Manipulation of N-Heterocyclic Carbene Reactivity with Practical Oriented Electric Fields

Mitchell T. Blyth^a and Michelle L. Coote^{b*}

^a Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia

^b Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia

* michelle.coote@flinders.edu.au

Supplementary Information

Table of Contents

S1. General Remarks
S2. Supplementary Figures Showing Electrostatic Switches on GEI and N
S3. Electronic Energies of Singlet & Triplet NHCs in Test Set under EEFs Across Different Solvents
S4. Electronic Singlet-Triplet Gaps of NHCs in Test Set under EEFs Across Different Solvents
S5. Benchmark: Effect of Geometry Optimisation versus Single-Points of I_{1a} under EEFsS140
S6. Benchmark: Point Charges Approximately Reproduce D-LEF Electrostatic Switches
S7. Benchmark: Comparison of CCSD(T) and DFT Energies of I_{1a} under EEFs S146
S8. Benchmark: Investigation of Spin-State Switching of Simple Carbenes Under EEFs
S9. Natural Resonance Theory Calculation Results
S10. Gibbs Free Energies and Components, Frontier Orbital Energies, Nucleophilicity and Electrophilicity Parameters of Unsubstituted NHCs in Test Set Across Different Solvents
S11. Correction Procedure for Electrostatic Switch Values
S12. Gibbs Free Energies and Components, Frontier Orbital Energies, Nucleophilicity and Electrophilicity Parameters of D-LEF-Substituted NHCs in Test Set Across Different Solvents
S13. Gibbs Free Energy Surfaces & Components for D-LEF-Substituted and Unsubstituted Benzoin Condensations Across Different Solvents
S14. PhotoNHC Switching Results
S15. Additional Analysis of Benzoin Condensation
S16. Investigation of Quadrupoles
S17. Gaussian Log Files for Every Species

S1. General Remarks

Throughout this document, the following abbreviations are used:

ZPVE = Zero-Point Vibrational Energy TC = Thermal Corrections S = Entropy TS = Temperature in Kelvin * Entropy H = Enthalpy G = Gibbs Free Energy G_{soln} = Gibbs Free Energy in Solution HOMO = Highest Occupied Molecular Orbital LUMO = Lowest Unoccupied Molecular Orbital GEI = Global Electrophilicity Index N = Nucleophilicity Index eV = Electron Volts

All raw log files used in this article can be found at: <u>https://github.com/Ecaloota/CarbenesElectricFields</u>

S2. Supplementary Figures Showing Electrostatic Switches on GEI and N

Figure S1. The DLEF-induced electrostatic GEI switches, in eV, for each of the carbenes in the test set (inlaid), with D-LEFs sampled at each position and across multiple solvents. Red = Gas, Orange = Toluene, Yellow = DCM, Green = MeCN, Blue = Water. A positive switch value indicates that the GEI increased after incorporation of the charged D-LEF.

Figure S2. The DLEF-induced electrostatic N switches, in eV, for each of the carbenes in the test set (inlaid), with D-LEFs sampled at each position and across multiple solvents. Red = Gas, Orange = Toluene, Yellow = DCM, Green = MeCN, Blue = Water. A positive switch value indicates that the N increased after incorporation of the charged D-LEF.

S3. Electronic Energies of Singlet & Triplet NHCs in Test Set under EEFs Across Different Solvents

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-304.774650	-304.777500	-304.777680
- 0.0025	-304.775040	-304.777420	-304.777550
- 0.0020	-304.775440	-304.777360	-304.777440
- 0.0015	-304.775860	-304.777310	-304.777360
-0.0010	-304.776310	-304.777280	-304.777300
- 0.0005	-304.776770	-304.777250	-304.777260
+ 0.0000	-304.777250	-304.777250	-304.777250
+ 0.0005	-304.777750	-304.777250	-304.777260
+ 0.0010	-304.778270	-304.777280	-304.777300
+ 0.0015	-304.778810	-304.777310	-304.777360
+ 0.0020	-304.779370	-304.777360	-304.777440
+ 0.0025	-304.779950	-304.777420	-304.777550
+ 0.0030	-304.780540	-304.777500	-304.777680

Table S1. I_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S3. I_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Table S2. I_{1a} Under EEFs in SMD Toluene.

Energy given in Hartree.

