## Supporting Information

### The van der Waals interactions in systems involving superheavy

## elements: the case of Oganession (Z=118)

Luiz Guilherme Machado de Macedo,<sup>†</sup> Charles Alberto Brito Negrão,<sup>‡</sup> Rhuiago

Mendes de Oliveira,<sup>¶</sup> Rafael Ferreira de Menezes,<sup>§</sup> Fernando Pirani,<sup>∥,⊥</sup> and

Ricardo Gargano\*,§

†Campus Centro-Oeste Dona Lindu—CCO, Universidade Federal de São João del Rei, Divinópolis, MG 35501-296, Brazil

‡Programa de Pós-Graduação em Química (PPGQ). Universidade Federal do Pará, Belém, 66075-110, Brazil

¶Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Campus Bacabal, MA 65700-000, Brazil

§Instituto de Física, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil ||Dipartimento di Chimica, Biologia e Biotecnologie, Universitá degli studi di Perugia, via Elce di Sotto 8, Perugia, Italy.

⊥Dipartimento di Ingegneria Civile ed Ambientale, Università di Perugia. via Duranti 93, 06125 Perugia (Italy)

#### E-mail: gargano@unb.br

#### Abstract

This work presents a study involving dimers composed of He, Ne, Ar, Kr, Xe, Rn, and Og noble gases with the Oganesson, a super-heavy closed-shell element (Z=118).

The He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og, Rn-Og, and Og-Og ground state electronic potential energy curves were calculated based on the 4-component (4c) Dirac-Coulomb Hamiltonian and were counterpoise corrected. For the 4c calculations, the electron correlation was taken into account using the same methodology (MP2-srLDA) and basis set quality (Dyall's acv3z and Dunning's aug-cc-PVTZ). All calculations included quantum electrodynamics effects at the Gaunt interaction level. For all aforementioned dimension vibration energies, spectroscopic constants ( $\omega_e, \omega_e x_e, \omega_e y_e, \alpha_e$ , and  $\gamma_e$ ), and lifetime as a function of the temperature (which ranged from 200 to 500K) were also calculated. Obtained results suggest that the inclusion of quantum electrodynamics effects reduces the value of the dissociation energy of all hetero-nuclear molecules with a percentage contribution ranging from 0.48% (for the He-Og dimer) to 9.63% (for the Rn-Og dimer). The lifetime calculations indicate that the Og-He dimer is close to the edge of instability and that Ng-Og dimers are relatively less stable when Gaunt correction is considered. Exploiting scaling laws, that adopt the polarizability of involved partners as scaling factors, it has been also demonstrated that in such systems the interaction is of van der Waals nature (size repulsion plus dispersion attraction) and this permitted an estimation of dissociation energy and equilibrium distance in Og-Og dimer. This further information has been exploited to evaluate the rovibrational levels in this symmetric dimer and to cast light on macroscopic properties of condensed phases concerning the complete noble gas family, emphasizing some anomalies of Og.

This Supporting Information includes the He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og, Rn-Og, and Og-Og *ab initio* electronic energies (Section S1); He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og, Rn-Og, and Og-Og pure vibrational (j = 0) and rovibrational (j = 1) energies calculated through Rydberg potential energy curves with Gaunt+BSSE correction (Section S2); Plots of *Ab initio* and adjusted potential energy curves (with ILJ and Rydberg forms) for the He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og, Rn-Og, and Og-Og systems (Section S3).

## S1. He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og, Rn-Og, and Og-Og *Ab initio* electronic energies

He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og, and Rn-Og *ab initio* electronic energies calculated with and without the inclusion of quantum electrodynamics effects (at the Gaunt interaction) and with Gaunt+BSSE (Basis Set Superposition Error) corrections (Tables S1-S6). Table S7 shows the Og-Og *ab initio* electronic energies calculated with Gaunt+BSSE corrections.

Table S1: He-Og electronic energies calculated at CAMB3LYP + MP2/He = aug - cc - pVTZ/Og = dyall.acv3z level with and without inclusion of quantum electrodynamics effects at the Gaunt interaction level. The He-Og Gaunt+BSSE electronic energies were performed at MP2-srLDA/He=aug-cc-PVTZ/Og=dyall.acv3z level.

| He-Og |                   | He-Og-Gaunt |                   | $\operatorname{He-Og-Gaunt}+\operatorname{BSSE}$ |                   |
|-------|-------------------|-------------|-------------------|--------------------------------------------------|-------------------|
| R(Å)  | Energy (hartree)  | R(Å)        | Energy (hartree)  | R(Å)                                             | Energy (hartree)  |
| 3.40  | -54864.6023410742 | 3.40        | -54754.7514705928 | 3.00                                             | -54754.7487195103 |
| 3.50  | -54864.6026213667 | 3.50        | -54754.7517528342 | 3.10                                             | -54754.7497226718 |
| 3.60  | -54864.6028249878 | 3.60        | -54754.751957931  | 3.20                                             | -54754.7504557216 |
| 3.70  | -54864.6029822819 | 3.70        | -54754.7521163546 | 3.30                                             | -54754.75099741   |
| 3.80  | -54864.6030908389 | 3.80        | -54754.752225766  | 3.40                                             | -54754.7514007072 |
| 3.90  | -54864.6031583736 | 3.90        | -54754.7522939587 | 3.50                                             | -54754.7516880018 |
| 4.00  | -54864.6032084915 | 4.00        | -54754.7523445697 | 3.60                                             | -54754.7518966734 |
| 4.10  | -54864.6032445578 | 4.10        | -54754.7523810111 | 3.70                                             | -54754.7520532617 |

| 4.20 | -54864.603273997  | 4.20 | -54754.7524107417 | 3.80 | -54754.7521611737 |
|------|-------------------|------|-------------------|------|-------------------|
| 4.30 | -54864.6032830708 | 4.30 | -54754.7524200278 | 3.90 | -54754.7522334742 |
| 4.40 | -54864.6032877662 | 4.40 | -54754.7524248959 | 4.00 | -54754.7522882529 |
| 4.50 | -54864.6032945942 | 4.50 | -54754.7524318544 | 4.10 | -54754.7523273466 |
| 4.51 | -54864.6032952722 | 4.51 | -54754.7524325403 | 4.20 | -54754.7523489514 |
| 4.52 | -54864.6032959004 | 4.52 | -54754.7524331721 | 4.30 | -54754.7523612019 |
| 4.53 | -54864.6032964785 | 4.53 | -54754.7524337647 | 4.40 | -54754.7523717564 |
| 4.54 | -54864.6032970355 | 4.54 | -54754.7524343285 | 4.45 | -54754.7523758893 |
| 4.55 | -54864.6032975371 | 4.55 | -54754.7524348441 | 4.50 | -54754.7523787201 |
| 4.56 | -54864.6032979973 | 4.56 | -54754.7524353133 | 4.55 | -54754.7523791654 |
| 4.57 | -54864.6032983967 | 4.57 | -54754.7524357196 | 4.60 | -54754.7523783887 |
| 4.58 | -54864.6032987231 | 4.58 | -54754.7524360585 | 4.70 | -54754.7523751697 |
| 4.59 | -54864.6032989729 | 4.59 | -54754.7524363195 | 4.80 | -54754.7523736019 |
| 4.60 | -54864.6032991368 | 4.60 | -54754.7524364908 | 4.90 | -54754.7523730373 |
| 4.61 | -54864.6032992143 | 4.61 | -54754.7524365822 | 5.00 | -54754.7523701321 |
| 4.62 | -54864.6032992843 | 4.62 | -54754.7524366578 | 5.10 | -54754.7523645543 |
| 4.63 | -54864.6032992418 | 4.63 | -54754.7524366174 | 5.20 | -54754.7523595376 |
| 4.64 | -54864.603299092  | 4.64 | -54754.7524364786 | 5.30 | -54754.7523570746 |
| 4.65 | -54864.6032988551 | 4.65 | -54754.7524362528 | 5.40 | -54754.7523556018 |
| 4.66 | -54864.603298548  | 4.66 | -54754.7524359543 | 5.50 | -54754.7523525841 |
| 4.67 | -54864.6032981657 | 4.67 | -54754.7524355783 | 5.60 | -54754.7523478556 |
| 4.68 | -54864.6032977333 | 4.68 | -54754.7524351493 | 5.70 | -54754.7523438344 |
| 4.69 | -54864.6032972472 | 4.69 | -54754.7524346724 | 5.80 | -54754.7523420151 |
| 4.70 | -54864.6032966886 | 4.70 | -54754.7524341175 | 5.90 | -54754.7523414006 |
| 4.80 | -54864.6032897408 | 4.80 | -54754.7524272273 | 6.00 | -54754.752339991  |
| 4.90 | -54864.6032849568 | 4.90 | -54754.7524224932 | 6.10 | -54754.752337091  |
| 5.00 | -54864.6032841637 | 5.00 | -54754.752421733  | 6.20 | -54754.7523338918 |
|      |                   |      |                   |      |                   |

