Electronic Supplementary Material (ESI)

Actinide-doped boron clusters: from borophenes to borospherenes

Nai-Xin Zhang, Cong-Zhi Wang, * Jian-Hui Lan, Qun-Yan Wu, Zhi-Fang Chai, and Wei-Qun Shi*

Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

*E-mail: shiwq@ihep.ac.cn; wangcongzhi@ihep.ac.cn

Figure S1. Low-lying isomers of $Pa@B_{36}$ with the relative energies (eV) at the PBE0/RECP/6-311+G* level of theory. Light pink and red spheres represent B and Pa, respectively. All the energies have been corrected for zero-point energies.

Figure S2. Low-lying isomers of $Pu@B_{36}$ with the relative energies (eV) at the PBE0/RECP/6-311+G* level of theory. Light pink and green spheres represent B and Pu, respectively. All the energies have been corrected for zero-point energies.

Figure S3. Low-lying isomers of $Am@B_{36}$ with the relative energies (eV) at the PBE0/RECP/6-311+G* level of theory. Light pink and blue spheres represent B and Am, respectively. All the energies have been corrected for zero-point energies.

Figure S4. MO energy levels for C_{2h} Pu@B₃₆ with scalar relativistic (SR) and spin-orbit (SO) coupling.

Figure S5. Optimized structures of An@B₃₆ (An= Pa, Np and Pu) at the PBE0-D3/RECP/6-311+G* level of theory. Pink, dark blue, yellow, and blue spheres represent B, Pa, Np, and Pu, respectively.

Figure S6. Simulated photoelectron spectrum of $An@B_{36}$ (An = Np, Pu, Am, Cm, Bk and Cf) at the PBE0/RECP/6-311+G* level of theory.

Figure S7. Molecular dynamics simulations of C_{2h} Pa@B₃₆ at 300K and 500K for 30 ps.

Figure S8. Molecular dynamics simulations of C_i Cf@B₃₆ at 300K and 500K for 30 ps.

Table S1. Spin states, spin contamination $\langle S^2 \rangle$, An-B bond distances (Å), and WBIs of the An-B bonds for the An@B₃₆ (An= Pa, Np, Pu) complexes at the PBE0-D3/6-311+G*/RECP level of theory.

Species	Spin states	$\langle S^2 \rangle$	An-B Bond Distances	An-B Bond WBIs
C_{2h} Pa@B ₃₆	doublet	0.76	2.707 - 3.067	0.253-0.435(0.316)
C_{2h} Np@B ₃₆	quartet	3.87	2.716 - 3.090	0.208-0.382(0.272)
C_{2h} Pu@B ₃₆	quintet	6.44	2.716 - 3.084	0.186-0.361(0.249)

Table S2. The molecular orbital composition analysis of Pa (%) for Pa@B₃₆ at the theoreticallevel of PBE0/6-311+G*/RECP.

Species	Orbitals	5f	6d
	SOMO	50.16	
	НОМО	23.66	
	HOMO-1	28.54	
	НОМО-2	23.38	
	НОМО-3	14.92	
Pa@B ₃₆	HOMO-4	14.79	
	НОМО-5		2.11
	НОМО-6		
	HOMO-7	1.15	
	HOMO-8		2.28
	НОМО-9		16.64

Table S3. QTAIM analysis of An@B₃₆ (An= Pa, Np, Pu) at the PBE0-D3/6-311+G*/RECP theoretical level.

Species	ρ	Н	$ abla^2 ho$	DI _{total}
C_{2h} Pa@B ₃₆	0.04170	-0.00765	0.07041	6.098
C_{2h} Np@B ₃₆	0.03852	-0.00648	0.07299	5.771
C_{2h} Pu@B ₃₆	0.03734	-0.00598	0.07321	5.443

Table S4. The first vertical detachment energies (VDE, eV) and adiabatic detachment energies(ADE, eV) of $An@B_{36}$ at the PBE0/6-311+G*/RECP level of theory.

Species	VDE	ADE
$C_{2h} \operatorname{Pa}@\mathrm{B}_{36}$	2.42	2.30
C _{2h} Np@B ₃₆	2.16	2.07
$C_{2h} \operatorname{Pu} @ \operatorname{B}_{36}$	2.79	1.96
$C_i \operatorname{Am} @B_{36}$	2.40	2.30
$C_i \operatorname{Cm} @B_{36}$	2.77	2.65
$C_i \operatorname{Bk}@B_{36}$	2.81	2.69
$C_i \operatorname{Cf} @ \mathbf{B}_{36}$	2.84	2.71

Table S5. Formation energy (ΔE , kcal/mol) of An@B₃₆ (An = Pa, Np, Pu, Am, Cm, Bk, Cf) atthe PBE0/6-311+G*/RECP level of theory.

Reactions	ΔΕ
$Pa + B_{36} \rightarrow Pa@B_{36}$	-225.1
$Np + B_{36} \rightarrow Np@B_{36}$	-157.6
$Pu + B_{36} \rightarrow Pu @B_{36}$	-112.9
$Am + B_{36} \rightarrow Am@B_{36}$	-75.8
$Cm + B_{36} \rightarrow Cm@B_{36}$	-88.2
$\mathbf{Bk} + \mathbf{B}_{36} \rightarrow \mathbf{Bk} \textcircled{@} \mathbf{B}_{36}$	-80.0
$Cf + B_{36} \rightarrow Cf@B_{36}$	-67.3

Table S6. The formation energy (ΔE , kcal/mol) of An@B₃₆ (An= Pa, Np, Pu) at the PBE0-D3/6-311+G*/RECP level of theory.

Reactions	ΔE
$\mathbf{Pa} + \mathbf{B}_{36} = \mathbf{Pa}(\mathbf{\hat{a}})\mathbf{B}_{36}$	-292.1
$Np + B_{36} = Np@B_{36}$	-245.5
$\mathbf{P}\mathbf{u} + \mathbf{B}_{36} = \mathbf{P}\mathbf{u}\mathbf{\mathbf{\mathbf{\mathbf{0}}}}\mathbf{B}_{36}$	-211.9