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Statistical Mechanics of Dimerizations Analytical Evaluations of K

SI-1 Analytical Evaluations of K

The equilibrium constant of dimerization derived in the main text and expressed in Eq. 20 in terms

of ensemble average of reactant and product concentrations is now compared against two analytical

evaluations based on the single-particle, q
A
, and pair-particle, q

A2
, partition functions. To this end,

we simplify our system and model the reactants, A, only as single-site particles, thus, removing the

protecting site that prevented higher-order aggregation. To preclude the formation of aggregates

larger than a dimer, we simply restrict this test system to N
total
A = 2. We choose the a cubic

box with Lbox = 6.0 nm thus ctotal
A

= 0.00926 molecule/nm3. To render the magnitude, as well

as the location, of the first maximum of g(r) in the single-site system and in the main-model

system similar, we modified ε and σ parameters of the LJ potential to εLJ = 26.90 kJ/mol and

σ = 0.152 nm. Other simulation parameters were unchanged. The MC simulation consisted of

8 · 1012 trial moves whereas the MD simulation was run for 720 µs. The value of K obtained by

Eq. 20, for each of these simulations, is listed in Table SI-1.2.

I. K from Integration over Particle’s Coordinates

In this approach we completely separate the integrations over momenta from those over spatial

coordinates. If T is the kinetic part of the Hamiltonian, the single-particle partition function of

unbound A can be written as,

q
A

(r) =
1

h3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−βT ( ~pA )d ~p
A

∫
~r
A

d ~r
A

=
V

h3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−βT ( ~pA )d ~p
A

, (SI-1.1)

where h is Planck’s constant and the integral over ~r
A
is of three dimensions yielding the volume when

the particle does not interact with its surrounding. If U is the potential part of the Hamiltonian and

rc the cutoff distance defining the bound state, the pair-particle partition function can be written

as,

q
A2

( ~p
A′ , ~pA′′ , ~rA′ , ~rA′′ ) =

1

h6

∫ ∞
−∞

. . .

∫ ∞
−∞

e−βT ( ~pA′ , ~pA′′ )d ~p
A′d ~pA′′

∫
~r
A′

d ~r
A′

∫ rc

0

e−βU(r)2πr2dr ,

(SI-1.2)

where we labeled the first particle A′, and the second A′′. The relative distance is defined as

r = | ~r
A′′ − ~r

A′ |, and the usual volume element for integration over this relative distance, 4πr2dr,
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is divided by two because A′ and A′′ are indistinguishable. In addition, the spatial integration over

the coordinates of the first particle A′ gives V , thus, the equilibrium constant can be expressed as,

K =
q
A2

q2
A

V c∅ =
1

2
c∅
∫ rc

0

e−βU(r)d~r = c∅
∫ rc

0

e−βU(r)2πr2dr , (SI-1.3)

where the integrals over momenta cancel-out when taking the ratio of the partition functions.

Equation SI-1.3 can be solved numerically and the result is shown in Table SI-1.2.

II. K from a Molecular Partition Function

We now evaluate q
A2

by integrations over coordinates and momenta of the center-of-mass of

the dimer and over the relative motions therein. This is realized by writing the Hamiltonian of

the pair-particle partition function in terms of generalized coordinates and momenta that describe

translation of center-of-mass, as well as, rotation and vibration of the bound state. If the rotational

and vibrational modes are decoupled, the expression of K becomes1,

K =
qtrans(A2) · qrot(A2) · qvib(A2) · e−βε

q2
trans(A)

V c∅ , (SI-1.4)

where ε equals −εLJ/NAvogadro. In the ’classical’ approximation, where the sum over translational

states can be substituted by an integral, the translational partition function has the form,

q
classical

trans =

(
2πmk

B
T

h2

)3/2

V , (SI-1.5)

where m is the mass of the moving body. The rotational partition function of a homonuclear

rigid-rotor dimer at high-temperatures is,

qrot =
8π2Ik

B
T

2h2
, (SI-1.6)

where the moment of inertia is I = µR2
eq, µ the reduced mass, and Req = 0.1707 nm the

equilibrium bond length of the dimer. The evaluation of the vibrational partition function is normally

proceeded by an input of the vibrational frequency (or force-constant). Because the vibrations in

our dimer are actually oscillatory motions around the minimum of the LJ potential, we also apply

the high-temperature approximation in this case and evaluate the vibrational partition function by

performing numerical integration instead of discrete summation. The Hamiltonian here includes a
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one-dimensional kinetic term of a body with a reduced mass µ and the LJ potential is shifted by

εLJ so its minimum is at zero energy. Consequently we get,

qvib =
1

h

∫ ∞
−∞

e−βp
2/2µd~p

∫ rc

0

e−β[ULJ (r)+ε
LJ ]dr =

(
2πµk

B
T

h2

)1/2 ∫ rc

0

e−β[ULJ (r)+ε
LJ ]dr ,

(SI-1.7)

which can be easily calculated. The values of the different terms of the molecular partition function

of the dimer are exhibited in Table SI-1.1.

