Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Hydration induced protomer switching in *p*-aminobenzoic acid studied by cold ion trap infrared spectroscopy

Supplementary Material

Table of Content

Table S1 Gibbs free energy (80K) of conformers of PABAH ⁺ . 3
Table S2 Gibbs free energy (80 K) of conformers of PABAH ⁺ (H ₂ O)3
Table S3 Gibbs free energy (80 K) of conformers of PABAH ⁺ (H ₂ O) ₂ . 3
Table S4 Gibbs free energy (80 K) of conformers of PABAH ⁺ (H ₂ O) ₃ . 5
Table S5 Gibbs free energy (80 K) of conformers of $PABAH^+(H_2O)_4$.7
Table S6 Gibbs free energy (80 K) of conformers of PABAH ⁺ (H ₂ O) ₅ . 11
Table S7 Gibbs free energy (80 K) of conformers of $PABAH^+(H_2O)_6$.16
Table S8 Gibbs free energy (80 K) of conformers of PABAH ⁺ (H ₂ O) ₇ . 24
Fig. S1 a) IRPD spectra of PABAH ⁺ electrosprayed from an acetonitrile solution of PABA (10^{-5} M) with 0.5 % of formic acid
Fig. S2 Calculated IR spectra and structures of the five lowest energy conformers of PABAH ⁺ at 80 K
Fig. S3 Calculated IR spectra and structures of the ten lowest energy conformers of PABAH ⁺ - $(H_2O)_1$ at 80 K
Fig. S4 Calculated IR spectra and structures of the ten lowest energy conformers of PABAH ⁺ - $(H_2O)_2$ at 80 K
Fig. S5 Calculated IR spectra and structures of the ten lowest energy conformers of PABAH ⁺ - $(H_2O)_3$ at 80 K
Fig. S6 Calculated IR spectra of the twenty lowest energy O-protomers of PABAH ⁺ -(H ₂ O) ₄ at 80 K
Fig. S7 Calculated IR spectra of the ten lowest energy N-protomers of PABAH ⁺ -(H ₂ O) ₄ at 80 K36
Fig. S9 Structures of the ten lowest energy N-protomers of PABAH ⁺ - $(H_2O)_4$ at 80 K _. 37
Fig. S10 Calculated IR spectra of the 33 lowest energy O-protomers(1-33) of PABAH ⁺ - (H ₂ O) ₅ at 80 K
Fig. S11 Calculated IR spectra of the nine lowest energy N-protomers of PABAH ⁺ -(H ₂ O) ₅ at 80 K

Fig. S12 Structures of the seventeen lowest energy O-protomers(1-17) of PABAH ⁺ -(H ₂ O) ₅ at 80 K.
Fig. S13 Structures of the nine lowest energy N-protomers of PABAH ⁺ -(H ₂ O) ₅ at 80 K40
Fig. S14 Calculated IR spectra of the 46 lowest energy O-protomers(1-46) of PABAH ⁺ - (H ₂ O) ₆ at 80 K41
Fig. S15 Calculated IR spectra of the ten lowest energy N-protomers of PABAH ⁺ -(H ₂ O) ₆ at 80 K43
Fig. S16 Structures of the 23 lowest energy O-protomers(1-23) of PABAH ⁺ -(H ₂ O) ₆ at 80 K.44
Fig. S17 Structures of the ten lowest energy N-protomers of PABAH ⁺ -(H ₂ O) ₆ at 80 K45
Fig. S18 Calculated IR spectra of the 15 lowest energy O-protomers of PABAH ⁺ -(H ₂ O) ₇ at 80 K45
Fig. S19 Calculated IR spectra of the 20 lowest energy N-protomers of PABAH ⁺ -(H ₂ O) ₇ at 80 K
Fig. S20 Structures of the 15 lowest energy O-protomers of PABAH ⁺ -(H ₂ O) ₇ at 80 K
Fig. S21 Structures of the 20 lowest energy N-protomers of PABAH ⁺ -(H ₂ O) ₇ at 80 K
Fig. S22 Comparison of the IR spectra and energy of PABAH ⁺ - $(H_2O)_n$
Fig. S23 Caluculated IR spectra of the ten lowest energy conformers of $PABAH^+(H_2)_4$
Fig. S24 a) CAS-IRPD spectrum and b) IR spectra fitted by Lorentz function of PABAH ⁺ (H ₂ O) ₅

Table S1 Gibbs free energy (80K) of conformers of PABAH⁺.