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-304.790506	-304.794008	-304.794216
- 0.0025	-304.790984	-304.793920	-304.794065
- 0.0020	-304.791485	-304.793849	-304.793941
- 0.0015	-304.792009	-304.793793	-304.793845
- 0.0010	-304.792557	-304.793753	-304.793776
- 0.0005	-304.793127	-304.793729	-304.793735
+ 0.0000	-304.793721	-304.793721	-304.793721
+ 0.0005	-304.794338	-304.793729	-304.793735
+ 0.0010	-304.794978	-304.793753	-304.793776
+ 0.0015	-304.795642	-304.793793	-304.793845
+ 0.0020	-304.796329	-304.793849	-304.793941
+ 0.0025	-304.797039	-304.793920	-304.794065
+ 0.0030	-304.797772	-304.794008	-304.794216

Figure S4. I_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-304.794609	-304.798860	-304.799073
- 0.0025	-304.795194	-304.798757	-304.798905
- 0.0020	-304.795805	-304.798673	-304.798768
- 0.0015	-304.796444	-304.798608	-304.798661
-0.0010	-304.797110	-304.798561	-304.798585
- 0.0005	-304.797803	-304.798533	-304.798539
+ 0.0000	-304.798523	-304.798523	-304.798523
+ 0.0005	-304.799271	-304.798533	-304.798539
+ 0.0010	-304.800046	-304.798561	-304.798585
+ 0.0015	-304.800848	-304.798608	-304.798661
+ 0.0020	-304.801677	-304.798673	-304.798768
+ 0.0025	-304.802534	-304.798757	-304.798905
+ 0.0030	-304.803418	-304.798860	-304.799073

 Table S3. I1a Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S5. I_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-304.794685	-304.799256	-304.799465
- 0.0025	-304.795315	-304.799146	-304.799291
- 0.0020	-304.795974	-304.799056	-304.799149
- 0.0015	-304.796661	-304.798986	-304.799039
-0.0010	-304.797377	-304.798936	-304.798960
- 0.0005	-304.798122	-304.798906	-304.798912
+ 0.0000	-304.798896	-304.798896	-304.798896
+ 0.0005	-304.799699	-304.798906	-304.798912
+ 0.0010	-304.800531	-304.798936	-304.798960
+ 0.0015	-304.801392	-304.798986	-304.799039
+ 0.0020	-304.802282	-304.799056	-304.799149
+ 0.0025	-304.803201	-304.799146	-304.799291
+ 0.0030	-304.804149	-304.799256	-304.799465

Table S4. I1a Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S6. I1a Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-304.779810	-304.784448	-304.784656
- 0.0025	-304.780449	-304.784336	-304.784481
- 0.0020	-304.781118	-304.784245	-304.784337
- 0.0015	-304.781815	-304.784174	-304.784226
- 0.0010	-304.782542	-304.784123	-304.784147
- 0.0005	-304.783298	-304.784093	-304.784099
+ 0.0000	-304.784083	-304.784083	-304.784083
+ 0.0005	-304.784897	-304.784093	-304.784099
+ 0.0010	-304.785741	-304.784123	-304.784147
+ 0.0015	-304.786614	-304.784174	-304.784226
+ 0.0020	-304.787517	-304.784245	-304.784337
+ 0.0025	-304.788449	-304.784336	-304.784481
+ 0.0030	-304.789410	-304.784448	-304.784656

Table S5. I_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S7. I1a Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-304.639620	-304.640570	-304.640640
- 0.0025	-304.639700	-304.640500	-304.640540
- 0.0020	-304.639800	-304.640440	-304.640460
- 0.0015	-304.639930	-304.640410	-304.640410
- 0.0010	-304.640070	-304.640390	-304.640390
- 0.0005	-304.640230	-304.640390	-304.640380
+ 0.0000	-304.640410	-304.640410	-304.640410
+ 0.0005	-304.640600	-304.640440	-304.640450
+ 0.0010	-304.640820	-304.640490	-304.640520
+ 0.0015	-304.641060	-304.640570	-304.640620
+ 0.0020	-304.641310	-304.640650	-304.640740
+ 0.0025	-304.641580	-304.640760	-304.640890
+ 0.0030	-304.641880	-304.640890	-304.641060

Table S6. ³I_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S8. ³I_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-304.651446	-304.652611	-304.652702
- 0.0025	-304.651555	-304.652529	-304.652585
- 0.0020	-304.651686	-304.652467	-304.652497
- 0.0015	-304.651838	-304.652427	-304.652437
- 0.0010	-304.652013	-304.652407	-304.652406
- 0.0005	-304.652210	-304.652408	-304.652404
+ 0.0000	-304.652429	-304.652429	-304.652429
+ 0.0005	-304.652671	-304.652471	-304.652483
+ 0.0010	-304.652934	-304.652534	-304.652566
+ 0.0015	-304.653220	-304.652618	-304.652677
+ 0.0020	-304.653528	-304.652723	-304.652816
+ 0.0025	-304.653858	-304.652848	-304.652984
+ 0.0030	-304.654211	-304.652995	-304.653181