| 5.10 | -54864.6032833746 | 5.10 | -54754.7524209655 | 6.30 | -54754.7523320678 |
|------|-------------------|------|-------------------|------|-------------------|
| 5.20 | -54864.6032788508 | 5.20 | -54754.7524164687 | 6.40 | -54754.7523317559 |
| 5.30 | -54864.6032715674 | 5.30 | -54754.7524091902 | 6.50 | -54754.7523317426 |
| 5.40 | -54864.6032659011 | 5.40 | -54754.7524035462 | 6.60 | -54754.7523308424 |
| 5.50 | -54864.6032641319 | 5.50 | -54754.7524017841 | 6.70 | -54754.7523289    |
| 5.60 | -54864.6032642095 | 5.60 | -54754.7524018654 | 6.80 | -54754.7523268728 |
| 5.70 | -54864.6032627231 | 5.70 | -54754.7524003847 | 6.90 | -54754.7523257982 |
| 5.80 | -54864.6032580688 | 5.80 | -54754.7523957401 | 7.00 | -54754.7523258167 |
| 5.90 | -54864.6032529407 | 5.90 | -54754.7523906145 | 7.10 | -54754.7523261354 |
| 6.00 | -54864.6032500665 | 6.00 | -54754.752387732  | 7.20 | -54754.7523259504 |
| 6.10 | -54864.6032499727 | 6.10 | -54754.7523876468 | 7.30 | -54754.7523249649 |
| 6.20 | -54864.6032507095 | 6.20 | -54754.7523883816 | 7.40 | -54754.7523236148 |
| 6.30 | -54864.6032499453 | 6.30 | -54754.7523876251 | 7.50 | -54754.7523226114 |
| 6.40 | -54864.6032471679 | 6.40 | -54754.7523848443 | 7.60 | -54754.7523223628 |
| 6.50 | -54864.6032437135 | 6.50 | -54754.7523813865 | 7.70 | -54754.7523226363 |
| 6.60 | -54864.603241395  | 6.60 | -54754.7523790724 | 7.80 | -54754.7523229462 |
| 6.70 | -54864.6032410069 | 6.70 | -54754.7523786873 | 7.90 | -54754.7523228368 |
| 6.80 | -54864.6032417232 | 6.80 | -54754.752379407  | 8.00 | -54754.7523222599 |
| 6.90 | -54864.60324209   | 6.90 | -54754.7523797652 | 8.10 | -54754.7523214432 |
| 7.00 | -54864.6032413548 | 7.00 | -54754.7523790347 | 8.20 | -54754.7523208004 |
| 7.10 | -54864.6032392569 | 7.10 | -54754.7523769367 | 8.30 | -54754.7523206012 |
| 7.20 | -54864.603237266  | 7.20 | -54754.752374948  | 8.40 | -54754.752320747  |
| 7.30 | -54864.6032361786 | 7.30 | -54754.7523738622 | 8.50 | -54754.7523200152 |
| 7.40 | -54864.6032361646 | 7.40 | -54754.7523738422 |      | -                 |
| 7.50 | -54864.6032369222 | 7.50 | -54754.7523745964 |      | -                 |
| 7.60 | -54864.6032373402 | 7.60 | -54754.752375024  | -    | -                 |
| 7.70 | -54864.6032371531 | 7.70 | -54754.7523748372 | -    | -                 |
|      |                   |      |                   |      |                   |

| 7.80 | -54864.603236068  | 7.80 | -54754.7523737497 | - | - |  |
|------|-------------------|------|-------------------|---|---|--|
| 7.90 | -54864.6032348459 | 7.90 | -54754.7523725244 | - | - |  |
| 8.00 | -54864.6032339105 | 8.00 | -54754.752371598  | - | - |  |
| 8.10 | -54864.6032334479 | 8.10 | -54754.7523711305 | - | - |  |
| 8.20 | -54864.6032337065 | 8.20 | -54754.7523713867 | - | - |  |
| 8.30 | -54864.6032341711 | 8.30 | -54754.7523718502 | - | - |  |
| 8.40 | -54864.6032343651 | 8.40 | -54754.7523720489 | - | - |  |
| 8.50 | -54864.6032342699 | 8.50 | -54754.7523719563 | - | - |  |

Table S2: Ne-Og electronic energies calculated at CAMB3LYP + MP2/He = aug - cc - pVTZ/Og = dyall.acv3z level with and without inclusion of quantum electrodynamics effects at the Gaunt interaction level. The Ne-Og Gaunt+BSSE electronic energies were performed at MP2-srLDA/Ne=aug-cc-PVTZ/Og=dyall.acv3z level.

|      | Ne-Og             | Ne-Og-Gaunt |                   | Ne-Og-Gaunt+BSSE |                    |
|------|-------------------|-------------|-------------------|------------------|--------------------|
| R(Å) | Energy (hartree)  | R(Å)        | Energy (hartree)  | R(Å)             | Energy (hartree)   |
| 3.50 | -54889.2696782482 | 3.50        | -54882.590072872  | 2.40             | 54880.24834124630  |
| 3.60 | -54889.2699875566 | 3.60        | -54882.5903817458 | 2.50             | -54880.25994892560 |
| 3.70 | -54889.2701970342 | 3.70        | -54882.5905908259 | 2.60             | -54880.26834491500 |
| 3.80 | -54889.2703352244 | 3.80        | -54882.5907286563 | 2.70             | -54880.27440762500 |
| 3.90 | -54889.2704229254 | 3.90        | -54882.5908160507 | 2.80             | -54880.27878517040 |
| 4.00 | -54889.2704752151 | 4.00        | -54882.5908680905 | 2.90             | -54880.28193900550 |
| 4.10 | -54889.2705029729 | 4.10        | -54882.5908956353 | 3.00             | -54880.28420238310 |
| 4.20 | -54889.2705139855 | 4.20        | -54882.5909064763 | 3.10             | -54880.28582941170 |
| 4.30 | -54889.2705138227 | 4.30        | -54882.5909061793 | 3.20             | -54880.28698744940 |
| 4.40 | -54889.2705064657 | 4.40        | -54882.5908987146 | 3.30             | -54880.28780890890 |
| 4.50 | -54889.2704947164 | 4.50        | -54882.5908868848 | 3.40             | -54880.28839001590 |
| 4.60 | -54889.2704805591 | 4.60        | -54882.5908726636 | 3.50             | -54880.28879236500 |
| 4.70 | -54889.270465351  | 4.70        | -54882.5908574089 | 3.60             | -54880.28906823210 |
| 4.80 | -54889.270450007  | 4.80        | -54882.5908420308 | 3.70             | -54880.28925604980 |
| 4.90 | -54889.2704351182 | 4.90        | -54882.5908271138 | 3.80             | -54880.28937948290 |
| 5.00 | -54889.2704210317 | 5.00        | -54882.5908130108 | 3.90             | -54880.28945701080 |
| 5.20 | -54889.2703958868 | 5.20        | -54882.5907878453 | 4.00             | -54880.28950402030 |
| 5.40 | -54889.2703748887 | 5.40        | -54882.590766839  | 4.10             | -54880.28953104580 |
| 5.60 | -54889.2703575862 | 5.60        | -54882.5907495356 | 4.20             | -54880.28954349090 |
| 6.00 | -54889.2703316134 | 6.00        | -54882.5907235705 | 4.30             | -54880.28954459220 |
| 7.00 | -54889.2702983313 | 7.00        | -54882.5906903002 | 4.40             | -54880.28954002650 |

| 8.00  | -54889.2702865808 | 8.00  | -54882.5906785553 | 4.50 | -54880.28953326940 |
|-------|-------------------|-------|-------------------|------|--------------------|
| 9.00  | -54889.2702818539 | 9.00  | -54882.5906738329 | 4.60 | -54880.28952418020 |
| 10.00 | -54889.2702796023 | 10.00 | -54882.5906715826 | 4.70 | -54880.28951149730 |
| -     | -                 | -     | -                 | 4.80 | -54880.28949862320 |
| -     | -                 | -     | -                 | 4.90 | -54880.28948810630 |
| -     | -                 | -     | -                 | 5.00 | -54880.28947850670 |
| -     | -                 | -     | -                 | 5.10 | -54880.28946706310 |
| -     | -                 | -     | -                 | 5.20 | -54880.28945532830 |
| -     | -                 | -     | -                 | 5.30 | -54880.28944621770 |
| -     | -                 | -     | -                 | 5.40 | -54880.28943966530 |
| -     | -                 | -     | -                 | 5.50 | -54880.28943293460 |
| -     | -                 | -     | -                 | 5.60 | -54880.28942476670 |
| -     | -                 | -     | -                 | 5.70 | -54880.28941695470 |
| -     | -                 | -     | -                 | 5.80 | -54880.28941164170 |
| -     | -                 | -     | -                 | 5.90 | -54880.28940823590 |
| -     | -                 | -     | -                 | 6.00 | -54880.28940461470 |
| -     | -                 | -     | -                 | 6.10 | -54880.28939972420 |
| -     | -                 | -     | -                 | 6.20 | -54880.28939469530 |
| -     | -                 | -     | -                 | 6.30 | -54880.28939112600 |
| -     | -                 | -     | -                 | 6.40 | -54880.28938917910 |
| -     | -                 | -     | -                 | 6.50 | -54880.28938767370 |
| -     | -                 | -     | -                 | 6.60 | -54880.28938545290 |
| -     | -                 | -     | -                 | 6.70 | -54880.28938253160 |
| -     | -                 | -     | -                 | 6.80 | -54880.28937980270 |
| -     | -                 | -     | -                 | 6.90 | -54880.28937802980 |
| -     | -                 | -     | -                 | 7.00 | -54880.28937708140 |
| -     | -                 | -     | -                 | 7.10 | -54880.28937630280 |
|       |                   |       |                   |      |                    |

| - | - | - | - | 7.20 | -54880.28937526860 |
|---|---|---|---|------|--------------------|
| - | - | - | - | 7.30 | -54880.28937381360 |
| - | - | - | - | 7.40 | -54880.28937225740 |
| - | - | - | - | 7.50 | -54880.28937115350 |
| - | - | - | - | 7.60 | -54880.28937035660 |
| - | - | _ | - | 7.70 | -54880.28936993000 |
| - | - | - | - | 7.80 | -54880.28936945850 |
| - | - | - | - | 7.90 | -54880.28936911090 |
| - | - | - | - | 8.00 | -54880.28936817880 |
| - | _ | - | - | 8.10 | -54880.28936749340 |
| - | - | _ | - | 8.20 | -54880.28936686920 |
| - | - | _ | - | 8.30 | -54880.28936640220 |
| _ | _ | _ | _ | 8.40 | -54880.28936615100 |
| _ | _ | _ | - | 8.50 | -54880.28936580020 |
|   |   |   |   |      |                    |

