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UNIFAC Model

UNIFAC Equations

For predicting the logarithmic activity coefficient ln γi of a component i in a mixture, the

UNIFAC model considers the sum of an entropic contribution, called combinatorial part,

ln γC
i and an energetic contribution, called residual part, ln γR

i :
1

ln γi = ln γC
i + ln γR

i (S1)

The combinatorial part ln γC
i is thereby calculated by:

ln γC
i = 1− Vi + lnVi −

z

2
qi

(
1− Vi

Fi

+ ln
Vi

Fi

)
(S2)
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with

Vi =
ri∑
j rjxj

(S3)

Fi =
qi∑
j qjxj

(S4)

where ri and qi are the relative Van der Waals volume and surface area of component i,

respectively, xi is the mole fraction of component i in the mixture, and z is the coordination

number, which is set to z = 10 in basically all cases and was also used here. Eqs. S1 - S4 are

identical to the equations used in the UNIQUAC model;2 the difference between UNIQUAC

and UNIFAC is that UNIQUAC is based on component-specific parameters, whereas they

are derived from group-specific parameters in UNIFAC. Specifically, in UNIFAC, the relative

Van der Waals volume ri and surface area qi of the component i are calculated from the

group volume and group surface parameters, Rk and Qk, respectively, which are tabulated

for multiple structural groups k,3–8 as follows:

ri =
∑
k

ν
(i)
k Rk (S5)

qi =
∑
k

ν
(i)
k Qk (S6)

where ν
(i)
k denotes the frequency of group k in one molecule of component i.

The residual part ln γR
i of UNIFAC is calculated by:

ln γR
i =

∑
k

ν
(i)
k

(
ln Γk − ln Γ

(i)
k

)
(S7)

where Γk is the group activity coefficient of group k in the mixture and Γ
(i)
k is the group

activity coefficient of group k in the pure component i. Both Γk and Γ
(i)
k are calculated
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similar to the residual part in the UNIQUAC model by:

ln Γk = Qk

(
1− ln

(∑
m

ΘmΨmk

)
−
∑
m

ΘmΨkm∑
nΘnΨnm

)
(S8)

where Θm is the surface fraction of group m in the mixture:

Θm =
QmXm∑
nQnXn

(S9)

and Xm is the group mole fraction of group m, which is related to the mole fractions xj of

components j:

Xm =

∑
j ν

(j)
m xj∑

j

∑
n ν

(j)
n xj

(S10)

The parameters Ψnm and Ψmn in Eq. S8 contain the group-interaction parameters of

UNIFAC, Anm and Amn, between the groups m and n:

Ψnm = exp

(
−Anm

T

)
; Ψmn = exp

(
−Amn

T

)
(S11)

UNIFAC Group-Interaction Parameters

In Figure S1, the current availability of group-interaction parameters of the public UNIFAC8

and the commercial UNIFAC-TUC9 is indicated.
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Figure S1: Matrix representing the availability of group-interaction parameters of the public
UNIFAC8 (blue) and the commercial UNIFAC-TUC9 (green) up to main group 50. White
cells: no parameters available.

Model Details

Bayesian Matrix Completion

The model of the present work is similar to our recently introduced approach,10 in which

we have combined a matrix completion method (MCM) from machine learning with the

UNIQUAC model.2,11 In contrast to our previous work,10 the group-interaction parameters

among structural groups G and G′ (and not components), specifically between main groups

of UNIFAC, are predicted here. Figure S2 shows an overview of the proposed UNIFAC-MCM

model as well as of the training and evaluation procedure.

We have trained the model on pseudo-data for logarithmic activity coefficients ln γGG′

in hypothetical binary mixtures of groups, G and G′ , which we have generated with the

UNIFAC model using the current public parameterization8 as described in the manuscript.

Note that although these pseudo-data were generated based on an inconsistent set of group-

interaction parameters, the pseudo-data themselves are not inconsistent, because, as we
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Figure S2: Scheme representing the training and evaluation of UNIFAC-MCM. Besides based
on the vapor-phase composition y, the results were also evaluated based on deviations in the
temperature T and the pressure p from the experimental vapor-liquid equilibrium (VLE)
data from the Dortmund Data Bank (DDB).

describe in the manuscript, very similar activity coefficients can be obtained by different com-

binations of group-interaction parameters. This makes the values of the group-interaction

parameters less informative, whereas the generated pseudo-data contain the structure that

is recovered by the MCM during the training.