 Table S7. ³I_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S9. ³I_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-304.653509	-304.654909	-304.655011
- 0.0025	-304.653645	-304.654814	-304.654881
- 0.0020	-304.653806	-304.654744	-304.654782
- 0.0015	-304.653992	-304.654698	-304.654715
- 0.0010	-304.654205	-304.654677	-304.654681
- 0.0005	-304.654443	-304.654679	-304.654678
+ 0.0000	-304.654706	-304.654706	-304.654706
+ 0.0005	-304.654996	-304.654758	-304.654767
+ 0.0010	-304.655311	-304.654834	-304.654860
+ 0.0015	-304.655652	-304.654934	-304.654984
+ 0.0020	-304.656019	-304.655059	-304.655141
+ 0.0025	-304.656412	-304.655209	-304.655329
+ 0.0030	-304.656830	-304.655383	-304.655549

Table S8. ³I_{1a} Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S10. ³I_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-304.652722	-304.654222	-304.654326
- 0.0025	-304.652869	-304.654122	-304.654191
- 0.0020	-304.653043	-304.654047	-304.654088
- 0.0015	-304.653244	-304.653999	-304.654019
- 0.0010	-304.653472	-304.653976	-304.653983
- 0.0005	-304.653728	-304.653980	-304.653980
+ 0.0000	-304.654010	-304.654010	-304.654010
+ 0.0005	-304.654320	-304.654066	-304.654073
+ 0.0010	-304.654656	-304.654148	-304.654170
+ 0.0015	-304.655020	-304.654257	-304.654299
+ 0.0020	-304.655412	-304.654392	-304.654462
+ 0.0025	-304.655831	-304.654553	-304.654658
+ 0.0030	-304.656278	-304.654741	-304.654887

 Table S9. ³I_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S11. ³I_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-304.641496	-304.643017	-304.643121
- 0.0025	-304.641645	-304.642915	-304.642984
- 0.0020	-304.641822	-304.642840	-304.642881
- 0.0015	-304.642026	-304.642791	-304.642812
- 0.0010	-304.642258	-304.642768	-304.642775
- 0.0005	-304.642516	-304.642772	-304.642772
+ 0.0000	-304.642803	-304.642803	-304.642803
+ 0.0005	-304.643116	-304.642860	-304.642866
+ 0.0010	-304.643458	-304.642943	-304.642964
+ 0.0015	-304.643827	-304.643054	-304.643094
+ 0.0020	-304.644223	-304.643191	-304.643258
+ 0.0025	-304.644648	-304.643355	-304.643455
+ 0.0030	-304.645100	-304.643546	-304.643686

Table S10. ³I_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S12. ³I_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-383.318743	-383.326955	-383.327197
- 0.0025	-383.319982	-383.326854	-383.327022
- 0.0020	-383.321251	-383.326771	-383.326878
- 0.0015	-383.322549	-383.326707	-383.326767
- 0.0010	-383.323877	-383.326661	-383.326687
- 0.0005	-383.325236	-383.326633	-383.326640
+ 0.0000	-383.326624	-383.326624	-383.326624
+ 0.0005	-383.328041	-383.326633	-383.326639
+ 0.0010	-383.329489	-383.326660	-383.326687
+ 0.0015	-383.330966	-383.326706	-383.326767
+ 0.0020	-383.332473	-383.326771	-383.326878
+ 0.0025	-383.334010	-383.326853	-383.327022
+ 0.0030	-383.335577	-383.326954	-383.327197

Table S11. II_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S13. II_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-383.337191	-383.347277	-383.347555
- 0.0025	-383.338719	-383.347159	-383.347352
- 0.0020	-383.340283	-383.347062	-383.347186
- 0.0015	-383.341882	-383.346987	-383.347056
- 0.0010	-383.343516	-383.346933	-383.346964
- 0.0005	-383.345186	-383.346901	-383.346909
+ 0.0000	-383.346890	-383.346890	-383.346890
+ 0.0005	-383.348630	-383.346901	-383.346908
+ 0.0010	-383.350404	-383.346933	-383.346964
+ 0.0015	-383.352214	-383.346986	-383.347056
+ 0.0020	-383.354060	-383.347062	-383.347185
+ 0.0025	-383.355940	-383.347158	-383.347352
+ 0.0030	-383.357857	-383.347276	-383.347555

