1 Supplemental Material for

2	Pyrolysis and oxidation of benzene and cyclopentadiene by NO _x : A ReaxFF molecular dynamics study
3	Ying Wang ^a , Lei Zhou ^a , Qian Mao ^{b,c*} , Zhanyuan Wang ^a , Haiqiao Wei ^{a*}
4	^a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
5	^b Institute of Technology for Nanostructures, University Duisburg-Essen, Duisburg 47057, Germany
6	° Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
7	*Corresponding authors: qian.mao@uni-due.de (Qian Mao); whq@tju.edu.cn (Haiqiao Wei)
8	1. Verification of the ReaxFF force field
9	The CHON-2019 force field [1] used in the present system is trained on the basis of the CHO-2016 force
10	field by Ashraf and van Duin [2] and added the N atom type in the force field. Notably, CHO-2016 is trained
11	for C/H/O chemistry, especially for the chemistry of small molecules, which is suitable to simulate the
12	oxidation and pyrolysis of benzene and cyclopentadiene. In the present work, we focus on the bond dissociation
13	energies (BDEs) of NO_x because the decomposition of NO_x is the initiation step at high temperatures. Table
14	S1 shows the bond dissociation energies of NO_2 and NO with quantum chemistry methods [3] and all the 9
15	sets of C/H/O/N force fields (including CHON-2019 and 8 additional sets of force fields containing
16	information on C/H/O/N species from the literature [4-11], which are represented by ReaxFF-1 to ReaxFF-8
17	respectively). CHON-2019 is the only force field which the relative differences in both BDE of NO and NO_2
18	are less than 10% compared to CBS-QB3.
19	Table R1. Bond dissociation energies of NO $_2$ and NO with quantum chemistry methods and the

20

ReaxFF Force Field (Unit: kcal/mol)

	BDE of NO ₂	relative difference from CBS-QB3 (%)	BDE of NO	relative difference from CBS-QB3 (%)
CBS-QB3	74.20		151.68	
ReaxFF CHON-2019	73.42757	1.0410108	160.65	5.91376582

ReaxFF-1	115.09381	55.1129515	148.96428	1.7904272
ReaxFF-2	92.93069	25.2435175	128.98049	14.965394
ReaxFF-3	88.18082	18.8420755	156.28749	3.03763845
ReaxFF-4	88.03454	18.6449326	145.09197	4.3433742
ReaxFF-5	94.22266	26.984717	148.56242	2.0553666
ReaxFF-6	88.02452	18.6314286	145.09197	4.3433742
ReaxFF-7	84.12326	13.3736658	126.74232	16.440981
ReaxFF-8	63.35861	14.611038	169.94741	12.0433874

21

22 2. Oxidation of C_6H_6 and $c-C_5H_6$ by O_2

O₂ is one of the most common oxidants in the combustion process. $C_{18}H_{15}$ and $C_{13}H_{11}$ are the largest species that appear in C_6H_6 and c- C_5H_6 systems with the addition of O₂, indicating that O₂ inhibits the growth of species to some extent. Compared with the reactions that occur in the pyrolysis system, Fig. S1 shows that the types of the initial step are more varied as a result of the modification of the composition of the radical pool. O₂ is rarely involved in the oxidation of C_6H_6 or c- C_5H_6 directly, as can be seen from the last column. The chain-branching reaction via H and O₂ producing O and OH is the most important source to broad the radical pool.

$$O_2 + H = O + OH \tag{R1}$$

30 The reactions of O or OH with reactants are carried out by two routes: H-abstraction and addition reaction. H31 abstraction is proposed:

$$C_6H_6 + O = C_6H_5 + OH \tag{R2}$$

$$C_6H_6 + OH = C_6H_5 + H_2O$$
 (R3)

$$C_5H_6 + O = C_5H_5 + OH \tag{R4}$$

$$C_5H_6 + OH = C_5H_5 + H_2O$$
 (R5)

- 32 For the addition reaction by OH, OH attacks on C_6H_6 and $c-C_5H_6$, leading to ring-opening via C-C β -scission
- 33 as shown by pathways (1) and (2).

34

35 Fig. S1 Proportion of different first-step reactions of C₆H₆ (blue columns) and c-C₅H₆ (red columns) in

36 the presence of O₂ at 2500 K.

37

38 Reference:

- 39 [1] M. Kowalik, C. Ashraf, B. Damirchi, D. Akbarian, S. Rajabpour, A.C. Van Duin, Atomistic scale analysis
- 40 of the carbonization process for C/H/O/N-based polymers with the ReaxFF reactive force field, J. Phys. Chem.
- 41 B 123 (2019) 5357-5367.
- 42 [2] C. Ashraf, A.C. Van Duin, Extension of the ReaxFF combustion force field toward syngas combustion and
- 43 initial oxidation kinetics, J. Phys. Chem. A 121 (2017) 1051-1068.
- 44 [3] R.D. Bach, H.B. Schlegel, The bond dissociation energy of the N-O bond, J. Phys. Chem. A 125 (2021)

45 5014-5021.

46 [4] A.D. Kulkarni, D.G. Truhlar, S. Goverapet Srinivasan, A.C.T. van Duin, P. Norman, T.E.
47 Schwartzentruber, Oxygen Interactions with Silica Surfaces: Coupled Cluster and Density Functional
48 Investigation and the Development of a New ReaxFF Potential, J. Phys. Chem. C 117 (2012) 258-269.

49 [5] A.M. Kamat, A.C.T. van Duin, A. Yakovlev, Molecular Dynamics Simulations of Laser-Induced
50 Incandescence of Soot Using an Extended ReaxFF Reactive Force Field, J. Phys. Chem. A 114 (2010) 1256151 12572.

- 52 [6] L. Zhang, A.C.T.v. Duin, S.V. Zybin, W.A. Goddard Iii, Thermal Decomposition of Hydrazines from
- 53 Reactive Dynamics Using the ReaxFF Reactive Force Field, J. Phys. Chem. B 113 (2009) 10770-10778.
- 54 [7] D.A. Newsome, D. Sengupta, H. Foroutan, M.F. Russo, A.C.T. van Duin, Oxidation of Silicon Carbide by
- 55 O₂ and H₂O: A ReaxFF Reactive Molecular Dynamics Study, Part I, J. Phys. Chem. C 116 (2012) 1611156 16121.
- [8] L. Liu, Y. Liu, S.V. Zybin, H. Sun, W.A. Goddard, 3rd, ReaxFF-lg: correction of the ReaxFF reactive force
 field for London dispersion, with applications to the equations of state for energetic materials, J. Phys. Chem.
 A 115 (2011) 11016-11022.
- [9] B.V. Merinov, J.E. Mueller, A.C. van Duin, Q. An, W.A. Goddard, 3rd, ReaxFF Reactive Force-Field
 Modeling of the Triple-Phase Boundary in a Solid Oxide Fuel Cell, J. Phys. Chem. Lett. 5 (2014) 4039-4043.
 [10] G. Psofogiannakis, A.C.T. van Duin, Development of a ReaxFF reactive force field for Si/Ge/H systems
 and application to atomic hydrogen bombardment of Si, Ge, and SiGe (100) surfaces, Surf. Sci. 646 (2016)
 253-260.
- 65 [11] B. Zhang, A.C. van Duin, J.K. Johnson, Development of a ReaxFF reactive force field for
 66 tetrabutylphosphonium glycinate/CO₂ mixtures, J. Phys. Chem. B 118 (2014) 12008-12016.
- 67