Conf.	ΔG / kJ mol ⁻¹
O-0-1	0
O-0-2	12.9
O-0-3	22.9
N-0-1	24.1
N-0-2	68.0

Table S2 Gibbs free energy (80 K) of conformers of $PABAH^{+}(\mathrm{H_{2}O}).$

Conf.	ΔG / kJ mol ⁻¹
O-1-1	0.0
O-1-2	4.3
O-1-3	5.0
N-1-1	23.4
N-1-2	23.5
O-1-4	25.5
O-1-5	31.2
O-1-6	31.3
O-1-7	46.9
N-1-3	50.6
C-1-1	51.9
O-1-8	52.6
C-1-2	52.9
C-1-3	53.6
C-1-4	55.6
C-1-5	58.0
C-1-6	60.2
N-1-4	65.1
N-1-5	65.1
N-1-6	92.3

Table S3 Gibbs free energy (80 K) of conformers of $PABAH^+(H_2O)_2$.

Conf.	$\Delta G / kJ mol^{-1}$
0-2-1	0.0
O-2-2	0.1
0-2-3	1.2

O-2-4	1.2
O-2-5	11.4
O-2-6	11.4
O-2-7	15.2
O-2-8	15.5
N-2-1	17.3
N-2-2	17.9
O-2-9	19.8
O-2-10	20.0
O-2-11	20.0
O-2-12	20.0
O-2-13	20.0
O-2-14	24.0
0-2-15	24.4
O-2-16	24.4
O-2-17	24.7
N-2-3	29.8
N-2-4	29.8
N-2-5	30.3
N-2-6	30.3
N-2-7	30.6
N-2-8	30.6
O-2-18	31.9
O-2-19	33.8
N-2-9	35.5
N-2-10	35.5
N-2-11	35.5
O-2-20	44.1
O-2-21	44.4
O-2-22	51.2
O-2-23	51.2
O-2-24	52.1
O-2-25	52.1
O-2-26	52.1
O-2-27	52.1
N-2-12	58.4
N-2-13	59.1

N-2-14	60.1
O-2-28	67.7
O-2-29	68.1
O-2-30	68.2
N-2-15	70.3
N-2-16	70.3
N-2-17	70.6
N-2-18	70.6
N-2-19	70.9
N-2-20	71.7
0-2-31	71.9
O-2-32	72.7
0-2-33	72.8
N-2-21	75.9
N-2-22	75.9

Table S4 Gibbs free energy (80 K) of conformers of $PABAH^+(H_2O)_3$.

Conf.	$\Delta G / kJ mol^{-1}$
0-3-1	0
O-3-2	0
0-3-3	0
0-3-4	0.3
0-3-5	0.3
O-3-6	0.6
O-3-7	2.0
O-3-8	2.0
0-3-9	2.1
O-3-10	2.1
0-3-11	2.1
0-3-12	3.9
0-3-13	3.9
0-3-14	3.9
0-3-15	6.6
0-3-16	6.6
0-3-17	6.6
O-3-18	6.7
O-3-19	6.7

O-3-20	6.7
O-3-21	6.7
N-3-1	10.5
O-3-22	13.0
O-3-23	13.0
O-3-24	13.0
O-3-25	13.0
O-3-26	13.0
N-3-2	17.8
N-3-3	17.8
N-3-4	17.8
O-3-27	18.6
O-3-28	18.6
O-3-29	18.6
O-3-30	18.6
N-3-5	18.7
N-3-6	18.7
N-3-7	18.8
N-3-8	18.8
N-3-9	19.7
N-3-10	19.7
N-3-11	19.7
N-3-12	19.7
N-3-13	19.7
N-3-14	19.7
N-3-15	19.7
N-3-16	19.7
N-3-17	19.7
N-3-18	19.7
N-3-19	19.7
N-3-20	19.7
N-3-21	19.7
N-3-22	19.7
N-3-23	19.7
N-3-24	19.8
N-3-25	20.4
N-3-26	20.4

N-3-27	20.4
N-3-28	20.4

_

Conf.	$\Delta { m G}$ / kJ mol ⁻¹
0-4-1	0.0
O-4-2	0.0
0-4-3	0.0
O-4-4	0.0
0-4-5	0.6
O-4-6	0.6
O-4-7	0.6
O-4-8	0.6
O-4-9	0.6
O-4-10	1.3
0-4-11	1.3
O-4-12	4.2
0-4-13	4.2
O-4-14	4.2
0-4-15	4.6
O-4-16	4.6
O-4-17	4.9
O-4-18	4.9
O-4-19	4.9
O-4-20	4.9
O-4-21	4.9
O-4-22	4.9
O-4-23	4.9
O-4-24	4.9
O-4-25	4.9
O-4-26	4.9
O-4-27	4.9
O-4-28	4.9
O-4-29	5.0
O-4-30	5.8
0-4-31	5.9
O-4-32	6.4