Table S12. II_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S14. II_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-383.349230	-383.361245	-383.361527
- 0.0025	-383.351054	-383.361104	-383.361299
- 0.0020	-383.352918	-383.360988	-383.361113
- 0.0015	-383.354823	-383.360898	-383.360969
- 0.0010	-383.356769	-383.360834	-383.360865
- 0.0005	-383.358755	-383.360795	-383.360803
+ 0.0000	-383.360782	-383.360782	-383.360782
+ 0.0005	-383.362851	-383.360795	-383.360803
+ 0.0010	-383.364960	-383.360834	-383.360865
+ 0.0015	-383.367110	-383.360898	-383.360968
+ 0.0020	-383.369302	-383.360988	-383.361113
+ 0.0025	-383.371535	-383.361103	-383.361299
+ 0.0030	-383.373809	-383.361244	-383.361526

Table S13. II_1a Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S15. II_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-383.351554	-383.364356	-383.364628
- 0.0025	-383.353496	-383.364203	-383.364392
- 0.0020	-383.355482	-383.364078	-383.364198
- 0.0015	-383.357510	-383.363980	-383.364048
- 0.0010	-383.359582	-383.363911	-383.363941
- 0.0005	-383.361697	-383.363869	-383.363876
+ 0.0000	-383.363855	-383.363855	-383.363855
+ 0.0005	-383.366056	-383.363869	-383.363876
+ 0.0010	-383.368301	-383.363910	-383.363941
+ 0.0015	-383.370589	-383.363980	-383.364048
+ 0.0020	-383.372921	-383.364077	-383.364198
+ 0.0025	-383.375297	-383.364202	-383.364391
+ 0.0030	-383.377717	-383.364355	-383.364627

Table S14. II $_{1a}$ Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S16. II_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-383.344099	-383.357064	-383.357333
- 0.0025	-383.346066	-383.356908	-383.357095
- 0.0020	-383.348076	-383.356781	-383.356900
- 0.0015	-383.350130	-383.356682	-383.356749
- 0.0010	-383.352228	-383.356611	-383.356641
- 0.0005	-383.354369	-383.356568	-383.356576
+ 0.0000	-383.356554	-383.356554	-383.356554
+ 0.0005	-383.358783	-383.356568	-383.356576
+ 0.0010	-383.361056	-383.356610	-383.356641
+ 0.0015	-383.363372	-383.356681	-383.356749
+ 0.0020	-383.365733	-383.356780	-383.356900
+ 0.0025	-383.368139	-383.356907	-383.357095
+ 0.0030	-383.370588	-383.357063	-383.357333

Table S15. II_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S17. II_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-383.257891	-383.259314	-383.259560
- 0.0025	-383.257998	-383.259199	-383.259370
- 0.0020	-383.258132	-383.259105	-383.259214
- 0.0015	-383.258294	-383.259032	-383.259094
- 0.0010	-383.258482	-383.258980	-383.259007
- 0.0005	-383.258697	-383.258949	-383.258956
+ 0.0000	-383.258938	-383.258938	-383.258938
+ 0.0005	-383.259207	-383.258949	-383.258956
+ 0.0010	-383.259502	-383.258980	-383.259007
+ 0.0015	-383.259824	-383.259032	-383.259094
+ 0.0020	-383.260173	-383.259105	-383.259214
+ 0.0025	-383.260549	-383.259199	-383.259370
+ 0.0030	-383.260951	-383.259314	-383.259560

Table S16. ³II_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S18. ³II_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-383.266340	-383.268094	-383.268388
- 0.0025	-383.266479	-383.267959	-383.268163
- 0.0020	-383.266650	-383.267849	-383.267980
- 0.0015	-383.266853	-383.267763	-383.267837
- 0.0010	-383.267088	-383.267702	-383.267734
- 0.0005	-383.267355	-383.267665	-383.267673
+ 0.0000	-383.267653	-383.267653	-383.267653
+ 0.0005	-383.267983	-383.267665	-383.267673
+ 0.0010	-383.268344	-383.267702	-383.267734
+ 0.0015	-383.268738	-383.267763	-383.267837
+ 0.0020	-383.269163	-383.267849	-383.267980
+ 0.0025	-383.269620	-383.267959	-383.268163
+ 0.0030	-383.270109	-383.268094	-383.268388