Table SI-1.1: The values of different modes in the molecular partition function of the dimer, along

with the corresponding monoatomic partition function and the Boltzmann’s factor, necessary to

compute the equilibrium constant of our test system (V = 216.0 nm3 and T = 300.0 K) via

Eq. SI-1.4.

q
classical

trans(A2)
qrot qvib e−βε q

classical

trans(A)

1.8866 · 107 90.103 0.36473 48261 6.6702 · 106

The comparisons between the equilibrium constant, as well as of the standard Gibbs energy

change, obtained by the four different (two simulation- and two analytical-) methods is shown

in Table SI-1.2. The agreement between the MC simulation and the numerical integration over

particles’ coordinates (Eq. SI-1.3) is almost perfect. Relative to this, the agreement of K between

the MC and MD simulations may seem compromised. However when considering the difference

between the corresponding ∆G∅, which equals 0.02 kJ/mol, the agreement is still very good,

and the mild discrepancy can be attributed to application of a thermostat to a system with small

number of degrees of freedom. By far, the largest deviation is observed when the calculation is

performed using the molecular partition function (Eq. SI-1.4) where the difference in ∆G∅ with

the other methods is in the range 0.06−0.09 kJ/mol. As we argued before2, this is not surprising

given the several assumptions made in deriving this equation, and in particular, the neglect of

coupling between vibrational and rotational modes for a bond formed by a ’soft’, intermolecular,

potential.
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Table SI-1.2: Comparison between values of the equilibrium constant K computed by four different

methods, for the dimerization described in Eq. 2 of the simplified model system of single-site

monomers detailed in this section. In the two simulation methods, Monte-Carlo (MC) and Molecular

Dynamics (MD), K was obtained by calculating the ratio between the product and correlated-

reactants concentration according to Eq. 20. The analytical/numerical calculations were based on

integration of the particles coordinates (Eq. SI-1.3), as well as on partition functions describing

relative motions of a homonuclear diatomic molecule (Eq. SI-1.4). In addition to the value of K,

we also display (in kJ/mol) the corresponding change in the standard Gibbs energy, ∆G∅, using

the definition in Eq. 5.

Simulations (Eq. 20) Analytical/Numerical Calculations

MC MD Eq. SI-1.3 Eq. SI-1.4

K 90.625 ± 0.005 89.73 ± 0.24 90.623 87.481

∆G∅ −11.2413 ± 0.0001 −11.217 ± 0.007 −11.2412 −11.1532
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SI-2 Limits on the Relation between Reference and Finite Systems

The relation expressed in Eq. 12 between partition functions of the reference state and those of

the arbitrary system assumes translational partition functions of monomer and dimer are linearly

proportional to the volume. This is true if these translational partition functions can be described

’classically’ as considered in Eq. SI-1.5. For macroscopic reference systems this assumption is

clearly valid. However, would it also hold for a chosen system that is finite in size, thus, with a

small volume?

In obtaining Eq. SI-1.5, quantum translational energy states are actually considered however

the discrete sum, that in 1-dimension (along the x-axis) takes the form1

qtrans,x =
∞∑

nx=1

exp
[
−βh2n2

x/(8mL
2
box)
]

(SI-2.1)

with nx a positive integer, is approximated by an integral over nx,

qtrans,x ≈
∫ ∞
0

exp
[
−βh2n2

x/(8mL
2
box)
]
dnx . (SI-2.2)

Because motion along each axes is independent, the translational partition function in 3-dimensions

becomes,

qtrans = qtrans,x · qtrans,y · qtrans,z . (SI-2.3)

Approximating Eq. SI-2.1 by Eq. SI-2.2 requires successive terms in the sum to be spaced close

enough. In fact, the spacing is constant with a value of an integer unit, nonetheless, it can be small

relative to the range (width along the nx axis) of significant terms that are summed. Given the

Gaussian form of the terms inside the sum, the condition is that the width σ =
√

(8mL2
box/(βh

2))

should be much larger than 1. For the single-site monomer system mentioned in Section SI-1

(m = 10 amu, Lbox = 6.0 nm, and T = 300 K), the value of σ is 212. Although this may be

considered a large number compared to 1, we also assess the approximation directly by calculating

qtrans (Eq. SI-2.3) using the discrete summation of energies as indicated in Eq. SI-2.1. The results

are, qtrans(A) = 6.6171 · 106 and qtrans(A2) = 1.8760 · 107, for the monomer and dimer respectively.