Table S3: Ar-Og electronic energies calculated at CAMB3LYP + MP2/Ar = aug - cc - pVTZ/Og = dyall.acv3z level with and without inclusion of quantum electrodynamics effects at the Gaunt interaction level. level. The Ar-Og Gaunt+BSSE electronic energies were performed at MP2-srLDA/Ar=aug-cc-PVTZ/Og=dyall.acv3z level.

| Ar-Og           |                   | Ar-Og-Gaunt |                   | Ar-Og-Gaunt+BSSE |                   |
|-----------------|-------------------|-------------|-------------------|------------------|-------------------|
| $R(\text{\AA})$ | Energy (hartree)  | R(Å)        | Energy (hartree)  | R(Å)             | Energy (hartree)  |
| 3.40            | -55389.5676845601 | 3.40        | -55279.5758847709 | 2.50             | -55279.4873847739 |
| 3.50            | -55389.5691809015 | 3.50        | -55279.5773928159 | 2.60             | -55279.5121426477 |
| 3.60            | -55389.5702382361 | 3.60        | -55279.5784591849 | 2.70             | -55279.5304771094 |
| 3.70            | -55389.570936121  | 3.70        | -55279.5791640491 | 2.80             | -55279.5440059455 |
| 3.80            | -55389.5714261727 | 3.80        | -55279.5796594764 | 2.90             | -55279.5540433017 |
| 3.90            | -55389.5717773439 | 3.90        | -55279.5800147897 | 3.00             | -55279.5614314924 |

| 4.00 | -55389.5719768837 | 4.00 | -55279.5802175126 | 3.10 | -55279.5668382163 |
|------|-------------------|------|-------------------|------|-------------------|
| 4.10 | -55389.5720707877 | 4.10 | -55279.5803138614 | 3.20 | -55279.5708386749 |
| 4.20 | -55389.5721355812 | 4.20 | -55279.5803805325 | 3.30 | -55279.5737335385 |
| 4.21 | -55389.5721413178 | 4.21 | -55279.5803864263 | 3.40 | -55279.5757979574 |
| 4.22 | -55389.5721468003 | 4.22 | -55279.5803920702 | 3.50 | -55279.5773139869 |
| 4.23 | -55389.5721520141 | 4.23 | -55279.5803974333 | 3.60 | -55279.5783873707 |
| 4.24 | -55389.5721568918 | 4.24 | -55279.5804024588 | 3.70 | -55279.579098166  |
| 4.25 | -55389.5721613852 | 4.25 | -55279.5804070932 | 3.80 | -55279.5795986381 |
| 4.26 | -55389.572165429  | 4.26 | -55279.5804112802 | 3.90 | -55279.5799581121 |
| 4.27 | -55389.5721689933 | 4.27 | -55279.5804149869 | 4.00 | -55279.5801641434 |
| 4.28 | -55389.5721720444 | 4.28 | -55279.5804181669 | 4.10 | -55279.5802631519 |
| 4.29 | -55389.5721745504 | 4.29 | -55279.5804208048 | 4.20 | -55279.5803316275 |
| 4.30 | -55389.5721765122 | 4.30 | -55279.5804228898 | 4.30 | -55279.5803749783 |
| 4.31 | -55389.5721778881 | 4.31 | -55279.5804243921 | 4.40 | -55279.5803640232 |
| 4.32 | -55389.5721786439 | 4.32 | -55279.5804252814 | 4.50 | -55279.5803170492 |
| 4.33 | -55389.5721787792 | 4.33 | -55279.5804255213 | 4.60 | -55279.5802792511 |
| 4.34 | -55389.5721783397 | 4.34 | -55279.5804251941 | 4.70 | -55279.580255906  |
| 4.35 | -55389.5721772908 | 4.35 | -55279.5804242527 | 4.80 | -55279.5802193646 |
| 4.36 | -55389.5721756706 | 4.36 | -55279.5804227445 | 4.90 | -55279.5801609926 |
| 4.37 | -55389.5721735166 | 4.37 | -55279.5804207004 | 5.00 | -55279.5801038517 |
| 4.38 | -55389.5721708514 | 4.38 | -55279.580418137  | 5.10 | -55279.5800678254 |
| 4.39 | -55389.5721676623 | 4.39 | -55279.5804150475 | 5.20 | -55279.5800442371 |
| 4.40 | -55389.572164005  | 4.40 | -55279.5804114925 | 5.30 | -55279.5800137002 |
| 4.50 | -55389.5721163036 | 4.50 | -55279.5803646312 | 5.40 | -55279.5799712554 |
| 4.60 | -55389.5720780659 | 4.60 | -55279.5803270327 | 5.50 | -55279.5799300909 |
| 4.70 | -55389.5720545873 | 4.70 | -55279.5803040549 | 5.60 | -55279.579903557  |
| 4.80 | -55389.5720179245 | 4.80 | -55279.5802677788 | 5.70 | -55279.5798896849 |
|      |                   |      |                   |      |                   |

| 4.90 | -55389.5719593627 | 4.90 | -55279.5802095203 | 5.80 | -55279.5798764564 |
|------|-------------------|------|-------------------|------|-------------------|
| 5.00 | -55389.5719019626 | 5.00 | -55279.5801523568 | 5.90 | -55279.5798552132 |
| 5.10 | -55389.5718653447 | 5.10 | -55279.5801159238 | 6.00 | -55279.5798283808 |
| 5.20 | -55389.5718411473 | 5.20 | -55279.5800918759 | 6.10 | -55279.5798054351 |
| 5.30 | -55389.5718098129 | 5.30 | -55279.5800606672 | 6.20 | -55279.5797928576 |
| 5.40 | -55389.5717664721 | 5.40 | -55279.5800174145 | 6.30 | -55279.5797882534 |
| 5.50 | -55389.5717243053 | 5.50 | -55279.579975343  | 6.40 | -55279.5797838318 |
| 5.60 | -55389.5716966313 | 5.60 | -55279.5799477457 | 6.50 | -55279.5797738351 |
| 5.70 | -55389.5716817979 | 5.70 | -55279.5799329716 | 6.60 | -55279.5797585632 |
| 5.80 | -55389.5716671575 | 5.80 | -55279.5799183893 | 6.70 | -55279.5797434296 |
| 5.90 | -55389.5716447419 | 5.90 | -55279.5798960284 | 6.80 | -55279.5797341502 |
| 6.00 | -55389.5716167989 | 6.00 | -55279.5798681347 | 6.90 | -55279.5797318277 |
| 6.10 | -55389.5715928133 | 6.10 | -55279.5798442025 | 7.00 | -55279.579732624  |
| 6.20 | -55389.5715792602 | 6.20 | -55279.579830688  | 7.10 | -55279.579731466  |
| 6.30 | -55389.571573734  | 6.30 | -55279.5798252115 | 7.20 | -55279.5797256122 |
| 6.40 | -55389.5715684818 | 6.40 | -55279.5798200006 | 7.30 | -55279.5797162195 |
| 6.50 | -55389.57155774   | 6.50 | -55279.5798092984 | 7.40 | -55279.5797071091 |
| 6.60 | -55389.5715417673 | 6.60 | -55279.579793363  | 7.50 | -55279.579701827  |
| 6.70 | -55389.5715259934 | 6.70 | -55279.5797776261 | 7.60 | -55279.5797013724 |
| 6.80 | -55389.571516191  | 6.80 | -55279.5797678501 | 7.70 | -55279.5797035301 |
| 6.90 | -55389.5715134069 | 6.90 | -55279.5797651005 | 7.80 | -55279.579704958  |
| 7.00 | -55389.5715139411 | 7.00 | -55279.5797656721 | 7.90 | -55279.5797034353 |
| 7.10 | -55389.5715122368 | 7.10 | -55279.579764001  | 8.00 | -55279.5796987453 |
| 7.20 | -55389.5715060931 | 7.20 | -55279.5797578857 | 8.10 | -55279.5796926919 |
| 7.30 | -55389.5714964706 | 7.30 | -55279.5797482923 | 8.20 | -55279.5796877923 |
| 7.40 | -55389.5714870196 | 7.40 | -55279.579738873  | 8.30 | -55279.5796857631 |
| 7.50 | -55389.5714815991 | 7.50 | -55279.5797334744 | 8.40 | -55279.579686547  |
|      |                   |      |                   |      |                   |

| 7.60 | -55389.5714807069 | 7.60 | -55279.5797326157 | 8.50  | -55279.5796888353 |
|------|-------------------|------|-------------------|-------|-------------------|
| 7.70 | -55389.5714826947 | 7.70 | -55279.5797346282 | 8.75  | -55279.5796891117 |
| 7.80 | -55389.5714836661 | 7.80 | -55279.5797356308 | 9.00  | -55279.5796809685 |
| 7.90 | -55389.5714818282 | 7.90 | -55279.5797338154 | 9.25  | -55279.579679295  |
| 8.00 | -55389.5714769403 | 8.00 | -55279.5797289618 | 9.50  | -55279.579682779  |
| 8.10 | -55389.5714705754 | 8.10 | -55279.5797226189 | 10.00 | -55279.5796763134 |
| 8.20 | -55389.5714655173 | 8.20 | -55279.5797175854 | 12.50 | -55279.5796756215 |
| 8.30 | -55389.5714632741 | 8.30 | -55279.5797153635 | 15.00 | -55279.5796765914 |
| 8.40 | -55389.5714638579 | 8.40 | -55279.5797159761 | -     | -                 |
| 8.50 | -55389.5714659362 | 8.50 | -55279.5797180735 | -     | -                 |

Table S4: Kr-Og electronic energies calculated at CAMB3LYP + MP2/Kr = dyall.acv3z/Og = dyall.acv3z level with and without inclusion of quantum electrodynamics effects at the Gaunt interaction level. The Kr-Og Gaunt+BSSE electronic energies were performed at MP2-srLDA/Kr=aug-cc-PVTZ/Og=dyall.acv3z level.