 Table S17. ³Il_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S19. ³II_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-383.269263	-383.271360	-383.271674
- 0.0025	-383.269433	-383.271200	-383.271417
- 0.0020	-383.269640	-383.271068	-383.271207
- 0.0015	-383.269883	-383.270966	-383.271044
- 0.0010	-383.270163	-383.270893	-383.270927
- 0.0005	-383.270480	-383.270849	-383.270858
+ 0.0000	-383.270834	-383.270834	-383.270834
+ 0.0005	-383.271225	-383.270849	-383.270858
+ 0.0010	-383.271652	-383.270893	-383.270927
+ 0.0015	-383.272116	-383.270966	-383.271044
+ 0.0020	-383.272617	-383.271068	-383.271207
+ 0.0025	-383.273155	-383.271200	-383.271417
+ 0.0030	-383.273730	-383.271360	-383.271674

 Table S18. ³Il_{1a} Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S20. ³II_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-383.268017	-383.270259	-383.270568
- 0.0025	-383.268199	-383.270085	-383.270300
- 0.0020	-383.268420	-383.269943	-383.270080
- 0.0015	-383.268679	-383.269832	-383.269909
- 0.0010	-383.268977	-383.269753	-383.269788
- 0.0005	-383.269314	-383.269706	-383.269714
+ 0.0000	-383.269690	-383.269690	-383.269690
+ 0.0005	-383.270105	-383.269706	-383.269714
+ 0.0010	-383.270558	-383.269753	-383.269788
+ 0.0015	-383.271050	-383.269832	-383.269909
+ 0.0020	-383.271582	-383.269943	-383.270080
+ 0.0025	-383.272152	-383.270085	-383.270300
+ 0.0030	-383.272761	-383.270259	-383.270568

Table S19. ³II_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S21. ³II_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-383.261106	-383.263379	-383.263686
- 0.0025	-383.261291	-383.263202	-383.263415
- 0.0020	-383.261514	-383.263057	-383.263194
- 0.0015	-383.261777	-383.262945	-383.263021
- 0.0010	-383.262079	-383.262864	-383.262898
- 0.0005	-383.262420	-383.262816	-383.262825
+ 0.0000	-383.262800	-383.262800	-383.262800
+ 0.0005	-383.263220	-383.262816	-383.262825
+ 0.0010	-383.263678	-383.262864	-383.262898
+ 0.0015	-383.264176	-383.262945	-383.263021
+ 0.0020	-383.264714	-383.263057	-383.263194
+ 0.0025	-383.265291	-383.263202	-383.263415
+ 0.0030	-383.265908	-383.263379	-383.263686

Table S20. ³II_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S22. ³II_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-344.053960	-344.060360	-344.061350
- 0.0025	-344.054920	-344.060270	-344.061070
- 0.0020	-344.055900	-344.060200	-344.060810
- 0.0015	-344.056900	-344.060140	-344.060580
- 0.0010	-344.057930	-344.060100	-344.060390
- 0.0005	-344.058990	-344.060080	-344.060210
+ 0.0000	-344.060070	-344.060070	-344.060070
+ 0.0005	-344.061170	-344.060080	-344.059950
+ 0.0010	-344.062300	-344.060100	-344.059870
+ 0.0015	-344.063460	-344.060140	-344.059800
+ 0.0020	-344.064640	-344.060200	-344.059770
+ 0.0025	-344.065840	-344.060270	-344.059770
+ 0.0030	-344.067070	-344.060360	-344.059790

Table S21. III_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S23. III_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-344.072781	-344.080615	-344.081793
- 0.0025	-344.073957	-344.080513	-344.081460
- 0.0020	-344.075163	-344.080429	-344.081160
- 0.0015	-344.076398	-344.080364	-344.080892
- 0.0010	-344.077662	-344.080317	-344.080656
- 0.0005	-344.078956	-344.080289	-344.080451
+ 0.0000	-344.080280	-344.080280	-344.080280
+ 0.0005	-344.081632	-344.080289	-344.080140
+ 0.0010	-344.083015	-344.080317	-344.080032
+ 0.0015	-344.084427	-344.080363	-344.079956
+ 0.0020	-344.085868	-344.080428	-344.079912
+ 0.0025	-344.087339	-344.080512	-344.079901
+ 0.0030	-344.088839	-344.080615	-344.079922

Table S22. III_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S24. III_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-344.081754	-344.091123	-344.092466
- 0.0025	-344.083164	-344.091002	-344.092086
- 0.0020	-344.084608	-344.090902	-344.091743
- 0.0015	-344.086086	-344.090825	-344.091435
- 0.0010	-344.087598	-344.090769	-344.091162
- 0.0005	-344.089144	-344.090736	-344.090926
+ 0.0000	-344.090725	-344.090725	-344.090725
+ 0.0005	-344.092340	-344.090736	-344.090560
+ 0.0010	-344.093989	-344.090769	-344.090431
+ 0.0015	-344.095673	-344.090824	-344.090337
+ 0.0020	-344.097391	-344.090902	-344.090279
+ 0.0025	-344.099144	-344.091001	-344.090258
+ 0.0030	-344.100931	-344.091123	-344.090272

 Table S23. III1a Under EEFs in SMD Dichloromethane.
 Energy given in Hartree.