Table S5 Gibbs free energy (80 K) of conformers of $PABAH^+(H_2O)_4$. _

O-4-33	6.4
O-4-34	6.4
O-4-35	6.4
O-4-36	6.4
O-4-37	6.4
O-4-38	6.4
O-4-39	7.8
O-4-40	7.8
O-4-41	8.0
O-4-42	8.0
O-4-43	8.0
O-4-44	8.0
O-4-45	8.0
O-4-46	8.0
O-4-47	8.0
O-4-48	9.7
O-4-49	9.7
O-4-50	9.7
0-4-51	9.7
O-4-52	9.7
O-4-53	9.7
O-4-5 4	10.1
0-4-55	10.1
O-4-56	10.1
O-4-57	10.1
O-4-58	10.1
O-4-59	10.1
O-4-60	10.1
O-4-61	10.2
O-4-62	10.5
0-4-63	10.5
O-4-64	10.5
O-4-65	11.7
O-4-66	11.8
O-4-67	11.8
O-4-68	12.0
O-4-69	12.0

O-4-70	12.0
O-4-71	12.0
N-4-1	12.1
N-4-2	12.2
N-4-3	12.3
N-4-4	12.4
O-4-72	12.5
N-4-5	12.6
N-4-6	12.6
O-4-73	13.1
O-4-7 4	13.2
N-4-7	13.5
N-4-8	13.5
N-4-9	13.5
N-4-10	13.5
N-4-11	13.5
N-4-12	14.0
N-4-13	14.0
N-4-14	14.0
N-4-15	14.0
N-4-16	14.0
N-4-17	14.0
O-4-75	14.3
O-4-76	14.3
O-4-77	14.3
O-4-78	14.3
N-4-18	14.4
N-4-19	14.4
N-4-20	14.4
O-4-79	15.9
O-4-80	15.9
N-4-21	16.3
O-4-81	16.5
O-4-82	16.5
O-4-83	16.5
O-4-84	16.5
N-4-22	16.7

N-4-23	16.7
N-4-24	17.1
N-4-25	17.2
N-4-26	17.2
O-4-85	18.6
O-4-86	18.6
N-4-27	19.8
N-4-28	20.5
N-4-29	20.5
N-4-30	20.5
N-4-31	20.5
N-4-32	20.6
N-4-33	20.6
N-4-34	20.6
N-4-35	20.6
N-4-36	20.6
N-4-37	20.7
N-4-38	20.7
N-4-39	20.8
N-4-40	20.8
N-4-41	20.8
N-4-42	20.8
N-4-43	20.8
N-4-44	21.1
N-4-45	21.1
N-4-46	21.1
N-4-47	21.1
N-4-48	21.1
N-4-49	21.1
N-4-50	21.1
N-4-51	21.1
N-4-52	21.1
N-4-53	21.2
N-4-54	21.2
N-4-55	21.2
N-4-56	21.3
N-4-57	21.7

N-4-58	21.7
N-4-59	21.8
N-4-60	22.3
N-4-61	22.3
N-4-62	23.2
N-4-63	23.2

Table S6 Gibbs free energy (80 K) of conformers of $PABAH^+(H_2O)_5$.

Conf.	ΔG / kJ mol ⁻¹
0-5-1	0.0
O-5-2	0.2
O-5-3	0.3
O-5-4	1.2
0-5-5	1.2
O-5-6	2.0
O-5-7	2.0
O-5-8	2.4
0-5-9	2.4
O-5-10	2.4
0-5-11	3.2
O-5-12	3.2
0-5-13	3.2
O-5-14	3.2
0-5-15	3.3
O-5-16	3.3
O-5-17	3.3
O-5-18	3.5
N-5-1	3.5
N-5-2	3.5
N-5-3	3.5
O-5-19	3.9
O-5-20	3.9
O-5-21	4.5
O-5-22	4.7
O-5-23	4.8
N-5-4	5.3
N-5-5	5.3

O-5-24	5.7
O-5-25	5.8
O-5-26	5.9
O-5-27	5.9
O-5-28	5.9
O-5-29	6.0
O-5-30	6.8
N-5-6	6.9
N-5-7	7.1
0-5-31	7.2
O-5-32	7.5
0-5-33	7.7
O-5-34	8.1
0-5-35	8.2
O-5-36	8.2
O-5-37	8.2
O-5-38	8.2
O-5-39	8.4
O-5-40	8.4
N-5-8	8.7
N-5-9	8.7
O-5-41	8.7
O-5-42	8.7
N-5-10	8.8
N-5-11	8.9
N-5-12	9.0
N-5-13	9.0
O-5-43	9.0
0-5-44	9.1
N-5-14	9.1
O-5-45	9.7
O-5-46	9.7
O-5-47	9.8
O-5-48	9.8
O-5-49	9.8
O-5-50	9.8
0-5-51	9.9

O-5-52	10.0
O-5-53	10.0
O-5-54	10.8
N-5-15	11.1
O-5-55	11.2
O-5-56	11.2
O-5-57	11.2
O-5-58	11.5
N-5-16	11.7
N-5-17	11.7
N-5-18	12.1
N-5-19	12.1
N-5-20	12.1
N-5-21	12.1
O-5-59	12.4
O-5-60	12.4
N-5-22	12.4
N-5-23	12.6
N-5-24	12.6
N-5-25	12.6
N-5-26	12.7
N-5-27	12.7
N-5-28	12.7
N-5-29	12.7
N-5-30	12.8
N-5-31	12.8
N-5-32	12.8
0-5-61	12.8
O-5-62	12.8
O-5-63	12.9
O-5-64	12.9
O-5-65	12.9
N-5-33	13.1
N-5-34	13.1
N-5-35	13.1
O-5-66	13.1
O-5-67	13.1