|                 | Kr-Og             | Kr-Og-Gaunt |                   | Kr-Og-Gaunt+BSSE |                   |
|-----------------|-------------------|-------------|-------------------|------------------|-------------------|
| $R(\text{\AA})$ | Energy (hartree)  | R(Å)        | Energy (hartree)  | R(Å)             | Energy (hartree)  |
| 3.50            | -57648.8554139482 | 3.50        | -57537.4274015089 | 2.50             | -57537.3005424645 |
| 3.60            | -57648.857010416  | 3.60        | -57537.4290134988 | 2.60             | -57537.3348558743 |
| 3.70            | -57648.8581204207 | 3.70        | -57537.4301357445 | 2.70             | -57537.3605434433 |
| 3.80            | -57648.8588686459 | 3.80        | -57537.4308936562 | 2.80             | -57537.379564124  |
| 3.90            | -57648.8593896075 | 3.90        | -57537.4314222679 | 2.90             | -57537.393752308  |
| 4.00            | -57648.8597417706 | 4.00        | -57537.431780534  | 3.00             | -57537.4043187374 |
| 4.10            | -57648.8599419881 | 4.10        | -57537.431985628  | 3.10             | -57537.4120732953 |
| 4.20            | -57648.8600415959 | 4.20        | -57537.4320891413 | 3.20             | -57537.4178225983 |
| 4.30            | -57648.8600944952 | 4.30        | -57537.4321452078 | 3.30             | -57537.4220682262 |
| 4.31            | -57648.8600980391 | 4.31        | -57537.4321490343 | 3.40             | -57537.4251232608 |
| 4.32            | -57648.8601012259 | 4.32        | -57537.4321524949 | 3.50             | -57537.4273355699 |
| 4.33            | -57648.8601040796 | 4.33        | -57537.4321556239 | 3.60             | -57537.4289513962 |
| 4.34            | -57648.8601065035 | 4.34        | -57537.4321583189 | 3.70             | -57537.4300771903 |
| 4.35            | -57648.8601085167 | 4.35        | -57537.4321605854 | 3.80             | -57537.4308384069 |
| 4.36            | -57648.8601101843 | 4.36        | -57537.4321625157 | 3.90             | -57537.4313701814 |
| 4.37            | -57648.8601113758 | 4.37        | -57537.4321639434 | 4.00             | -57537.4317313023 |
| 4.38            | -57648.8601121267 | 4.38        | -57537.4321649477 | 4.10             | -57537.4319392499 |
| 4.39            | -57648.8601123469 | 4.39        | -57537.4321654009 | 4.20             | -57537.4320455043 |
| 4.40            | -57648.8601121441 | 4.40        | -57537.4321654369 | 4.30             | -57537.4321039939 |
| 4.41            | -57648.8601113574 | 4.41        | -57537.4321648893 | 4.40             | -57537.4321264825 |
| 4.42            | -57648.8601102183 | 4.42        | -57537.4321639677 | 4.50             | -57537.4321039145 |
| 4.43            | -57648.8601085892 | 4.43        | -57537.4321625657 | 4.60             | -57537.4320527531 |

| 4.44 | -57648.8601064984 | 4.44 | -57537.4321606988 | 4.70 | -57537.432000874  |
|------|-------------------|------|-------------------|------|-------------------|
| 4.45 | -57648.8601039698 | 4.45 | -57537.4321583718 | 4.80 | -57537.4319548573 |
| 4.46 | -57648.8601009633 | 4.46 | -57537.4321555857 | 4.90 | -57537.4319009349 |
| 4.47 | -57648.8600975724 | 4.47 | -57537.4321523978 | 5.00 | -57537.4318340669 |
| 4.48 | -57648.8600938376 | 4.48 | -57537.4321488633 | 5.10 | -57537.431768883  |
| 4.49 | -57648.8600897423 | 4.49 | -57537.4321449715 | 5.20 | -57537.4317180261 |
| 4.50 | -57648.8600853142 | 4.50 | -57537.4321407433 | 5.30 | -57537.4316772768 |
| 4.60 | -57648.8600304215 | 4.60 | -57537.4320876161 | 5.40 | -57537.4316338931 |
| 4.70 | -57648.8599752964 | 4.70 | -57537.4320339872 | 5.50 | -57537.4315840158 |
| 4.80 | -57648.8599263962 | 4.80 | -57537.4319863593 | 5.60 | -57537.4315374041 |
| 4.90 | -57648.8598699725 | 4.90 | -57537.4319310482 | 5.70 | -57537.4315030503 |
| 5.00 | -57648.859800846  | 5.00 | -57537.4318628678 | 5.80 | -57537.431479069  |
| 5.10 | -57648.8597336824 | 5.10 | -57537.4317965626 | 5.90 | -57537.431456173  |
| 5.20 | -57648.8596810373 | 5.20 | -57537.4317446913 | 6.00 | -57537.4314279526 |
| 5.30 | -57648.8596386943 | 5.30 | -57537.4317030458 | 6.10 | -57537.4313972589 |
| 5.40 | -57648.8595938038 | 5.40 | -57537.4316587816 | 6.20 | -57537.4313720131 |
| 5.50 | -57648.8595425854 | 5.50 | -57537.4316081401 | 6.30 | -57537.4313561297 |
| 5.60 | -57648.8594946097 | 5.60 | -57537.4315607159 | 6.40 | -57537.4313460868 |
| 5.70 | -57648.8594592476 | 5.70 | -57537.4315258601 | 6.50 | -57537.4313353941 |
| 5.80 | -57648.859434015  | 5.80 | -57537.4315011143 | 6.60 | -57537.4313203664 |
| 5.90 | -57648.8594101336 | 5.90 | -57537.4314776914 | 6.70 | -57537.431302614  |
| 6.00 | -57648.8593810519 | 6.00 | -57537.4314490483 | 6.80 | -57537.4312872287 |
| 6.10 | -57648.8593495913 | 6.10 | -57537.4314180102 | 6.90 | -57537.4312776785 |
| 6.20 | -57648.859323671  | 6.20 | -57537.4313924809 | 7.00 | -57537.4312732602 |
| 6.30 | -57648.8593070816 | 6.30 | -57537.4313762657 | 7.10 | -57537.4312700707 |
| 6.40 | -57648.859296418  | 6.40 | -57537.4313659797 | 7.20 | -57537.4312646292 |
| 6.50 | -57648.8592851182 | 6.50 | -57537.4313550365 | 7.30 | -57537.4312559993 |
|      |                   |      |                   |      |                   |

| 6.60 | -57648.8592695256 | 6.60 | -57537.431339797  | 7.40 | -57537.4312459701 |
|------|-------------------|------|-------------------|------|-------------------|
| 6.70 | -57648.8592512233 | 6.70 | -57537.4313218171 | 7.50 | -57537.4312375231 |
| 6.80 | -57648.8592352953 | 6.80 | -57537.431306216  | 7.60 | -57537.431232706  |
| 6.90 | -57648.8592252691 | 6.90 | -57537.4312964947 | 7.80 | -57537.4312307359 |
| 7.00 | -57648.859220569  | 7.00 | -57537.4312921012 | 7.90 | -57537.4312292788 |
| 7.10 | -57648.8592167945 | 7.10 | -57537.4312886129 | 8.00 | -57537.4312256464 |
| 7.20 | -57648.8592109633 | 7.20 | -57537.4312830658 | 8.10 | -57537.4312203385 |
| 7.30 | -57648.8592019851 | 7.30 | -57537.4312743669 | 8.20 | -57537.4312147891 |
| 7.40 | -57648.8591916271 | 7.40 | -57537.4312642797 | 8.30 | -57537.4312105184 |
| 7.50 | -57648.8591829542 | 7.50 | -57537.4312558594 | 8.40 | -57537.4312085539 |
| 7.60 | -57648.8591777144 | 7.60 | -57537.4312508783 | -    | -                 |
| 7.70 | -57648.859175838  | 7.70 | -57537.4312492543 | -    | -                 |
| 7.80 | -57648.8591749457 | 7.80 | -57537.4312486028 | -    | -                 |
| 7.90 | -57648.859173096  | 7.90 | -57537.4312469932 | -    | -                 |
| 8.00 | -57648.859169225  | 8.00 | -57537.4312433492 | -    | -                 |
| 8.10 | -57648.8591635117 | 8.10 | -57537.4312378629 | -    | -                 |
| 8.20 | -57648.8591577659 | 8.20 | -57537.4312323365 | -    | -                 |
| 8.30 | -57648.8591532846 | 8.30 | -57537.4312280639 | -    | -                 |
| 8.40 | -57648.8591508895 | 8.40 | -57537.4312258868 | -    | -                 |
| 8.50 | -57648.8591505    | 8.50 | -57537.4312256918 | -    | -                 |

Table S5: Xe-Og electronic energies calculated at CAMB3LYP + MP2/Xe = dyall.acv3z/Og = dyall.acv3z level with and without inclusion of quantum electrodynamics effects at the Gaunt interaction level. The Xe-Og Gaunt+BSSE electronic energies were performed at MP2-srLDA/Xe=dyall.acv3z/Og=dyall.acv3z level.