Figure S25. III_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-344.083408	-344.093415	-344.094815
- 0.0025	-344.084914	-344.093284	-344.094417
- 0.0020	-344.086456	-344.093176	-344.094057
- 0.0015	-344.088034	-344.093093	-344.093733
- 0.0010	-344.089648	-344.093033	-344.093447
- 0.0005	-344.091299	-344.092998	-344.093198
+ 0.0000	-344.092986	-344.092986	-344.092986
+ 0.0005	-344.094709	-344.092998	-344.092811
+ 0.0010	-344.096468	-344.093033	-344.092673
+ 0.0015	-344.098264	-344.093093	-344.092572
+ 0.0020	-344.100097	-344.093176	-344.092508
+ 0.0025	-344.101966	-344.093283	-344.092481
+ 0.0030	-344.103871	-344.093415	-344.092492

 Table S24. III1a Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S26. III_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-344.071019	-344.081158	-344.082569
- 0.0025	-344.072545	-344.081025	-344.082168
- 0.0020	-344.074107	-344.080916	-344.081804
- 0.0015	-344.075706	-344.080831	-344.081477
- 0.0010	-344.077341	-344.080770	-344.081188
- 0.0005	-344.079013	-344.080734	-344.080936
+ 0.0000	-344.080722	-344.080722	-344.080722
+ 0.0005	-344.082468	-344.080734	-344.080545
+ 0.0010	-344.084250	-344.080770	-344.080405
+ 0.0015	-344.086069	-344.080831	-344.080303
+ 0.0020	-344.087925	-344.080916	-344.080238
+ 0.0025	-344.089818	-344.081025	-344.080210
+ 0.0030	-344.091748	-344.081158	-344.080220

 Table S25. III1a Under EEFs in SMD Water. Energy given in Hartree.

Figure S27. III_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-343.957880	-343.958870	-343.957190
- 0.0025	-343.957790	-343.958630	-343.957210
- 0.0020	-343.957730	-343.958410	-343.957250
- 0.0015	-343.957690	-343.958210	-343.957330
- 0.0010	-343.957680	-343.958030	-343.957430
- 0.0005	-343.957690	-343.957870	-343.957570
+ 0.0000	-343.957730	-343.957730	-343.957730
+ 0.0005	-343.957790	-343.957600	-343.957920
+ 0.0010	-343.957880	-343.957500	-343.958140
+ 0.0015	-343.958000	-343.957410	-343.958390
+ 0.0020	-343.958140	-343.957350	-343.958660
+ 0.0025	-343.958310	-343.957300	-343.958970
+ 0.0030	-343.958500	-343.957270	-343.959300

 Table S26. ³III_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S28. ³III_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-343.969539	-343.970753	-343.968655
- 0.0025	-343.969434	-343.970468	-343.968691
- 0.0020	-343.969361	-343.970205	-343.968761
- 0.0015	-343.969318	-343.969964	-343.968864
- 0.0010	-343.969306	-343.969746	-343.969001
- 0.0005	-343.969325	-343.969550	-343.969172
+ 0.0000	-343.969376	-343.969376	-343.969376
+ 0.0005	-343.969457	-343.969224	-343.969613
+ 0.0010	-343.969570	-343.969094	-343.969884
+ 0.0015	-343.969714	-343.968987	-343.970189
+ 0.0020	-343.969890	-343.968902	-343.970527
+ 0.0025	-343.970097	-343.968839	-343.970900
+ 0.0030	-343.970337	-343.968799	-343.971305

 Table S27. ³III_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S29. ³III_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-343.972307	-343.973797	-343.971192
- 0.0025	-343.972182	-343.973447	-343.971250
- 0.0020	-343.972093	-343.973125	-343.971345
- 0.0015	-343.972040	-343.972829	-343.971478
- 0.0010	-343.972025	-343.972561	-343.971649
- 0.0005	-343.972046	-343.972320	-343.971858
+ 0.0000	-343.972105	-343.972105	-343.972105
+ 0.0005	-343.972201	-343.971917	-343.972390
+ 0.0010	-343.972334	-343.971756	-343.972712
+ 0.0015	-343.972505	-343.971621	-343.973072
+ 0.0020	-343.972714	-343.971513	-343.973471
+ 0.0025	-343.972962	-343.971431	-343.973907
+ 0.0030	-343.973249	-343.971376	-343.974382