O-5-68	13.1
O-5-69	13.2
O-5-70	13.2
O-5-71	13.4
O-5-72	13.5
N-5-36	13.5
N-5-37	13.6
N-5-38	13.6
N-5-39	13.6
N-5-40	13.7
N-5-41	13.8
N-5-42	13.8
N-5-43	13.8
N-5-44	13.8
N-5-45	13.8
N-5-46	14.0
N-5-47	14.1
N-5-48	14.1
N-5-49	14.2
N-5-50	14.3
N-5-51	14.3
N-5-52	14.4
N-5-53	14.4
N-5-54	14.5
N-5-55	14.6
O-5-73	14.7
N-5-56	14.9
N-5-57	14.9
O-5-74	15.0
O-5-75	15.0
N-5-58	15.1
N-5-59	15.2
N-5-60	15.2
N-5-61	15.2
O-5-76	15.3
N-5-62	15.4
O-5-77	15.5

O-5-78	15.5
N-5-63	15.6
N-5-64	15.6
O-5-79	15.6
O-5-80	15.6
N-5-65	15.7
N-5-66	16.1
N-5-67	16.1
N-5-68	16.2
N-5-69	16.7
N-5-70	16.7
N-5-71	16.7
N-5-72	16.7
N-5-73	16.7
N-5-74	16.7
O-5-81	17.2
O-5-82	17.2
N-5-75	17.3
N-5-76	17.4
O-5-83	17.5
N-5-77	17.6
N-5-78	17.6
N-5-79	17.7
N-5-80	17.9
N-5-81	17.9
N-5-82	18.1
N-5-83	18.1
N-5-84	18.1
N-5-85	18.1
N-5-86	18.1
N-5-87	18.3
N-5-88	18.3
N-5-89	18.3
N-5-90	18.3
N-5-91	18.3
N-5-92	18.3
N-5-93	18.3

O-5-84	18.7
O-5-85	18.7
N-5-94	19.0
N-5-95	19.3
N-5-96	19.3
N-5-97	19.3
O-5-86	19.6
N-5-98	19.7
N-5-99	19.9
N-5-100	19.9
N-5-101	19.9
N-5-102	20.0
N-5-103	20.3
N-5-104	20.5
N-5-105	20.8
N-5-106	20.9
N-5-107	21.3
N-5-108	21.3
N-5-109	27.1

 $\label{eq:table S7 Gibbs free energy (80 K) of conformers of PABAH^+(H_2O)_6.$

Conf.	$\Delta G / kJ mol^{-1}$
N-6-1	0.0
N-6-2	0.1
N-6-3	0.2
0-6-1	1.4
O-6-2	1.5
O-6-3	2.1
O-6-4	2.2
O-6-5	2.2
O-6-6	2.2
O-6-7	2.2
O-6-8	2.4
O-6-9	2.6
O-6-10	2.8
0-6-11	2.9
O-6-12	3.0

O-6-13	3.6
O-6-14	3.6
0-6-15	3.6
O-6-16	3.7
O-6-17	3.7
O-6-18	3.8
O-6-19	3.8
O-6-20	3.8
O-6-21	5.0
O-6-22	5.0
O-6-23	5.0
O-6-24	5.0
O-6-25	5.0
O-6-26	5.2
O-6-27	5.2
O-6-28	5.7
N-6-4	6.0
N-6-5	6.0
O-6-29	6.1
O-6-30	6.2
0-6-31	6.3
O-6-32	6.3
O-6-33	6.4
O-6-34	6.4
O-6-35	6.6
O-6-36	6.7
O-6-37	6.7
O-6-38	6.8
O-6-39	6.9
O-6-40	6.9
O-6-41	6.9
O-6-42	6.9
N-6-6	6.9
O-6-43	7.0
O-6-44	7.0
O-6-45	7.0
O-6-46	7.0

N-6-7	7.2
N-6-8	7.2
N-6-9	7.2
O-6-47	7.4
O-6-48	7.4
N-6-10	7.5
O-6-49	7.6
N-6-11	7.7
O-6-50	7.7
0-6-51	7.7
O-6-52	7.9
O-6-53	7.9
O-6-54	8.0
O-6-55	8.1
O-6-56	8.3
O-6-57	8.4
O-6-58	8.5
O-6-59	8.9
O-6-60	8.9
O-6-61	8.9
O-6-62	8.9
O-6-63	9.1
O-6-64	9.1
O-6-65	9.1
O-6-66	9.1
O-6-67	9.1
O-6-68	9.1
O-6-69	9.2
O-6-70	9.2
N-6-12	9.2
N-6-13	9.2
O-6-71	9.3
O-6-72	9.3
O-6-73	9.3
O-6-74	9.4
O-6-75	9.4
O-6-76	9.4

