SUPPORTING INFORMATION

A critical comparison of CH- π versus π - π interactions in the benzene dimer: obtaining benchmarks at the CCSD(T) level and assessing the accuracy of lower scaling methods

Kristina M. Herman,^a Edoardo Aprà,^b and Sotiris S. Xantheas^{a, c, *}

- ^{*a*} Department of Chemistry, University of Washington, Seattle, WA 98195, USA
- ^b Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O.
 Box 999, Richland, WA 99352, USA
- ^c Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory,
 902 Battelle Boulevard, P.O. Box 999, MSIN J7-10, WA 99352, US

^{*} Corresponding author. Email: <u>sotiris.xantheas@pnnl.gov</u> and <u>xantheas@uw.edu</u>

Figure S1. Percent error of DFT functionals compared to the CCSD(T)/CBS binding energies for the PD and $T(C_{2v})$ dimer. The x-axis is ordered based on the total unsigned error for both bonding scenarios.

Figure S2. Percent error of DFT functionals compared to the CCSD(T)/CBS structures for the PD and $T(C_{2v})$ dimer. The x-axis is ordered based on the total unsigned error in the R_{com} for both bonding scenarios.

Table S1. A collection of previously reported values at different levels of theory for the various conformations of the benzene dimer studied here. References correspond to the ones in the paper.

C	CSDT(Q) CCSD(T)	MP2	SCS-MP2	SCS-MI-MP2	2 SOS-MP2	MP4	QCISDT	SAPT	VMC	DMC	DFT
PD	13	1, 3, 4, 5, 6, 7, 8, 10, 11, 13, a	1, 2, 4, 5, 6, 11, 13, a	6, 11, 13, <mark>a</mark>	13, <mark>a</mark>	11, 13, <mark>a</mark>	1, 2	6	10	12	12	8, 12, <mark>a</mark>
Т		1, 3, 4, 5, 6, 7, 8, 9, 10, a	1, 2, 4, 5, 6, a	6, 9, <mark>a</mark>	а	а	1, 2	6	10			8, <mark>a</mark>
TT		8, 10, <mark>a</mark>	а	а	а	а			10			
1 He	obza et a	1. 1996										
2 Ja	ffe and S	Smith 1996										
3 Si	nnokrot (et al. 2002										
4 Ts	uzuki et	al. 2002										
5 Pa	irk and L	.ee 2006										
6 Ja	nowski a	nd Pulay 2007										
7 Le	e et al. 2	007										
8 Pi	toňák et	al. 2008										
9 He	ohensteir	n and Sherrill 2009										
10 va	n der Av	oird et al. 2010										
11 M	iliordos e	et al. 2014										
12 Az	zadi and	Cohen 2015										
13 Ka	arton and	l Martin 2021										
a cu	rrent w	ork										

	PD	$T(C_{2v})$	$TT(C_s)$
	D_e	D_e	De
cc-pVTZ	-1.6021	-2.0656	-2.3413
cc-pVQZ	-1.5319	-2.1550	-2.2142
cc-pV5Z	-1.4126	-2.0630	-2.1274

Table S2. The CCSD binding energies (kcal/mol) computed with the cc-pVnZ (n=3, 4, 5) basis sets. The binding energies are not corrected for BSSE.

		SCS-	-MP2	
	T(0	C_{2v})	TT	(C _s)
	D _e	$D_e^{\ CP}$	De	$D_e^{\ CP}$
aug-cc-pVDZ	-5.398	-1.390	-5.519	-1.462
aug-cc-pVTZ	-3.663	-1.993	-3.748	-2.082
aug-cc-pVQZ	-2.823	-2.233	-2.918	-2.315
aug-cc-pV5Z ^a	-2.782	-2.365	-2.945	-2.491
CBS	-2.48 -	⊦/ - 0.07	-2.62 +	-/- 0.09
		SCS-M	II-MP2	
	T(0	C_{2v})	TT	(C _s)
	D _e	$D_e^{\ CP}$	De	$D_e^{\ CP}$
aug-cc-pVDZ	-4.798	-1.937	-4.872	-1.997
aug-cc-pVTZ	-3.339	-2.405	-3.402	-2.478
aug-cc-pVQZ	-2.870	-2.583	-2.943	-2.649
aug-cc-pV5Z ^a	-2.892	-2.676	-3.009	-2.765
CBS	-2.74 -	-/- 0.03	-2.83 +	-/- 0.04
		SOS	-MP2	
	T(0	C_{2v})	TT	(C_s)
	De	${D_e}^{CP}$	De	$D_e^{\ CP}$
aug-cc-pVDZ	-4.697	-0.662	-4.781	-0.696
aug-cc-pVTZ	-3.014	-1.292	-3.067	-1.349
aug-cc-pVQZ	-2.193	-1.576	-2.252	-1.620
aug-cc-pV5Z ^a	-2.132	-1.703	-2.257	-1.794
CBS	-1.84 -	-/ - 0.08	-1.93 +	-/- 0.09

Table S3. The spin-biased MP2 (SCS-MP2, SCS-MI-MP2, SOS-MP2) binding energies *at the MP2 optimized geometries* for the $T(C_{2v})$ and $TT(C_s)$ conformers.