We have thereby employed a Bayesian approach to matrix completion, which consists of

multiple steps as described in the following.

First, we have specified a generative probabilistic model for ln γGG′ as a nonlinear function

f of the groups G and G′, the temperature T , and the mole fraction xG of group G in

the hypothetical mixture. This function is basically defined by the UNIFAC equations, cf.

Eqs S1 - S11, the correlation of the group-interaction parameters AGG′ and AG′G via the

group-interaction energies UGG′ , UGG, and UG′G′ , cf. Eqs. (1) - (2) in the manuscript, and

an embedded matrix factorization for the unlike group-interaction energies UGG′ between

the groups, cf. Eq. (3) in the manuscript. The function furthermore considers the following
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parameters:

• group-specific parameters considered in the UNIFAC model, specifically the group

volume parameters RG and RG′ and the group surface parameters QG and QG′ , which

were adopted from the latest public parameter table of UNIFAC, cf. Table S1;

• initially unknown (latent) feature vectors θG, θG′ , βG, and βG′ of the groups, which are

used for modeling the unlike group-interaction energies UGG′ between the groups, as

well as the like group-specific group-interaction energies UGG and UG′G′ .

The length K of the feature vectors, which controls the number of features that are consid-

ered for each group, is in principle a hyperparameter of the model, which can be adjusted

during model selection. However, in this work, we have not carried out a comprehensive

hyperparameter screening, but have simply adopted the hyperparameters from our previous

work,10 which includes setting K = 3 here.

θG, θG′ , βG, βG′ , UGG, and UG′G′ constitute the parameters of the model that were inferred

during the training. For the training, the generative model defines a probability distribution

over all used pseudo-data for ln γGG′ by specifying a stochastic process for generating hypo-

thetical data for ln γGG′ conditioned on θG, θG′ , βG, βG′ , UGG, and UG′G′ , which are initially

unknown, RG, RG′ , QG, and QG′ , which were adopted from Refs. ,1,12–14 and the tempera-

ture and the mole fraction of G in the mixture. The generative process therefore draws θG,

θG′ , βG, βG′ , UGG, and UG′G′ from a normal so-called prior distribution with zero mean and

a standard deviation of one. The type of distribution used as prior as well as the mean and

the standard deviation are also hyperparameters of the model, but were, as K, also set as

in our previous work.10 Then, the generative process models the probability of the training

data ln γGG′ as a Cauchy so-called likelihood distribution with scale λ = 0.2 centered around

the outcome of the function f with the θG, θG′ , βG, βG′ , UGG, and UG′G′ drawn from the prior

and the fixed parameters and conditions. Again, the type of distribution used as likelihood

as well as the scale are hyperparameters, which were set as in our previous work.10 We can
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write the likelihood as follows:

ln γGG′(T, xG) = Cauchy(f(T, xG, RG, RG′ , QG, QG′ , θG, θG′ , βG, βG′ , UGG, UG′G′), λ) + ϵGG′

(S12)

where the function f includes the UNIFAC equations, Eqs S1 - S11, as well as Eqs. (1) - (3) in

the manuscript and ϵGG′ captures the deviations between the model results and the pseudo-

data ln γGG′(T, xG) for training the model. In the next step, the parameters that were to be

learned, i.e., θG, θG′ , βG, βG′ , UGG, and UG′G′ , were concurrently inferred for all groups G

based on the set of training data, which requires the inversion of the generative model. Since

full Bayesian inference is intractable except for very simple cases, we resorted to Gaussian

mean-field variational inference15–17 for this purpose. Simply put, we can understand this

procedure as a comparison of the generated hypothetical ln γGG′ to the training data, i.e., the

pseudo-data for ln γGG′ as obtained with UNIFAC using the latest public parameterization, to

subsequently adjust the initially unknown parameters. This results in the so-called posterior,

which constitutes a probability distribution for all inferred parameters.

Finally, we used the means of the approximated posterior distributions over θG, θG′ ,

βG, βG′ , UGG, and UG′G′ to predict the group-interaction parameters AGG′ and AG′G for all

possible combinations of groups according to Eqs. (1) - (3) in the manuscript. The predicted

AGG′ and AG′G were, in turn, used for predicting the activity coefficients of components ln γi

in binary mixtures with Eqs. S1 - S11, which were finally used for predicting vapor-liquid

equilibrium (VLE) phase diagrams. Our approach thereby basically changes Eq. S11 to:

Ψnm = exp

(
−θn · βm + θm · βn − Umm

T

)
; Ψmn = exp

(
−θn · βm + θm · βn − Unn

T

)
(S13)

The predicted VLE phase diagrams were compared to experimental data from the Dort-

mund Data Bank (DDB) 18 as discussed in the manuscript.