 Table S28. ³III_{1a} Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S30. ³III_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-343.971506	-343.973126	-343.970285
- 0.0025	-343.971370	-343.972744	-343.970351
- 0.0020	-343.971273	-343.972392	-343.970457
- 0.0015	-343.971215	-343.972069	-343.970603
- 0.0010	-343.971196	-343.971776	-343.970788
- 0.0005	-343.971216	-343.971512	-343.971013
+ 0.0000	-343.971277	-343.971277	-343.971277
+ 0.0005	-343.971377	-343.971071	-343.971580
+ 0.0010	-343.971517	-343.970894	-343.971923
+ 0.0015	-343.971698	-343.970745	-343.972306
+ 0.0020	-343.971920	-343.970626	-343.972728
+ 0.0025	-343.972183	-343.970535	-343.973190
+ 0.0030	-343.972490	-343.970474	-343.973691

 Table S29. ³III_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S31. ³III_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-343.960505	-343.962154	-343.959261
- 0.0025	-343.960367	-343.961765	-343.959329
- 0.0020	-343.960268	-343.961406	-343.959438
- 0.0015	-343.960208	-343.961077	-343.959586
- 0.0010	-343.960189	-343.960778	-343.959774
- 0.0005	-343.960209	-343.960509	-343.960002
+ 0.0000	-343.960269	-343.960269	-343.960269
+ 0.0005	-343.960370	-343.960059	-343.960577
+ 0.0010	-343.960512	-343.959879	-343.960924
+ 0.0015	-343.960694	-343.959727	-343.961311
+ 0.0020	-343.960919	-343.959606	-343.961738
+ 0.0025	-343.961186	-343.959513	-343.962205
+ 0.0030	-343.961496	-343.959450	-343.962712

Table S30. ³III_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S32. ³III_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-285.324170	-285.327970	-285.324870
- 0.0025	-285.324730	-285.327920	-285.325310
- 0.0020	-285.325310	-285.327870	-285.325770
- 0.0015	-285.325900	-285.327830	-285.326250
- 0.0010	-285.326520	-285.327800	-285.326750
- 0.0005	-285.327140	-285.327790	-285.327260
+ 0.0000	-285.327780	-285.327780	-285.327780
+ 0.0005	-285.328440	-285.327790	-285.328330
+ 0.0010	-285.329110	-285.327800	-285.328890
+ 0.0015	-285.329800	-285.327830	-285.329470
+ 0.0020	-285.330510	-285.327870	-285.330060
+ 0.0025	-285.331230	-285.327920	-285.330670
+ 0.0030	-285.331970	-285.327970	-285.331300

Table S31. IV_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S33. IV_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-285.331779	-285.336274	-285.332671
- 0.0025	-285.332446	-285.336208	-285.333188
- 0.0020	-285.333132	-285.336154	-285.333723
- 0.0015	-285.333835	-285.336112	-285.334278
- 0.0010	-285.334558	-285.336081	-285.334852
- 0.0005	-285.335298	-285.336063	-285.335445
+ 0.0000	-285.336057	-285.336057	-285.336057
+ 0.0005	-285.336835	-285.336063	-285.336689
+ 0.0010	-285.337630	-285.336081	-285.337339
+ 0.0015	-285.338445	-285.336111	-285.338009
+ 0.0020	-285.339277	-285.336153	-285.338698
+ 0.0025	-285.340129	-285.336208	-285.339406
+ 0.0030	-285.340998	-285.336274	-285.340133

Table S32. IV $_{1a}$ Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S34. IV_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).
Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-285.336482	-285.341712	-285.337658
- 0.0025	-285.337259	-285.341636	-285.338239
- 0.0020	-285.338057	-285.341573	-285.338841
- 0.0015	-285.338877	-285.341525	-285.339464
- 0.0010	-285.339717	-285.341490	-285.340108
- 0.0005	-285.340579	-285.341469	-285.340774
+ 0.0000	-285.341462	-285.341462	-285.341462
+ 0.0005	-285.342366	-285.341469	-285.342171
+ 0.0010	-285.343292	-285.341490	-285.342901
+ 0.0015	-285.344238	-285.341524	-285.343653
+ 0.0020	-285.345207	-285.341573	-285.344426
+ 0.0025	-285.346196	-285.341635	-285.345220
+ 0.0030	-285.347207	-285.341712	-285.346036