|      | Xe-Og             |      | Xe-Og-Gaunt       | Xe   | -Og-Gaunt+BSSE    |
|------|-------------------|------|-------------------|------|-------------------|
| R(Å) | Energy (hartree)  | R(Å) | Energy (hartree)  | R(Å) | Energy (hartree)  |
| 3.50 | -62306.1585157583 | 3.50 | -62189.8728576908 | 3.00 | -62189.8352712549 |
| 3.60 | -62306.1612353271 | 3.60 | -62189.8756053701 | 3.10 | -62189.8477173838 |
| 3.70 | -62306.1632113887 | 3.70 | -62189.8776041286 | 3.20 | -62189.8569832655 |
| 3.80 | -62306.1646082519 | 3.80 | -62189.8790193736 | 3.30 | -62189.8639081223 |
| 3.90 | -62306.1655735257 | 3.90 | -62189.8799995637 | 3.40 | -62189.8690523731 |
| 4.00 | -62306.1662403753 | 4.00 | -62189.8806785803 | 3.50 | -62189.8728110911 |
| 4.10 | -62306.1666851096 | 4.10 | -62189.8811332959 | 3.60 | -62189.8755629599 |
| 4.20 | -62306.1669538065 | 4.20 | -62189.8814102121 | 3.70 | -62189.877565705  |
| 4.30 | -62306.1670987733 | 4.30 | -62189.8815620303 | 3.80 | -62189.8789847848 |
| 4.35 | -62306.1671404557 | 4.35 | -62189.881606705  | 3.90 | -62189.8799683648 |
| 4.40 | -62306.167167221  | 4.40 | -62189.8816362281 | 4.00 | -62189.880650638  |
| 4.45 | -62306.1671810561 | 4.45 | -62189.8816525876 | 4.10 | -62189.8811086713 |
| 4.46 | -62306.1671824797 | 4.46 | -62189.8816544957 | 4.20 | -62189.881388695  |
| 4.47 | -62306.1671831949 | 4.47 | -62189.8816557027 | 4.30 | -62189.8815435493 |
| 4.48 | -62306.1671835665 | 4.48 | -62189.8816565286 | 4.40 | -62189.8816205378 |
| 4.49 | -62306.167183481  | 4.49 | -62189.8816569113 | 4.50 | -62189.8816437484 |
| 4.50 | -62306.1671829536 | 4.50 | -62189.8816568451 | 4.60 | -62189.8816222508 |
| 4.51 | -62306.1671819667 | 4.51 | -62189.8816562996 | 4.70 | -62189.8815699206 |
| 4.52 | -62306.1671805222 | 4.52 | -62189.8816552943 | 4.80 | -62189.881503901  |
| 4.53 | -62306.1671786638 | 4.53 | -62189.8816538697 | 4.90 | -62189.8814343174 |
| 4.54 | -62306.1671763504 | 4.54 | -62189.8816519763 | 5.00 | -62189.8813613038 |
| 4.55 | -62306.1671736942 | 4.55 | -62189.8816497412 | 5.10 | -62189.881283941  |

| 4.60 | -62306.167154851  | 4.60 | -62189.8816329255 | 5.20 | -62189.8812064698 |
|------|-------------------|------|-------------------|------|-------------------|
| 4.65 | -62306.167128462  | 4.65 | -62189.881608393  | 5.30 | -62189.8811346545 |
| 4.70 | -62306.1670968125 | 4.70 | -62189.8815784773 | 5.40 | -62189.8810702223 |
| 4.80 | -62306.1670257032 | 4.80 | -62189.8815105592 | 5.50 | -62189.8810105281 |
| 4.90 | -62306.1669516197 | 4.90 | -62189.8814392727 | 5.60 | -62189.8809528751 |
| 5.00 | -62306.1668744926 | 5.00 | -62189.8813646647 | 5.70 | -62189.8808982931 |
| 5.10 | -62306.1667932957 | 5.10 | -62189.881285735  | 5.80 | -62189.8808497514 |
| 5.20 | -62306.1667124839 | 5.20 | -62189.8812070036 | 5.90 | -62189.8808078394 |
| 5.30 | -62306.1666374922 | 5.30 | -62189.881133929  | 6.00 | -62189.880770948  |
| 5.40 | -62306.1665700866 | 5.40 | -62189.8810682869 | 6.10 | -62189.8807363778 |
| 5.50 | -62306.1665075603 | 5.50 | -62189.8810074261 | 6.20 | -62189.8807033188 |
| 5.60 | -62306.166447326  | 5.60 | -62189.8809487504 | 6.30 | -62189.8806731049 |
| 5.70 | -62306.1663905248 | 5.70 | -62189.880893429  | 6.40 | -62189.8806472041 |
| 5.80 | -62306.166339524  | 5.80 | -62189.8808438258 | 6.50 | -62189.8806254607 |
| 5.90 | -62306.1662955596 | 5.90 | -62189.8808012079 | 6.60 | -62189.8806062987 |
| 6.00 | -62306.1662567202 | 6.00 | -62189.8807636409 | 6.70 | -62189.8805881397 |
| 6.10 | -62306.1662204628 | 6.10 | -62189.8807286084 | 6.80 | -62189.8805703866 |
| 6.20 | -62306.1661856993 | 6.20 | -62189.8806950259 | 6.90 | -62189.8805538491 |
| 6.30 | -62306.1661539227 | 6.30 | -62189.8806643796 | 7.00 | -62189.8805397189 |
| 6.40 | -62306.1661264478 | 6.40 | -62189.8806380031 | 7.10 | -62189.880528197  |
| 6.50 | -62306.1661033621 | 6.50 | -62189.8806159692 | 7.20 | -62189.8805184391 |
| 6.60 | -62306.1660828603 | 6.60 | -62189.880596482  | 7.30 | -62189.8805094003 |
| 6.70 | -62306.1660634347 | 6.70 | -62189.880578052  | 7.40 | -62189.8805003296 |
| 6.80 | -62306.1660444939 | 6.80 | -62189.8805600657 | 7.50 | -62189.8804912119 |
| 6.90 | -62306.1660268779 | 6.90 | -62189.8805433686 | 7.60 | -62189.8804827349 |
| 7.00 | -62306.1660118343 | 7.00 | -62189.8805292326 | 7.70 | -62189.8804756137 |
| 7.10 | -62306.1659991245 | 7.10 | -62189.8805174043 | 7.80 | -62189.8804699847 |
|      |                   |      |                   |      |                   |

| 7.20 | -62306.1659884775 | 7.20 | -62189.8805075957 | 7.90 | -62189.880465425  |
|------|-------------------|------|-------------------|------|-------------------|
| 7.30 | -62306.1659785706 | 7.30 | -62189.8804985177 | 8.00 | -62189.880461211  |
| 7.40 | -62306.1659686011 | 7.40 | -62189.8804893516 | 8.10 | -62189.8804568302 |
| 7.50 | -62306.1659587572 | 7.50 | -62189.8804802876 | 8.20 | -62189.8804521829 |
| 7.60 | -62306.1659493339 | 7.60 | -62189.8804716244 | 8.30 | -62189.8804475178 |
| 7.70 | -62306.1659414081 | 7.70 | -62189.8804644383 | 8.40 | -62189.8804433293 |
| 7.80 | -62306.165934794  | 7.80 | -62189.8804585412 | 8.50 | -62189.8804399502 |
| 7.90 | -62306.1659293997 | 7.90 | -62189.8804538535 | -    | -                 |
| 8.00 | -62306.165924426  | 8.00 | -62189.8804495636 | -    | -                 |
| 8.10 | -62306.1659192015 | 8.10 | -62189.8804450026 | -    | -                 |
| 8.20 | -62306.1659138785 | 8.20 | -62189.8804403376 | -    | -                 |
| 8.30 | -62306.1659085232 | 8.30 | -62189.8804356215 | -    | -                 |
| 8.40 | -62306.1659035401 | 8.40 | -62189.8804312616 | -    | -                 |
| 8.50 | -62306.1658995132 | 8.50 | -62189.8804278294 | -    | -                 |

Table S6: Rn-Og electronic energies calculated at CAMB3LYP + MP2/Rn = dyall.acv3z/Og = dyall.acv3z level with and without inclusion of quantum electrodynamics effects at the Gaunt interaction level. The Rn-Og Gaunt+BSSE electronic energies were performed at MP2-srLDA/Rn=dyall.acv3z/Og=dyall.acv3z level.

|      | Rn-Og             |      | Rn-Og-Gaunt       | Rr   | a-Og-Gaunt+BSSE   |
|------|-------------------|------|-------------------|------|-------------------|
| R(Å) | Energy (hartree)  | R(Å) | Energy (hartree)  | R(Å) | Energy (hartree)  |
| 3.40 | -78466.8567102563 | 3.40 | -78324.1635048617 | 3.40 | -78324.1634323175 |
| 3.50 | -78466.8609823644 | 3.50 | -78324.1678339947 | 3.50 | -78324.167766665  |
| 3.60 | -78466.8640592708 | 3.60 | -78324.1709582991 | 3.60 | -78324.1708955721 |
| 3.70 | -78466.8662658945 | 3.70 | -78324.1732043003 | 3.70 | -78324.1731461186 |
| 3.80 | -78466.8678138562 | 3.80 | -78324.1747854375 | 3.80 | -78324.1747312762 |
| 3.90 | -78466.8688601203 | 3.90 | -78324.1758594615 | 3.90 | -78324.1758091335 |
| 4.00 | -78466.8695486617 | 4.00 | -78324.1765717072 | 4.00 | -78324.1765249081 |
| 4.10 | -78466.8699858418 | 4.10 | -78324.1770292195 | 4.10 | -78324.1769860154 |
| 4.20 | -78466.8702326101 | 4.20 | -78324.1772788976 | 4.20 | -78324.1772392942 |
| 4.30 | -78466.8703387881 | 4.30 | -78324.1774151149 | 4.30 | -78324.1773788205 |
| 4.40 | -78466.870354124  | 4.40 | -78324.1774439798 | 4.40 | -78324.1774108703 |
| 4.50 | -78466.8703137569 | 4.50 | -78324.1774157038 | 4.50 | -78324.1773855844 |
| 4.60 | -78466.870233257  | 4.60 | -78324.1773459983 | 4.60 | -78324.1773186059 |
| 4.70 | -78466.8701241018 | 4.70 | -78324.1772466744 | 4.70 | -78324.1772218848 |
| 4.80 | -78466.8700009774 | 4.80 | -78324.1771325083 | 4.80 | -78324.1771099623 |
| 4.90 | -78466.8698761686 | 4.90 | -78324.1770158134 | 4.90 | -78324.1769952343 |
| 5.00 | -78466.8697535058 | 5.00 | -78324.1769010343 | 5.00 | -78324.1768821147 |
| 5.10 | -78466.8696329041 | 5.10 | -78324.1767876109 | 5.10 | -78324.1767704139 |
| 5.20 | -78466.8695158264 | 5.20 | -78324.1766773626 | 5.20 | -78324.1766616369 |
| 5.30 | -78466.8694059828 | 5.30 | -78324.1765738101 | 5.30 | -78324.1765594812 |
| 5.40 | -78466.8693055327 | 5.40 | -78324.176479443  | 5.40 | -78324.1764663516 |
| 5.50 | -78466.8692137786 | 5.50 | -78324.1763934731 | 5.50 | -78324.1763817035 |

