Supporting Information

"Unveiling the Reaction Pathways of Hydrocarbon via Experiment, Computations and Data Science"

Lauren Takahashi \dagger, Shigehiro Yoshida \ddagger, Jun Fujima \dagger, Hiroshi Oikawa* \ddagger, Keisuke Takahashi* \dagger
\dagger Department of Chemistry, Hokkaido University, North 10, West 8, Sapporo 060-8510, Japan \ddagger Innovative Research Excellence, Power unit \& Energy, Honda R\&D Co., Ltd., 1-4-1 Chuo, Wako, Saitama, 351-0193, Japan

Corresponding Author: hiroshi oikawa@jp.honda; keisuke.takahashi@sci.hokudai.ac.jp

Molecule	In/Out Degrees	Degree
$[\mathrm{H}+]$	$218 / 218$	436
$[\mathrm{CH} 3+]$	$126 / 126$	252
$[\mathrm{CH} 2+] \mathrm{C}$	$53 / 53$	106
$\mathrm{C}=\mathrm{C}$	$38 / 38$	76
$\mathrm{C}=\mathrm{CC}$	$34 / 34$	68
$\mathrm{C}[\mathrm{C}+](\mathrm{CC}) \mathrm{C}(\mathrm{C}) \mathrm{CC}$	$33 / 33$	66
$\mathrm{C}[\mathrm{C}+](\mathrm{CCC}) \mathrm{C}(\mathrm{C}) \mathrm{C}$	$32 / 32$	64
$\mathrm{CC}[\mathrm{CH}+] \mathrm{C}(\mathrm{C}) \mathrm{C}(\mathrm{C}) \mathrm{C}$	$32 / 32$	64
$\mathrm{CC} 1 \mathrm{C}(\mathrm{C}) \mathrm{C} 1 \mathrm{C}[\mathrm{CH}+] \mathrm{C}$	$29 / 29$	58
$[\mathrm{CH} 2+] \mathrm{CC} 1 \mathrm{CC} 1 \mathrm{CCC}$	$29 / 29$	58

Table S1. Top 10 nodes with the highest degrees of the network illustrated in Figure 1.

Figure S1. Parallel coordinate of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{C}=\mathrm{C})$ conversion and percentage of molecules from $\mathrm{C}_{2} \mathrm{H}_{4}$ after the reaction out of a total percentage of 100 for all products. Color indicates the temperature in ${ }^{\circ} \mathrm{C}$.

Figure S2. Parallel coordinate of $1-\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{C}=\mathrm{CCC})$ conversion and percentage of molecules from 1$\mathrm{C}_{4} \mathrm{H}_{8}$ after the rreaction out of a total percentage of 100 for all products. Color indicates the temperature in ${ }^{\circ} \mathrm{C}$.

Figure S3. Parallel coordinate of cis-2- $\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{C} \backslash \mathrm{C}=\mathrm{C} / \mathrm{C})$ conversion and percentage of molecules from cis-2- $\mathrm{C}_{4} \mathrm{H}_{8}$ after the reaction out of a total percentage of 100 for all products. Color indicates the temperature in ${ }^{\circ} \mathrm{C}$.

Figure S4. Parallel coordinate of trans-2- $\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{C} \backslash \mathrm{C}=\mathrm{C} \backslash \mathrm{C})$ conversion and percentage of molecules from trans-2- $\mathrm{C}_{4} \mathrm{H}_{8}$ after the reaction out of a total percentage of 100 for all products. Color indicates the temperature in ${ }^{\circ} \mathrm{C}$.

Figure S5. Parallel coordinate of iso- $\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{C})$ conversion and percentage of molecules from iso- $\mathrm{C}_{4} \mathrm{H}_{8}$ after the reaction out of a total percentage of 100 for all products. Color indicates the temperature in ${ }^{\circ} \mathrm{C}$.

Figure S6. A zoomed-in portion of the reaction network illustrated in Figure 1.

Figure S7. A zoomed-in portion of the reaction network illustrated in Figure 1.

Figure S8. A zoomed-in portion of the reaction network illustrated in Figure 1.

Figure S9. A zoomed-in portion of the reaction network illustrated in Figure 1.

Figure S10. A zoomed-in portion of the reaction network illustrated in Figure 4.