^{*a*} Computed at the MP2/aug-cc-pVQZ geometry

Table S4. Cartesian coordinates of the $T(C_{2v})$ conformer optimized at the CCSD(T)/VTZ level of theory. The SCS-MP2 optimized structures were used for the CCSD(T) calculations with larger basis sets.

1(020)				
С	1.39800889	0.0000000	-2.47510742	
С	0.69900820	1.21052677	-2.47534190	
С	-0.69900820	1.21052677	-2.47534190	
С	-1.39800889	0.0000000	-2.47510742	
С	-0.69900820	-1.21052677	-2.47534190	
С	0.69900820	-1.21052677	-2.47534190	
С	0.00000000	-1.20945730	1.77634009	
С	0.00000000	-1.21039755	3.17406633	
С	0.00000000	0.0000000	3.87317319	
С	0.00000000	1.21039755	3.17406633	
С	0.00000000	1.20945730	1.77634009	
С	0.00000000	0.0000000	1.07595671	
Н	2.48104878	0.0000000	-2.47120282	
Н	1.24086727	2.14846348	-2.47399535	
Н	-1.24086727	2.14846348	-2.47399535	
Н	-2.48104878	0.0000000	-2.47120282	
Н	-1.24086727	-2.14846348	-2.47399535	
Н	1.24086727	-2.14846348	-2.47399535	
Н	0.00000000	-2.14651893	1.23224816	
Н	0.00000000	-2.14830744	3.71626399	
Н	0.00000000	0.0000000	4.95644829	
Н	0.00000000	2.14830744	3.71626399	
Н	0.00000000	2.14651893	1.23224816	
Н	0.00000000	0.0000000	-0.00594289	

 $T(C_{2x}) - CCSD(T)/VTZ$

Table S5. Cartesian coordinates of the PD conformer optimized at the CCSD(T)/VTZ level of theory.¹ The SCS-MP2 optimized structures were used for the CCSD(T) calculations with larger basis sets.

С	1.275754	-1.235450	0.698770
С	1.275754	-1.235450	-0.698770
С	-1.275754	1.235450	0.698770
С	-1.275754	1.235450	-0.698770
С	0.276643	-1.918543	1.397540
С	0.276643	-1.918543	-1.397540
С	-0.276643	1.918543	1.397540
С	-0.276643	1.918543	-1.397540
С	-0.722468	-2.601635	0.698770
С	-0.722468	-2.601635	-0.698770
С	0.722468	2.601635	0.698770
С	0.722468	2.601635	-0.698770
Н	2.050091	-0.706035	1.240335
Н	2.050091	-0.706035	-1.240335
Н	-2.050091	0.706035	1.240335
Н	-2.050091	0.706035	-1.240335
Н	0.276643	-1.918543	2.480670
Н	0.276643	-1.918543	-2.480670
Н	-0.276643	1.918543	2.480670
Н	-0.276643	1.918543	-2.480670
Н	-1.496806	-3.131050	1.240335
Н	-1.496806	-3.131050	-1.240335
Н	1.496806	3.131050	1.240335
Н	1.496806	3.131050	-1.240335

Table S6. Cartesian coordinates of the $TT(C_s)$ conformer optimized at the SCS-MP2/VTZ level of theory. All CCSD(T) calculations were performed at the SCS-MP2 optimized geometries.

11(C_s = SCS-WIF 2/V		
С	-0.28663524	-1.08763686	0.0000000
С	1.02575096	-1.56219519	0.0000000
С	1.27400133	-2.93513849	0.0000000
С	0.20853093	-3.83641766	0.0000000
С	-1.10422579	-3.36370543	0.0000000
С	-1.35081443	-1.99004829	0.0000000
Η	-0.47457010	-0.02300435	0.0000000
Η	1.84899825	-0.86010413	0.0000000
Η	2.29202738	-3.30196832	0.0000000
Η	0.40013837	-4.90131868	0.0000000
Η	-1.93036851	-4.06251012	0.0000000
Η	-2.36903060	-1.62359755	0.0000000
С	1.22854949	2.24995172	-0.69780597
С	1.22854949	2.24995172	0.69780597
Η	2.15074593	2.08570150	-1.23940202
Η	2.15074593	2.08570150	1.23940202
С	0.03864978	2.46088433	-1.39566524
С	0.03864978	2.46088433	1.39566524
Η	0.03829395	2.45784602	-2.47747037
Н	0.03829395	2.45784602	2.47747037
С	-1.15104606	2.67373831	-0.69788169
С	-1.15104606	2.67373831	0.69788169
Н	-2.07330175	2.83842147	-1.23911485
Н	-2.07330175	2.83842147	1.23911485

 $TT(C_s) - SCS-MP2/VTZ$

References:

 Miliordos, E.; Aprà, E.; Xantheas, S. S. Benchmark Theoretical Study of the π–π Binding Energy in the Benzene Dimer. J. Phys. Chem. A 2014, 118 (35), 7568–7578. https://doi.org/10.1021/jp5024235.