| 5.60 | -78466.8691290026 | 5.60 | -78324.176314046  | 5.60 | -78324.176303432  |
|------|-------------------|------|-------------------|------|-------------------|
| 5.70 | -78466.8690504635 | 5.70 | -78324.1762408864 | 5.70 | -78324.1762312966 |
| 5.80 | -78466.868978483  | 5.80 | -78324.1761739597 | 5.80 | -78324.1761655471 |
| 5.90 | -78466.8689140783 | 5.90 | -78324.1761143706 | 5.90 | -78324.1761067947 |
| 6.00 | -78466.8688565919 | 6.00 | -78324.1760615467 | 6.00 | -78324.1760548297 |
| 6.10 | -78466.8688045618 | 6.10 | -78324.1759995875 | 6.10 | -78324.1759935808 |
| 6.20 | -78466.868756649  | 6.20 | -78324.1759560144 | 6.20 | -78324.1759506231 |
| 6.30 | -78466.86871289   | 6.30 | -78324.1759164562 | 6.30 | -78324.1759116522 |
| 6.40 | -78466.86867336   | 6.40 | -78324.1758809932 | 6.40 | -78324.1758766902 |
| 6.50 | -78466.8686381758 | 6.50 | -78324.175849688  | 6.50 | -78324.1758457821 |
| 6.60 | -78466.868606826  | 6.60 | -78324.1758221702 | 6.60 | -78324.1758187214 |
| 6.70 | -78466.868578218  | 6.70 | -78324.1757972768 | 6.70 | -78324.1757941626 |
| 6.80 | -78466.8685518905 | 6.80 | -78324.1757745043 | 6.80 | -78324.1757717336 |
| 6.90 | -78466.8685273714 | 6.90 | -78324.1757534314 | 6.90 | -78324.1757508627 |
| 7.00 | -78466.8685054152 | 7.00 | -78324.1757347187 | 7.00 | -78324.1757321366 |
| 7.10 | -78466.8684854029 | 7.10 | -78324.1757180631 | 7.10 | -78324.1757157708 |
| 7.20 | -78466.8684677254 | 7.20 | -78324.1757036692 | 7.20 | -78324.1757015014 |
| 7.30 | -78466.8684520952 | 7.30 | -78324.1756908086 | 7.30 | -78324.1756886699 |
| 7.40 | -78466.8684369565 | 7.40 | -78324.175678899  | 7.40 | -78324.1756768271 |
| 7.50 | -78466.8684228632 | 7.50 | -78324.1756677776 | 7.50 | -78324.1756656231 |
| 7.60 | -78466.8684094052 | 7.60 | -78324.1756570392 | 7.60 | -78324.1756548635 |
| 7.70 | -78466.8683971783 | 7.70 | -78324.1756477293 | 7.70 | -78324.1756456894 |
| 7.80 | -78466.8683860347 | 7.80 | -78324.1756392484 | 7.80 | -78324.1756375607 |
| 7.90 | -78466.868376197  | 7.90 | -78324.1756323066 | 7.90 | -78324.1756307495 |
| 8.00 | -78466.868367246  | 8.00 | -78324.1756257695 | 8.00 | -78324.1756242699 |
| 8.10 | -78466.8683586845 | 8.10 | -78324.1756196505 | 8.10 | -78324.1756183425 |
| 8.20 | -78466.8683504293 | 8.20 | -78324.1756138024 | 8.20 | -78324.1756124987 |
|      |                   |      |                   |      |                   |

| 8.30 | -78466.8683422485 | 8.30  | -78324.1756081642 | 8.30  | -78324.1756069195  |
|------|-------------------|-------|-------------------|-------|--------------------|
| 8.40 | -78466.8683347211 | 8.40  | -78324.1756027945 | 8.40  | -78324.1756018016  |
| 8.50 | -78466.8683276874 | 8.50  | -78324.175598148  | 8.50  | -78324.1755971544  |
| -    | -                 | 8.75  | -78324.1756038668 | 8.75  | -78324, 1756029411 |
| -    | -                 | 9.00  | -78324.1755964265 | 9.00  | -78324, 1755956126 |
| -    | -                 | 9.25  | -78324.1755889596 | 9.25  | -78324, 1755884164 |
| -    | -                 | 9.50  | -78324.1755838242 | 9.50  | -78324, 1755834131 |
| -    | -                 | 10.00 | -78324.1755763292 | 10.00 | -78324, 1755760079 |
| -    | -                 | 11.00 | -78324.1755664207 | 11.00 | -78324, 175566419  |
| -    | -                 | 12.00 | -78324.1755612608 | 12.00 | -78324, 1755612914 |
| -    | -                 | 13.00 | -78324.1755581567 | 13.00 | -78324, 175558153  |
| -    | -                 | 14.00 | -78324.1755563147 | 14.00 | -78324, 1755561355 |
| _    | _                 | 15.00 | -78324.1755551397 | 15.00 | -78324, 1755551142 |

Table S7: Og-Og Gaunt+BSSE electronic energies calculated at MP2-srLDA/Og=dyall.acv3z level.

| Og              | -Og-Gaunt+BSSE    |
|-----------------|-------------------|
| $R(\text{\AA})$ | Energy (hartree)  |
| 2.80            | -109503.665190701 |
| 2.90            | -109503.694952964 |
| 3.00            | -109503.717308395 |
| 3.10            | -109503.734021998 |
| 3.20            | -109503.746451589 |
| 3.30            | -109503.755621899 |
| 3.40            | -109503.762324954 |
| 3.50            | -109503.767171565 |
| 3.60            | -109503.770619478 |

| 3.70 | -109503.773023336 |
|------|-------------------|
| 3.80 | -109503.774657333 |
| 3.90 | -109503.775723316 |
| 4.00 | -109503.776372705 |
| 4.10 | -109503.77672543  |
| 4.15 | -109503.776819789 |
| 4.20 | -109503.776871021 |
| 4.25 | -109503.776885929 |
| 4.30 | -109503.77687068  |
| 4.35 | -109503.776830775 |
| 4.40 | -109503.776771124 |
| 4.50 | -109503.77660991  |
| 4.60 | -109503.776414443 |
| 4.70 | -109503.776200576 |
| 4.80 | -109503.77597962  |
| 4.90 | -109503.775760644 |
| 5.00 | -109503.775550559 |
| 5.10 | -109503.775352869 |
| 5.20 | -109503.775168353 |
| 5.30 | -109503.774996901 |
| 5.40 | -109503.774839395 |
| 5.50 | -109503.774695422 |
| 5.60 | -109503.774564622 |
| 5.70 | -109503.774446528 |
| 5.80 | -109503.774339376 |
| 5.90 | -109503.774241802 |
| 6.00 | -109503.774153241 |

| 6.10  | -109503.774073165 |
|-------|-------------------|
| 6.20  | -109503.774001269 |
| 6.30  | -109503.77393617  |
| 6.40  | -109503.773877255 |
| 6.50  | -109503.773823406 |
| 6.60  | -109503.773774382 |
| 6.70  | -109503.773729919 |
| 6.80  | -109503.773689565 |
| 6.90  | -109503.773653327 |
| 7.00  | -109503.773618981 |
| 7.10  | -109503.773588286 |
| 7.20  | -109503.773559663 |
| 7.30  | -109503.773537591 |
| 7.40  | -109503.773509256 |
| 7.50  | -109503.773486782 |
| 7.60  | -109503.773466194 |
| 7.70  | -109503.773447019 |
| 7.80  | -109503.773429231 |
| 7.90  | -109503.773412823 |
| 8.00  | -109503.773397353 |
| 8.10  | -109503.77338284  |
| 8.20  | -109503.773369009 |
| 8.30  | -109503.773356109 |
| 8.40  | -109503.773344075 |
| 8.50  | -109503.773332596 |
| 9.00  | -109503.773284039 |
| 10.00 | -109503.773214936 |

| 11.00 | -109503.773167065 |
|-------|-------------------|
| 12.00 | -109503.773131228 |
| 13.00 | -109503.773102721 |
| 14.00 | -109503.77307914  |
| 15.00 | -109503.773059546 |
| 16.00 | -109503.773042671 |

## S2. He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og, Rn-Og, and Og-Og pure vibrational (j = 0) and rovibrational (j = 1)energies calculated through Rydberg potential energy curves with Gaunt+BSSE correction

Tables 8 and 9 show the He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og, and Rn-Og pure vibrational (j = 0) and rovibrational (j = 1) energies, respectively, calculated through Rydberg potential energy curves with Gaunt+BSSE correction. The Og-Og pure vibrational (j = 0)and rovibrational (j = 1) energies calculated through Rydberg potential energy curves with Gaunt+BSSE correction are shown in Table 10.

