than 10% were give.

SCF Done:	E(RB3LYP) =	-758.317300648
The imagina	ry frequency: -13	49.06 cm ⁻¹

С	-1.28717200	-1.79036400	0.01081500
С	-1.55521800	-0.42399800	0.00262000
С	-0.47751900	0.52164300	0.00137100
С	0.85645500	0.00523500	-0.01308100
С	1.12273900	-1.43285300	-0.03227000
С	0.00398000	-2.28208600	-0.01099900
Н	-1.59739600	2.36904500	0.08568300
Н	-2.12168500	-2.47736100	0.01639100
С	-0.61163800	1.93560200	0.05836100
Н	0.18124900	-3.34989200	-0.02393000
С	1.76777000	2.17014500	0.03301900
С	0.49586100	2.75004400	0.07240200
Н	2.67264900	2.76624400	0.03617800
Н	0.39475600	3.82617900	0.11517200
Ν	1.92221000	0.85808900	-0.00256700
0	2.31153500	-1.94378400	-0.06758400
Н	3.29994000	-1.21023200	-0.05021000
Ν	-2.94338100	-0.04146900	-0.01269100
Ο	-3.25740700	1.12267200	-0.29848000
0	-3.79582300	-0.90139800	0.24697800
Ο	4.08010800	-0.33184800	-0.07321700
Н	3.11864600	0.37910000	-0.00596200
Н	4.60118500	-0.30477100	0.73847400

Ttransition state of transformation of NO₂-QN-OH to NO₂-QNH-O in acetontirile.

SCF Done:	E(UB3LYP) =	-681.762045465
The imagina	ry frequency: -16	504.11 cm^{-1}

С	0.10222900	-2.39336000	0.00000000
С	-1.14990700	-1.71718900	0.00000000
С	-1.14689200	-0.27877200	0.00000000
С	0.00000000	0.53833800	0.00000000
С	1.24703000	-0.20715000	0.00000000
С	1.25633600	-1.64951300	0.00000000
Н	0.13943900	-3.47541100	0.00000000
С	-0.25244400	1.92115600	0.00000000
Н	2.22125200	-2.13121100	0.00000000
С	-1.58152200	2.38212000	0.00000000
С	-2.64336800	1.49041200	0.00000000
Н	0.56689100	2.62070500	0.00000000
Н	-1.78235200	3.44489300	0.00000000
Н	-3.67639400	1.81345000	0.00000000
Ν	-2.40876300	0.16645000	0.00000000
0	-2.35654000	-2.19631900	0.00000000
Н	-2.89501100	-1.05598800	0.00000000
Ν	2.50011400	0.44694300	0.00000000
0	3.54310700	-0.26491400	0.00000000
0	2.53817700	1.70792700	0.00000000