For performing the task of Bayesian inference, the Stan framework19 was used.
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Scope of UNIFAC-MCM

Since UNIFAC-MCM yields a complete set of group-interaction parameters for the first 50

main groups of UNIFAC, the approach allows modeling any binary and multi-component

mixture whose components can be built from these groups. The scope of the new approach

is thereby much larger than we can demonstrate here, simply due to missing experimental

data for a more comprehensive assessment. This is also indicated in Figure S3, which shows

the number of binary systems from our data set for which VLE data are available in the

DDB18 and which contain the respective combination of UNIFAC main groups.

While there are several group-interaction parameters that are required for modeling a

large number of binary systems for our data set (dark-colored cells in Figure S.3), approx-

imately 80% of all possible main group combinations are not represented in the data set

(white cells in Figure S.3). The lack of experimental data inevitably prevents the parame-

terization of UNIFAC, both in its public and commercial versions, in the ordinary way, as

only those parameters can be fitted for which respective training data are available. With

UNIFAC-MCM, on the other hand, this problem is solved; UNIFAC-MCM yields predictions

also for the 80% of group-interaction parameters from Figure S.3 for which classical UNIFAC

versions cannot achieve this based on the studied data set.
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Figure S3: Heat map showing the number N of binary systems for which VLE data are
available in the DDB and which contain the respective combination of UNIFAC main groups.
White cells indicate that no VLE data are available for the given combination of groups.

Additional Results

In Figure S4, the results of UNIFAC-MCM for the prediction of the VLE data are plotted

in histogram representations, which show the number of binary systems that are predicted

with a defined relative deviation from the experimental mole fraction of the low-boiling

component in the vapor phase ∆y. In the left panel, the results of UNIFAC-MCM on the

complete horizon are shown. In the middle panel, the results for those systems from the

complete horizon are shown that can not be modeled by the public UNIFAC version, but by

the commercial UNIFAC-TUC; here, the UNIFAC-MCM predictions are compared to those

of UNIFAC-TUC. In the right panel, the results for those systems from the complete horizon

are shown that can only be modeled by UNIFAC-MCM.
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Figure S4: Histogram representations of number of systems that are predicted by UNIFAC-
MCM with a defined relative deviation from the experimental vapor mole fractions of the
low-boiling components ∆y. Left: for the complete horizon (2,246 systems). Middle: for
those systems that can not be predicted with public UNIFAC (169 systems). Right: for
those systems that can not be predicted with UNIFAC-TUC (9 systems).
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Table S1: UNIFAC main groups G considered in the present work and the respective group
volume and group surface parameters, RG and QG, used. Some main groups include multiple
sub groups, such that RG and QG could have been chosen differently, whereby, however, no
large impact is expected; in such cases, usually one of the ’intermediate’ sub groups was
chosen randomly here (e.g., ’CH2’).

G RG QG G RG QG

1 0.6744 0.54 26 1.7818 1.56
2 1.1167 0.867 27 1.4199 1.104
3 0.5313 0.4 28 2.057 1.65
4 1.0396 0.66 29 1.651 1.368
5 1 1.2 30 3.168 2.484
6 1.4311 1.432 31 2.4088 2.248
7 0.92 1.4 32 1.264 0.992
8 0.8952 0.68 33 0.9492 0.832
9 1.4457 1.18 34 1.0613 0.784
10 0.998 0.948 35 2.8266 2.472
11 1.6764 1.42 36 2.3144 2.052
12 1.242 1.188 37 0.791 0.724
13 0.9183 0.78 38 0.6948 0.524
14 1.3692 1.236 39 3.0856 2.736
15 1.207 0.936 40 1.0105 0.92
16 0.9597 0.632 41 1.38 1.2
17 1.06 0.816 42 1.4443 1.0063
18 2.8332 1.833 43 1.303 0.7639
19 1.6434 1.416 44 3.981 3.2
20 1.3013 1.224 45 2.2287 1.916
21 1.238 0.952 46 1.9637 1.488
22 2.0606 1.684 47 1.8952 1.592
23 2.6401 2.184 48 1.3863 1.06
24 3.39 2.91 49 3.474 2.796
25 1.1562 0.844 50 2.6908 1.86
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