Table S8: He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og and Rn-Og pure vibrational energies calculated through Rydberg potential energy curves with Gaunt+BSSE correction.

| v | j | He-Og    | Ne-Og     | Ar-Og     | Kr-Og     | Xe-Og     | Rn-Og     |
|---|---|----------|-----------|-----------|-----------|-----------|-----------|
| 0 |   | 8.476142 | 7.549907  | 12.002413 | 9.598012  | 9.081379  | 9.520494  |
| 1 |   | _        | 20.279274 | 34.209154 | 28.228960 | 26.796158 | 28.191263 |
| 2 |   | _        | 29.514297 | 54.058530 | 45.911021 | 43.904832 | 46.367219 |
| 3 |   | _        | 35.504440 | 71.708113 | 62.562878 | 60.371820 | 64.049436 |
| 4 |   | _        | 38.906579 | 87.330368 | 78.125114 | 76.168439 | 81.239268 |
|   |   |          |           |           |           |           |           |

| 5  |   | _ | _ | 101.080703 | 92.581221  | 91.274410  | 97.938347  |
|----|---|---|---|------------|------------|------------|------------|
| 6  |   | _ | _ | 113.071850 | 105.964432 | 105.678854 | 114.148592 |
| 7  |   | — | _ | 123.364295 | 118.344462 | 119.380535 | 129.872206 |
| 8  |   | — | _ | 131.976917 | 129.799619 | 132.387104 | 145.111676 |
| 9  |   | _ | _ | 138.925710 | 140.390083 | 144.713270 | 159.869762 |
| 10 |   | _ | _ | 144.300359 | 150.144157 | 156.378096 | 174.149489 |
| 11 |   | — | _ | 148.318395 | 159.057902 | 167.401900 | 187.954130 |
| 12 |   | — | _ | 151.190693 | 167.104113 | 177.803356 | 201.287188 |
| 13 |   | — | _ | 152.877167 | 174.250155 | 187.597276 | 214.152372 |
| 14 |   | — | _ | _          | 180.487316 | 196.793365 | 226.553571 |
| 15 |   | — | _ | _          | 185.864074 | 205.396010 | 238.494819 |
| 16 |   | — | _ | _          | 190.487497 | 213.405117 | 249.980265 |
| 17 |   | — | _ | _          | 194.466123 | 220.818032 | 261.014136 |
| 18 |   | — | _ | _          | 197.840574 | 227.632673 | 271.600700 |
| 19 |   | _ | _ | _          | 200.533085 | 233.851882 | 281.744229 |
| 20 |   | _ | _ | _          | _          | 239.488304 | 291.448968 |
| 21 |   | _ | _ | _          | _          | 244.567740 | 300.719101 |
| 22 | 0 | — | _ | _          | _          | 249.127675 | 309.558729 |
| 23 |   | — | _ | _          | _          | 253.209029 | 317.971853 |
| 24 |   | — | _ | _          | _          | 256.843291 | 325.962370 |
| 25 |   | — | _ | _          | _          | 260.039028 | 333.534071 |
| 26 |   | — | _ | _          | _          | 262.765514 | 340.690671 |
| 27 |   | — | _ | _          | _          | —          | 347.435836 |
| 28 |   | — | _ | _          | _          | —          | 353.773239 |
| 29 |   | _ | _ | _          | _          | _          | 359.706623 |
| 30 |   | _ | _ | _          | _          | _          | 365.239882 |
| 31 |   | _ | _ | _          | _          | —          | 370.377135 |

| 32 | _ | _ | _ | _ | _ | 375.122792 |
|----|---|---|---|---|---|------------|
| 33 | _ | _ | _ | _ | _ | 379.481585 |
| 34 | _ | _ | _ | _ | _ | 383.458524 |
| 35 | _ | _ | _ | _ | _ | 387.058746 |
| 36 | _ | _ | _ | _ | — | 390.287236 |
| 37 | _ | _ | _ | _ | _ | 393.148421 |
| 38 | _ | _ | _ | _ | — | 395.645829 |
| 39 | _ | _ | _ | _ | _ | 397.782424 |
| 40 | _ | _ | _ | _ | _ | 399.563564 |
| 41 | _ | _ | _ | _ | _ | 401.007279 |
| 42 | _ | _ | _ | _ | _ | 402.164564 |
| 43 | _ | _ | _ | _ | _ | 403.123656 |
| 44 | _ | _ | _ | _ | _ | 403.965954 |
| 45 | _ | _ | _ | _ | _ | 404.732934 |
| 46 | _ | _ | _ | _ | _ | 405.437737 |
| 47 | _ | _ | _ | _ | _ | 406.079932 |
| 48 | _ | _ | _ | _ | _ | 406.650616 |
| 49 | _ | _ | _ | _ | _ | 407.130147 |

Table S9: He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og and Rn-Og Rovibrational energies (j = 1) calculated through Rydberg potential energy curves with Gaunt+BSSE correction.

| v $j$ | He-Og    | Ne-Og     | Ar-Og     | Kr-Og    | Xe-Og     | Rn-Og     |
|-------|----------|-----------|-----------|----------|-----------|-----------|
| 0     | 8.787948 | 7.642203  | 12.052616 | 9.624528 | 9.081379  | 9.534188  |
| 1     | _        | 20.361864 | 34.257409 | 8.255046 | 26.796158 | 28.204807 |
| 2     | _        | 29.584779 | 54.104734 | 5.936591 | 43.904832 | 46.380611 |
| 3     | _        | 35.561482 | 71.752187 | 2.587853 | 60.371820 | 64.062675 |

| 4  |   | _ | 38.949757 | 87.372247  | 8.149431   | 76.168439  | 81.252350  |
|----|---|---|-----------|------------|------------|------------|------------|
| 5  |   | _ | _         | 101.120320 | 2.604834   | 91.274410  | 97.951270  |
| 6  |   | _ | _         | 113.109106 | 5.987315   | 105.678854 | 114.161353 |
| 7  |   | _ | _         | 123.399034 | 18.366605  | 119.380535 | 129.884804 |
| 8  |   | — | _         | 132.008910 | 29.821020  | 132.387104 | 145.124108 |
| 9  |   | _ | _         | 138.954687 | 40.410730  | 144.713270 | 159.882025 |
| 10 |   | — | _         | 144.326134 | 50.164026  | 156.378096 | 174.161581 |
| 11 |   | — | _         | 148.340934 | 59.076949  | 167.401900 | 187.966048 |
| 12 |   | _ | _         | 151.209660 | 67.122275  | 177.803356 | 201.298929 |
| 13 |   | _ | _         | 152.890964 | 74.267361  | 187.597276 | 214.163935 |
| 14 |   | _ | _         | —          | 80.503513  | 196.793365 | 226.564952 |
| 15 |   | _ | _         | —          | 85.879254  | 205.396010 | 238.506016 |
| 16 |   | _ | _         | —          | 90.501699  | 213.405117 | 249.991275 |
| 17 |   | — | _         | —          | 94.479364  | 220.818032 | 261.024956 |
| 18 |   | _ | _         | —          | 97.852769  | 227.632673 | 271.611326 |
| 19 |   | _ | _         | —          | 200.543869 | 233.851882 | 281.754659 |
| 20 |   | — | _         | —          | —          | 239.488304 | 291.459198 |
| 21 |   | — | _         | —          | —          | 244.567740 | 300.729127 |
| 22 | 1 | — | _         | —          | —          | 249.127675 | 309.568547 |
| 23 |   | _ | _         | —          | —          | 253.209029 | 317.981461 |
| 24 |   | — | _         | —          | —          | 256.843291 | 325.971761 |
| 25 |   | — | _         | —          | —          | 260.039028 | 333.543242 |
| 26 |   | — | _         | —          | —          | 262.765514 | 340.699616 |
| 27 |   | — | _         | —          | —          | —          | 347.444549 |
| 28 |   | _ | _         | _          | _          | _          | 353.781714 |
| 29 |   | _ | _         | _          | _          | _          | 359.714855 |
| 30 |   | _ | _         | —          | —          | —          | 365.247862 |

| 31 | — | — | — | — | — | 370.384855 |
|----|---|---|---|---|---|------------|
| 32 | _ | _ | _ | _ | _ | 375.130245 |
| 33 | _ | _ | _ | _ | — | 379.488761 |
| 34 | _ | _ | _ | _ | _ | 383.465412 |
| 35 | _ | _ | _ | _ | _ | 387.065335 |
| 36 | _ | _ | _ | _ | _ | 390.293511 |
| 37 | _ | _ | _ | _ | _ | 393.154366 |
| 38 | _ | _ | _ | _ | _ | 395.651422 |
| 39 | _ | _ | _ | _ | _ | 397.787639 |
| 40 | _ | _ | _ | _ | _ | 399.568373 |
| 41 | _ | _ | _ | _ | _ | 401.011667 |
| 42 | _ | _ | _ | _ | _ | 402.168568 |
| 43 | _ | _ | _ | _ | _ | 403.127364 |
| 44 | _ | _ | _ | _ | _ | 403.969442 |
| 45 | _ | _ | _ | _ | _ | 404.736238 |
| 46 | _ | _ | _ | _ | _ | 405.440865 |
| 47 | _ | _ | _ | _ | _ | 406.082873 |
| 48 | _ | _ | _ | _ | _ | 406.653340 |
| 49 | _ | _ | _ | _ | — | 407.132576 |

Table S10: Og-Og pure vibrational (j = 0) and rovibrational energies (j = 1) calculated through Rydberg potential energy curves with Gaunt+BSSE correction.