O-6-77	9.4
O-6-78	9.5
O-6-79	9.5
O-6-80	9.5
O-6-81	9.5
O-6-82	9.5
O-6-83	9.6
O-6-84	9.6
O-6-85	9.6
N-6-14	9.6
N-6-15	9.6
O-6-86	9.8
O-6-87	10.0
N-6-16	10.2
N-6-17	10.2
N-6-18	10.2
O-6-88	10.7
O-6-89	10.8
O-6-90	10.9
O-6-91	11.2
O-6-92	11.2
O-6-93	11.3
O-6-94	11.4
O-6-95	11.7
O-6-96	11.7
O-6-97	11.8
O-6-98	11.8
O-6-99	11.8
O-6-100	11.8
N-6-19	11.8
N-6-20	11.8
N-6-21	11.9
O-6-101	11.9
O-6-102	11.9
O-6-103	12.0
O-6-104	12.0
O-6-105	12.0

N-6-22	12.2
N-6-23	12.2
N-6-24	12.3
O-6-106	12.4
N-6-25	12.5
N-6-26	12.7
N-6-27	12.7
N-6-28	12.7
N-6-29	12.8
N-6-30	12.8
N-6-31	12.9
O-6-107	12.9
O-6-108	13.0
N-6-32	13.0
N-6-33	13.1
N-6-34	13.2
N-6-35	13.2
O-6-109	13.6
N-6-36	13.6
N-6-37	13.6
N-6-38	13.6
N-6-39	13.6
N-6-40	13.7
N-6-41	13.8
O-6-110	13.8
0-6-111	13.9
O-6-112	13.9
0-6-113	13.9
N-6-42	14.0
O-6-114	14.1
0-6-115	14.1
N-6-43	14.2
O-6-116	14.3
N-6-44	14.4
N-6-45	14.5
N-6-46	14.5
N-6-47	14.5

N-6-48	14.7
N-6-49	14.7
N-6-50	14.8
O-6-117	14.9
N-6-51	14.9
N-6-52	14.9
O-6-118	15.0
N-6-53	15.0
N-6-54	15.1
N-6-55	15.2
N-6-56	15.2
N-6-57	15.2
N-6-58	15.3
N-6-59	15.3
N-6-60	15.4
N-6-61	15.4
N-6-62	15.5
N-6-63	15.5
N-6-64	15.5
N-6-65	15.6
N-6-66	15.6
N-6-67	15.6
N-6-68	15.7
N-6-69	15.9
N-6-70	15.9
N-6-71	16.2
N-6-72	16.3
N-6-73	16.3
N-6-74	16.4
N-6-75	16.5
N-6-76	16.7
N-6-77	16.7
N-6-78	16.8
O-6-119	16.8
O-6-120	16.8
N-6-79	16.9
N-6-80	16.9

N-6-81	17.0
N-6-82	17.1
N-6-83	17.1
O-6-121	17.3
O-6-122	17.3
N-6-84	17.4
N-6-85	17.4
N-6-86	17.4
N-6-87	17.8
N-6-88	17.8
N-6-89	17.9
N-6-90	17.9
N-6-91	18.1
N-6-92	18.1
N-6-93	18.1
N-6-94	18.3
N-6-95	18.5
N-6-96	18.6
N-6-97	18.6
N-6-98	18.6
N-6-99	18.6
N-6-100	18.7
N-6-101	18.7
N-6-102	18.7
N-6-103	18.7
N-6-104	18.7
N-6-105	18.8
N-6-106	18.8
N-6-107	18.8
N-6-108	18.8
N-6-109	18.8
N-6-110	18.9
N-6-111	18.9
N-6-112	19.0
N-6-113	19.3
N-6-114	19.4
N-6-115	19.6

N-6-116	19.7
N-6-117	19.7
N-6-118	19.7
N-6-119	19.8
N-6-120	19.9
N-6-121	19.9
N-6-122	19.9
N-6-123	19.9
N-6-124	20.0
N-6-125	20.1
N-6-126	20.2
N-6-127	20.2
N-6-128	20.3
N-6-129	20.5
N-6-130	20.5
N-6-131	20.5
N-6-132	20.5
N-6-133	20.5
N-6-134	20.5
N-6-135	21.0
N-6-136	21.1
N-6-137	21.2
N-6-138	21.3
N-6-139	21.6
N-6-140	21.7
N-6-141	22.2
N-6-142	22.2
N-6-143	22.3
N-6-144	22.3
N-6-145	22.5
N-6-146	22.5
N-6-147	22.9
N-6-148	23.0
N-6-149	23.3
N-6-150	23.5
N-6-151	23.5
N-6-152	23.7

N-6-153	23.7
N-6-154	24.1
N-6-155	24.1
N-6-156	25.0
N-6-157	25.0

Table S8 Gibbs free energy (80 K) of conformers of $PABAH^+(H_2O)_7$.