The corresponding values using the ’classical’ translation approximation (Eq. SI-1.5), shown in

Table SI-1.1, exhibit relative deviations of 0.6 % and 0.8 %. As a matter of fact, our aim is to
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assess the ’classical’ approximation applied to the ratio of the partition functions shown in Eq. 12.

We therefore define,

Rq =
qtrans(A2)[
qtrans(A)

]2 , (SI-2.4)

as well as the corresponding ratio of the ’classical’ translational partition functions,

R
classical

q =
q

classical

trans(A2)[
q

classical

trans(A)

]2 , (SI-2.5)

and quantify the relative error by,

∆ =
Rq −R

classical
q

Rq

, (SI-2.6)

which also represents the relative error in determining K. This gives ∆ = 0.010, thus an error of

1 %, an acceptable accuracy for many applications.

As apparent from Eq. SI-2.1, besides volume, the width of the translational energy sum is also

affected by mass and temperature. To study the effect of these three parameters systematically, we

consider the single-site monomer system again and vary each parameter while keeping the other two

constants. We then plot ∆ as a function of the parameter that is changed and display the results in

Fig. SI-2.1. As expected ∆ decreases for heavier masses, higher temperatures, and larger volumes.
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Figure SI-2.1: The relative error, ∆, defined in Eq. SI-2.6, of applying the ’classical’ translation

approximation to the ratio of the partition functions as a function of mass (left panel), temperature

(middle panel), and box-length (right panel). The values of the parameters fixed in each plot

correspond to the system defined in Section SI-1.

The smallest mass considered is 1 amu which corresponds to the lightest (i.e., a hydrogen) atom.
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For temperature, the lowest value shown is 1 K. Although attainable, is unlikely to be of interest

for most association/dimerization reactions of molecular systems and higher temperatures are more

relevant. The smallest value considered for volume is that which corresponds to Lbox = 1 nm.

Again, this smallest system is not likely to be applicable here because it can not satisfy the ideal

gas behavior assumed in the derivation of K. Given the excluded volume of one atom and range

of interaction between two atoms, a larger system is required. For the two-site monomer system

described in the main text, with a LJ potential acting between particles (i.e., the dispersions decay

as 1/r6), we found that a box length of 3 − 4 nm is probably the smallest for which ideal gas

behavior can be observed. In any case in Fig. SI-2.1, the largest relative error observed is 17 %

(middle panel at T = 1 K) indicating the approximation in this case is not valid.

We now attempt to identify chemical systems for which the ’classical’ translation approximation

will exhibit the largest deviations. Very low temperatures are crucial, and systems operative under

this condition are low molecular weight gases just above their boiling temperature. In Table SI-

2.1 we list four gases (helium, hydrogen, neon, and nitrogen) having the lowest boiling points

(4 − 77 K). We then consider these gases in a small box, that in our computational experience

is already too small to support ideal behavior, and calculate the relative error ∆. What should be

considered an acceptable error? Because ∆G∅ is related to K by a natural logarithm, a given error

in the value of the latter translates to a much lower error of the former. We therefore propose,

arbitrarily, relative errors lower than 0.05 to be acceptable and mark larger errors in table SI-

2.1 by red color. For hydrogen gas, only at temperatures higher than ∼ 200 K the ’classical’

approximation can be applied, for helium, at temperatures higher than ∼ 100 K, whereas for neon

and nitrogen, or for any other gas, at any temperature.
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Table SI-2.1: The relative error, ∆, defined in Eq. SI-2.6, of applying the ’classical’ translation

approximation to the ratio of the partition functions for dimerization of hydrogen (H2), Helium

(He), Neon (Ne), and Nitrogen (N2) gases confined to a cubic box with Lbox = 3.0 nm, at

their corresponding boiling point Tb and at three higher temperatures. Discrepancies with relative

magnitude larger than an arbitrary threshold of 5 % are marked in red.

gas m [amu] Tb [K] ∆(T = Tb) ∆(T = 100 K) ∆(T = 200 K) ∆(T = 300 K)

H2 2.0 20.3 0.17 0.078 0.055 0.045

He 4.0 4.2 0.25 0.055 0.039 0.032

Ne 20.2 27.1 0.047 0.025 0.018 0.014

N2 28.0 77.4 0.024 0.021 0.015 0.012
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