| v | j | Og-Og     | v  | j | Og-Og      | v j | i | Og-Og     | v  | j | Og-Og      |
|---|---|-----------|----|---|------------|-----|---|-----------|----|---|------------|
| 0 |   | 12.170905 | 54 |   | 749.444922 | 0   |   | 12.183558 | 54 |   | 749.450903 |
| 1 |   | 36.211813 | 55 |   | 753.980830 | 1   |   | 36.224374 | 55 |   | 753.986670 |
| 2 |   | 59.847558 | 56 |   | 758.301889 | 2   |   | 59.860027 | 56 |   | 758.307590 |
| 3 |   | 83.076717 | 57 |   | 762.419446 | 3   |   | 83.089091 | 57 |   | 762.425010 |

| 4  |   | 105.897942 | 58 |   | 766.344728 | 4  |   | 105.910222 | 58 |   | 766.350159 |
|----|---|------------|----|---|------------|----|---|------------|----|---|------------|
| 5  |   | 128.309976 | 59 |   | 770.088574 | 5  |   | 128.322159 | 59 |   | 770.093875 |
| 6  |   | 150.311656 | 60 |   | 773.661183 | 6  |   | 150.323743 | 60 |   | 773.666357 |
| 7  |   | 171.901931 | 61 |   | 777.071925 | 7  |   | 171.913919 | 61 |   | 777.076974 |
| 8  |   | 193.079867 | 62 |   | 780.329208 | 8  |   | 193.091756 | 62 |   | 780.334135 |
| 9  |   | 213.844663 | 63 |   | 783.440434 | 9  |   | 213.856450 | 63 |   | 783.445241 |
| 10 |   | 234.195659 | 64 |   | 786.412008 | 10 |   | 234.207345 | 64 |   | 786.416697 |
| 11 |   | 254.132357 | 65 |   | 789.249422 | 11 |   | 254.143939 | 65 |   | 789.253994 |
| 12 |   | 273.654426 | 66 |   | 791.957380 | 12 |   | 273.665904 | 66 |   | 791.961836 |
| 13 |   | 292.761720 | 67 |   | 794.539981 | 13 |   | 292.773092 | 67 |   | 794.544322 |
| 14 |   | 311.454294 | 68 |   | 797.000934 | 14 |   | 311.465559 | 68 |   | 797.005161 |
| 15 | 0 | 329.732415 | 69 | 0 | 799.343819 | 15 | 1 | 329.743571 | 69 | 1 | 799.347933 |
| 16 |   | 347.596576 | 70 |   | 801.572369 | 16 |   | 347.607622 | 70 |   | 801.576370 |
| 17 |   | 365.047515 | 71 |   | 803.690767 | 17 |   | 365.058450 | 71 |   | 803.694657 |
| 18 |   | 382.086224 | 72 |   | 805.703925 | 18 |   | 382.097046 | 72 |   | 805.707705 |
| 19 |   | 398.713966 | 73 |   | 807.617684 | 19 |   | 398.724674 | 73 |   | 807.621359 |
| 20 |   | 414.932284 | 74 |   | 809.438883 | 20 |   | 414.942877 | 74 |   | 809.442456 |
| 21 |   | 430.743016 | 75 |   | 811.175233 | 21 |   | 430.753493 | 75 |   | 811.178710 |
| 22 |   | 446.148302 | 76 |   | 812.834999 | 22 |   | 446.158660 | 76 |   | 812.838385 |
| 23 |   | 461.150589 | 77 |   | 814.426547 | 23 |   | 461.160828 | 77 |   | 814.429850 |
| 24 |   | 475.752641 | 78 |   | 815.957866 | 24 |   | 475.762759 | 78 |   | 815.961092 |
| 25 |   | 489.957530 | 79 |   | 817.436175 | 25 |   | 489.967527 | 79 |   | 817.439328 |
| 26 |   | 503.768639 | 80 |   | 818.867680 | 26 |   | 503.778513 | 80 |   | 818.870767 |
| 27 |   | 517.189643 | 81 |   | 820.257497 | 27 |   | 517.199392 | 81 |   | 820.260521 |
| 28 |   | 530.224499 | 82 |   | 821.609680 | 28 |   | 530.234122 | 82 |   | 821.612646 |
| 29 |   | 542.877416 | 83 |   | 822.927332 | 29 |   | 542.886913 | 83 |   | 822.930242 |
| 30 |   | 555.152835 | 84 |   | 824.212731 | 30 |   | 555.162204 | 84 |   | 824.215588 |

| 31 | 567.055386 | 85  | 825.467467 | 31 | 567.064625 | 85  | 825.470271 |
|----|------------|-----|------------|----|------------|-----|------------|
| 32 | 578.589857 | 86  | 826.692555 | 32 | 578.598965 | 86  | 826.695307 |
| 33 | 589.761151 | 87  | 827.888532 | 33 | 589.770127 | 87  | 827.891234 |
| 34 | 600.574249 | 88  | 829.055540 | 34 | 600.583092 | 88  | 829.058192 |
| 35 | 611.034172 | 89  | 830.193378 | 35 | 611.042881 | 89  | 830.195979 |
| 36 | 621.145946 | 90  | 831.301549 | 36 | 621.154519 | 90  | 831.304100 |
| 37 | 630.914577 | 91  | 832.379291 | 37 | 630.923013 | 91  | 832.381789 |
| 38 | 640.345028 | 92  | 833.425587 | 38 | 640.353326 | 92  | 833.428031 |
| 39 | 649.442214 | 93  | 834.439181 | 39 | 649.450372 | 93  | 834.441570 |
| 40 | 658.210996 | 94  | 835.418567 | 40 | 658.219015 | 94  | 835.420899 |
| 41 | 666.656202 | 95  | 836.361981 | 41 | 666.664078 | 95  | 836.364253 |
| 42 | 674.782641 | 96  | 837.267370 | 42 | 674.790376 | 96  | 837.269579 |
| 43 | 682.595156 | 97  | 838.132356 | 43 | 682.602747 | 97  | 838.134498 |
| 44 | 690.098665 | 98  | 838.954176 | 44 | 690.106111 | 98  | 838.956246 |
| 45 | 697.298238 | 99  | 839.729599 | 45 | 697.305539 | 99  | 839.731593 |
| 46 | 704.199176 | 100 | 840.454806 | 46 | 704.206331 | 100 | 840.456716 |
| 47 | 710.807106 | 101 | 841.125210 | 47 | 710.814113 | 101 | 841.127028 |
| 48 | 717.128082 | 102 | 841.735185 | 48 | 717.134941 | 102 | 841.736898 |
| 49 | 723.168693 | 103 | 842.277618 | 49 | 723.175405 | 103 | 842.279212 |
| 50 | 728.936165 | 104 | 842.743145 | 50 | 728.942729 | 104 | 842.744597 |
| 51 | 734.438436 | 105 | 843.118640 | 51 | 734.444853 | 105 | 843.119913 |
| 52 | 739.684214 | 106 | 843.384657 | 52 | 739.690485 | 106 | 843.385690 |
| 53 | 744.682979 |     | -          | 53 | 744.689104 | 107 | -          |

# S3. Plots of *Ab initio* and adjusted potential energy curves (with ILJ and Rydberg forms) for the He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og, Rn-Og, and Og-Og systems

Figures S1 (For He-Og, Ne-Og, and Ar-Og systems) and S2 (For Kr-Og, Xe-Og, and Rn-Og systems) show a comparison between the *Ab initio* (with and without Gaunt corrections) and ILJ adjusted potential energy curves. Figures S3 and S4 show the same comparison using the Rydberg adjusted potential energy curves. Figures S5 presents a comparison between the *Ab initio* (with Gaunt + BSSE corrections) and ILJ adjusted potential energy curves for the He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og, and Rn-Og systems. The comparison between the *Ab initio* (with Gaunt + BSSE corrections) and Rydberg adjusted potential energy curve is presented in Figure S6. The comparison between the *Ab initio* (with Gaunt + BSSE corrections) and Rydberg adjusted potential energy curve is presented in Figure S6. The comparison between the *Ab initio* (with Gaunt + BSSE corrections) and Rydberg adjusted potential energy curve is presented in Figure S6. The comparison between the *Ab initio* (with Gaunt + BSSE corrections) and Rydberg adjusted potential energy curve is presented in Figure S6. The comparison between the *Ab initio* (with Gaunt + BSSE corrections) and Rydberg adjusted potential energy curve is presented in Figure S6. The comparison between the *Ab initio* (with Gaunt + BSSE corrections) and ILJ and Rydberg adjusted potential energy curves for the Og-Og system is depicted in Figure S7.



Figure S1: *Ab initio* and ILJ adjusted potential energy curves of the He-Og (Without Gaunt), He-Og (with Gaunt), Ne-Og (Without Gaunt), Ne-Og (With Gaunt), Ar-Og (With Gaunt), and Ar-Og (With Gaunt) systems.



Figure S2: *Ab initio* and ILJ adjusted potential energy curves of the Kr-Og (Without Gaunt), Kr-Og (With Gaunt), Xe-Og (Without Gaunt), Xe-Og (With Gaunt), Rn-Og (Without Gaunt), and Rn-Og (With Gaunt) systems.



Figure S3: *Ab initio* and Rydberg adjusted potential energy curves of the He-Og (Without Gaunt), He-Og (With Gaunt), Ne-Og (Without Gaunt), Ne-Og (With Gaunt), Ar-Og (Without Gaunt), and Ar-Og (With Gaunt) systems.



Figure S4: *Ab initio* and Rydberg adjusted potential energy curves of the Kr-Og (Without Gaunt), Kr-Og (With Gaunt), Xe-Og (Without Gaunt), Xe-Og (Without Gaunt), Rn-Og (Without Gaunt), and Rn-Og (With Gaunt) systems.



Figure S5: *Ab initio* and ILJ adjusted potential energy curves of the He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og and Rn-og systems with Gaunt+BSSE correction.



Figure S6: *Ab initio* and Rydberg adjusted potential energy curves of the He-Og, Ne-Og, Ar-Og, Kr-Og, Xe-Og and Rn-Og systems with Gaunt+BSSE correction.



Figure S7: Ab initio and adjusted potential energy curves (ILJ and Rydberg) of the Og-Og system with Gaunt+BSSE correction.