Conf.	ΔG / kJ mol ⁻¹
O-7-1	0.0
O-7-2	0.5
O-7-3	0.5
O-7-4	0.6
O-7-5	0.6
O-7-6	0.8
O-7-7	0.8
O-7-8	0.8
N-7-1	1.1
N-7-2	2.4
O-7-9	3.7
N-7-3	4.8
O-7-10	4.9
0-7-11	5.5
O-7-12	5.5
0-7-13	5.6
O-7-14	5.6
0-7-15	5.6
O-7-16	5.6
O-7-17	5.8
N-7-4	5.8
O-7-18	5.9
O-7-19	6.0
O-7-20	6.0
O-7-21	6.1
O-7-22	6.3
O-7-23	6.3
N-7-5	6.8
O-7-24	7.0

N-7-6	7.1
N-7-7	7.1
O-7-25	7.3
O-7-26	7.4
O-7-27	7.4
O-7-28	7.4
O-7-29	7.5
O-7-30	7.5
0-7-31	7.5
O-7-32	7.5
N-7-8	7.5
N-7-9	7.5
N-7-10	7.6
O-7-33	7.9
O-7-34	8.5
N-7-11	8.6
N-7-12	8.6
O-7-35	8.8
O-7-36	8.8
O-7-3 7	8.9
O-7-38	9.1
O-7-39	9.1
O-7-40	9.1
O-7-41	9.4
O-7-42	9.4
O-7-43	10.2
O-7-44	10.3
N-7-13	10.3
O-7-45	10.3
O-7-46	10.6
O-7-4 7	10.8
O-7-48	10.8
O-7-49	10.8
O-7-50	10.8
0-7-51	11.0
0-7-52	11.0
N-7-14	11.0

O-7-53	11.0
O-7-54	11.1
O-7-55	11.1
O-7-56	11.2
O-7-57	11.2
O-7-58	11.3
O-7-59	11.4
O-7-60	11.5
O-7-61	11.5
O-7-62	11.7
O-7-63	11.7
O-7-64	11.8
O-7-65	12.1
O-7-66	12.1
O-7-67	12.6
N-7-15	13.1
O-7-68	13.5
O-7-69	13.5
O-7-70	13.5
O-7-71	13.6
N-7-16	13.6
N-7-17	13.6
O-7-72	13.7
O-7-73	13.8
N-7-18	13.9
O-7-74	13.9
O-7-75	14.0
O-7-76	14.0
O-7-77	14.1
O-7-78	14.1
O-7-79	14.1
O-7-80	14.1
O-7-81	14.2
O-7-82	14.2
O-7-83	14.6
O-7-84	14.7
O-7-85	14.8

O-7-86	14.8
O-7-87	14.8
N-7-19	14.8
O-7-88	14.8
N-7-20	15.0
O-7-89	15.0
O-7-90	15.0
O-7-91	15.0
O-7-92	15.1
O-7-93	15.1
O-7-94	15.1
O-7-95	15.2
O-7-96	15.2
O-7-97	15.2
O-7-98	15.2
O-7-99	15.6
O-7-100	15.7
O-7-101	15.8
O-7-102	15.9
O-7-103	15.9
O-7-104	16.0
O-7-105	16.0
O-7-106	16.0
O-7-107	16.0
O-7-108	16.0
O-7-109	16.0
O-7-110	16.0
0-7-111	16.2
N-7-21	16.2
O-7-112	16.6
N-7-22	16.7
N-7-23	17.1
0-7-113	17.2
0-7-114	17.3
0-7-115	17.3
N-7-24	17.5
O-7-116	17.7

O-7-117	17.7
O-7-118	17.7
N-7-25	17.8
O-7-119	17.8
O-7-120	17.8
O-7-121	17.8
N-7-26	17.9
N-7-27	18.0
N-7-28	18.0
N-7-29	18.1
N-7-30	18.2
N-7-31	18.3
N-7-32	18.3
N-7-33	18.3
O-7-122	18.3
N-7-34	18.3
O-7-123	18.5
N-7-35	18.7
N-7-36	18.8
O-7-124	18.8
O-7-125	19.2
N-7-37	19.5
N-7-38	19.6
N-7-39	20.3
N-7-40	20.4
N-7-41	20.4
N-7-42	20.6
N-7-43	20.6
O-7-126	20.7
N-7-44	20.8
N-7-45	20.9
N-7-46	21.0
N-7-47	21.0
N-7-48	21.0
N-7-49	21.2
N-7-50	21.5
N-7-51	21.6

N-7-52	21.9
N-7-53	22.0
N-7-54	22.2
N-7-55	22.3
N-7-56	22.3
N-7-57	22.4
N-7-58	22.5
N-7-59	22.5
N-7-60	22.7
N-7-61	22.7
N-7-62	23.0
N-7-63	23.0
N-7-64	23.0
N-7-65	23.0
N-7-66	23.1
N-7-67	23.1
N-7-68	23.1
N-7-69	23.1
N-7-70	23.4
N-7-71	23.6
N-7-72	23.6
N-7-73	23.6
N-7-74	23.8
N-7-75	23.8
N-7-76	23.9
N-7-77	23.9
N-7-78	24.0
N-7-79	24.1
N-7-80	24.5
N-7-81	26.1
N-7-82	26.2
N-7-83	26.5
N-7-84	29.6
N-7-85	30.3
N-7-86	30.3

Fig. S1 a) IRPD spectra of PABAH⁺ electrosprayed from an acetonitrile solution of PABA (10^{-5} M) with 0.5 % of formic acid. Consistent with the previous report,¹ the IRPD spectrum exhibits characteristic bands of both N- and O-protomers. Calculated IR spectra of the most stable b) O- and c) N-protomers of PABAH⁺ are shown. The bands at 1655 and 1781 cm⁻¹ are assigned to NH₂ bend of O-pro. and C=O stretch of N-pro., respectively. Scaling factors were determined as 0.970 (O-pro.) and 0.955 (N-pro.) using the characteristic bands.

Fig. S2 Calculated IR spectra and structures of the five lowest energy conformers of PABAH⁺ at 80 K. The bands at 1508, 1519, 1570, 1597, 1658cm⁻¹ are reasonably reproduced by the calculated bands of O-0-1. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution so that only O-protomer appears.

Fig. S3 Calculated IR spectra and structures of the ten lowest energy conformers of $PABAH^+-(H_2O)_1$ at 80 K. The bands in 1500-1700 cm⁻¹ are reasonably reproduced by the calculated bands of O-1-1, O-1-2, and O-1-3. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution.

Fig. S4 Calculated IR spectra and structures of the ten lowest energy conformers of PABAH⁺- $(H_2O)_2$ at 80 K. The bands in 1500-1700 cm⁻¹ are reasonably reproduced by the calculated bands of O-2-1. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution.

Fig. S5 Calculated IR spectra and structures of the ten lowest energy conformers of PABAH⁺- $(H_2O)_3$ at 80 K. The bands in 1500-1700 cm⁻¹ are reasonably reproduced by the calculated bands of O-3-1. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution.

Fig. S6 Calculated IR spectra of the twenty lowest energy O-protomers of PABAH⁺- $(H_2O)_4$ at 80 K. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution.

Fig. S7 Calculated IR spectra of the ten lowest energy N-protomers of $PABAH^+-(H_2O)_4$ at 80 K. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution.

Fig. S8 Structures of the twenty lowest energy O-protomers of PABAH⁺-(H₂O)₄ at 80 K.

Fig. S9 Structures of the ten lowest energy N-protomers of $PABAH^+$ - $(H_2O)_4$ at 80 K.

Fig. S10 Calculated IR spectra of the 33 lowest energy O-protomers(1-33) of PABAH⁺- $(H_2O)_5$ at 80 K. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution.

Fig. S10 Continued.

Fig. S11 Calculated IR spectra of the nine lowest energy N-protomers of $PABAH^+$ - $(H_2O)_5$ at 80 K. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution.

Fig. S12 Structures of the seventeen lowest energy O-protomers(1-17) of PABAH⁺-(H₂O)₅ at 80 K.

Fig. S13 Structures of the nine lowest energy N-protomers of PABAH⁺-(H₂O)₅ at 80 K.

						mm		Λ
	•••••		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•***	•			O-6-1 (+1.4)
ii.						i Lassa i		O-6-2 (+1.5)
				1 C		The second sector	a a	O-6-3 (+2.1)
	•				¥.	Low et al.		O-6-4 (+2.2)
					÷.	Low et al.		O-6-5 (+2.2)
					÷	The second		O-6-6 (+2.2)
					÷	Low C. L.		O-6-7 (+2.2)
1.						In const	11	O-6-8 (+2.4)
	. I					a ka sa ta		O-6-9 (+2.6)
2	a.L					a ka sa ta	1 - 10	0-6-10 (+2.8)
1	1.1					a la contra		0-6-11 (+2.9)
				1.1		The second state	21 D	O-6-12 (+3.0)
- I.	11			×		Lister I.		O-6-13 (+3.6)
- I.						Less set		O-6-14 (+3.6)
-l	•					La cara da		0-6-15 (+3.6)
- 1 I						line and the		0-6-16 (+3.7)
~ 1						have and	2	0-6-17 (+3.7)
- L.	•.			1 A A		Free and		O-6-18 (+3.8)
- L.	•			1.1		for a st		O-6-19 (+3.8)
1 L -		1		2		and a d	1	O-6-20 (+3.8)
	Ь.			z = z		a deserva-		O-6-21 (+5.0)
		1				a kara sa ki	1	O-6-22 (+5.0)
. 					•			
.300		1400		1500	8	1600	1700	1800
				Waven	umb	per / cm ⁻¹		

Fig. S14 Calculated IR spectra of the 46 lowest energy O-protomers(1-46) of PABAH⁺- $(H_2O)_6$ at 80 K. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution.

			and the second		
II .			L		 O-6-24 (+5.0)
н.,			h 1		O-6-25
. I			all shares a	1	O-6-26
. I			a.i		0-6-27
I			المحيد المحتجي		O-6-28
1 N.C	a a	1	Lata a series		0-6-29
I			and the second		O-6-30
x - 10	S 1		in an an t-s	- N	0-6-31
1 B			Lina al I		0-6-32
I		2 A	and a d	1	0-6-33
5 56 L		a n -	and a d	1	0-6-34
. I	2	1.1	i la construi		0-6-35
te de la companya de	1	1		а т.	O-6-36
. I		1.1	i la construi	4	0-6-37
• •			la na sel -		O-6-38
. h.		а н	andra a Ali		O-6-39
. h.		с. с	a da a la la la		O-6-40
. h.			sala sa s		0-6-41
. h			raharan ara		0-6-42
		a (1)	ala sa d		0-6-43
		2.4	ata and	12	O-6-44
			ala sa d		O-6-45
·····					O-6-46 (+7.0)
300 14	00 150 W	0 ivenumbe	1600 r / cm ⁻¹	1700	1800

Fig. S14 Continued.

Fig. S15 Calculated IR spectra of the ten lowest energy N-protomers of PABAH⁺- $(H_2O)_6$ at 80 K. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution.

Fig. S16 Structures of the 23 lowest energy O-protomers(1-23) of PABAH⁺-(H₂O)₆ at 80 K.

Fig. S17 Structures of the ten lowest energy N-protomers of PABAH⁺-(H₂O)₆ at 80 K.

Fig. S18 Calculated IR spectra of the 15 lowest energy O-protomers of PABAH⁺- $(H_2O)_7$ at 80 K. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution.

Fig. S19 Calculated IR spectra of the 20 lowest energy N-protomers of PABAH⁺- $(H_2O)_7$ at 80 K. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution.

Fig. S20 Structures of the 15 lowest energy O-protomers of $PABAH^+$ - $(H_2O)_7$ at 80 K.

Fig. S21 Structures of the 20 lowest energy N-protomers of $PABAH^+-(H_2O)_7$ at 80 K.

Fig. S22 Comparison of the IR spectra and energy of PABAH⁺- $(H_2O)_n$ with N-protomer core at 298 K. Numbers indicated Gibbs free energy at 298 K. Observed spectrum shown at the top of the figure is measured from the electrospray from methanol solution.

Fig. S23 Caluculated IR spectra of the ten lowest energy conformers of $PABAH^+(H_2)_4$. Numbers indicate Gibbs free energy at 298 K. In these calculations, C-protomer, whose proton is attaced on a carbon of the benzene ring, was calculated (from C-0-1 to C-0-8). C-protomer was found in protonated aniline,² but in the current IRPD spectrum, all the observed bands are assigned to those of O-protomer (O-0-1), neither to N- nor C-protomers.

Fig. S24 a) CAS-IRPD spectrum of PABAH⁺(H₂O)₅ and b) corresponding IR spectrum fitted by Lorentzian functions. The fitted spectrum is divided into c) O- and d) N-protomer IR spectra. First, the CAS-IR spectrum in a) was fitted with seven Lorentzian functions according to the seven experimental peaks. Four bands appear by subtracting the fitted curve of n=4 (only O-protomer exists) from the fitted curve for n=5. These four bands will stem from the N-protomer. By using these fitted bands as initial fitting parameters, the CAS-IR spectrum in a) was fitted again with eight Lorentzian functions (four bands for the N-protomer and four bands for the O-protomer) to obtain the spectrum in b). The standard deviations for the fitted intensities were within an error of 0.5-15% for individual bands. The errors for the derived averaged population ratios listed in Figure 5 are much smaller (<1%). The fitted curve b) was divided into the contributions from c) O-protomer and d) N-protomer by comparison with n=4 (only O-protomer exists). The relative protomer populations are then be estimated by normalizing the fitted band areas with calculated IR oscillator strengths. In this analysis, the population ratio was determined as the average of 16 estimated values (four bands for N-protomer × four bands for O-protomer).

References

- 1. T. Khuu, N. Yang and M. A. Johnson, Int. J. Mass Spectrom., 2020, 457, 116427.
- 2. Z. Karpas, Z. Berant and R. M. Stimac, Struc. Chem., 1990, 1, 201-204.