Table S33. IV1a Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S35. IV_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-285.337325	-285.342832	-285.338627
- 0.0025	-285.338143	-285.342752	-285.339229
- 0.0020	-285.338983	-285.342685	-285.339852
- 0.0015	-285.339846	-285.342634	-285.340498
- 0.0010	-285.340731	-285.342597	-285.341166
- 0.0005	-285.341638	-285.342575	-285.341856
+ 0.0000	-285.342568	-285.342568	-285.342568
+ 0.0005	-285.343520	-285.342575	-285.343302
+ 0.0010	-285.344494	-285.342597	-285.344058
+ 0.0015	-285.345491	-285.342634	-285.344836
+ 0.0020	-285.346510	-285.342685	-285.345637
+ 0.0025	-285.347552	-285.342751	-285.346459
+ 0.0030	-285.348617	-285.342832	-285.347304

Table S34. IV_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S36. IV_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-285.329471	-285.335099	-285.330738
- 0.0025	-285.330308	-285.335016	-285.331362
- 0.0020	-285.331167	-285.334949	-285.332009
- 0.0015	-285.332048	-285.334896	-285.332679
- 0.0010	-285.332952	-285.334858	-285.333372
- 0.0005	-285.333879	-285.334835	-285.334089
+ 0.0000	-285.334828	-285.334828	-285.334828
+ 0.0005	-285.335800	-285.334835	-285.335590
+ 0.0010	-285.336794	-285.334858	-285.336376
+ 0.0015	-285.337812	-285.334895	-285.337184
+ 0.0020	-285.338852	-285.334948	-285.338015
+ 0.0025	-285.339915	-285.335016	-285.338870
+ 0.0030	-285.341001	-285.335099	-285.339748

Table S35. IV1a Under EEFs in SMD Water. Energy given in Hartree.

Figure S37. IV_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-285.199380	-285.202250	-285.199620
- 0.0025	-285.199620	-285.202010	-285.199810
- 0.0020	-285.199880	-285.201800	-285.200020
- 0.0015	-285.200150	-285.201590	-285.200250
- 0.0010	-285.200430	-285.201400	-285.200500
- 0.0005	-285.200730	-285.201210	-285.200770
+ 0.0000	-285.201050	-285.201050	-285.201050
+ 0.0005	-285.201370	-285.200890	-285.201340
+ 0.0010	-285.201720	-285.200750	-285.201660
+ 0.0015	-285.202080	-285.200610	-285.201990
+ 0.0020	-285.202450	-285.200500	-285.202330
+ 0.0025	-285.202840	-285.200390	-285.202700
+ 0.0030	-285.203240	-285.200300	-285.203080

Table S36. ³IV_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S38. ³IV_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-285.203386	-285.206747	-285.203683
- 0.0025	-285.203668	-285.206476	-285.203909
- 0.0020	-285.203967	-285.206219	-285.204155
- 0.0015	-285.204283	-285.205976	-285.204421
- 0.0010	-285.204616	-285.205747	-285.204706
- 0.0005	-285.204966	-285.205533	-285.205010
+ 0.0000	-285.205333	-285.205333	-285.205333
+ 0.0005	-285.205718	-285.205148	-285.205676
+ 0.0010	-285.206119	-285.204976	-285.206038
+ 0.0015	-285.206538	-285.204820	-285.206419
+ 0.0020	-285.206975	-285.204677	-285.206820
+ 0.0025	-285.207428	-285.204550	-285.207239
+ 0.0030	-285.207899	-285.204437	-285.207678

Table S37. ³IV_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S39. ³IV_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-285.205387	-285.209258	-285.205786
- 0.0025	-285.205711	-285.208944	-285.206037
- 0.0020	-285.206053	-285.208646	-285.206311
- 0.0015	-285.206416	-285.208365	-285.206606
- 0.0010	-285.206798	-285.208101	-285.206922
- 0.0005	-285.207200	-285.207853	-285.207261
+ 0.0000	-285.207621	-285.207621	-285.207621
+ 0.0005	-285.208062	-285.207406	-285.208003
+ 0.0010	-285.208523	-285.207208	-285.208407
+ 0.0015	-285.209004	-285.207026	-285.208832
+ 0.0020	-285.209505	-285.206861	-285.209279
+ 0.0025	-285.210026	-285.206713	-285.209748
+ 0.0030	-285.210566	-285.206582	-285.210239

 Table S38. ³IV1a</sub> Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S40. ³IV_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-285.205254	-285.209321	-285.205705
- 0.0025	-285.205592	-285.208989	-285.205963
- 0.0020	-285.205951	-285.208674	-285.206243
- 0.0015	-285.206330	-285.208377	-285.206547
- 0.0010	-285.206730	-285.208098	-285.206872
- 0.0005	-285.207150	-285.207836	-285.207220
+ 0.0000	-285.207591	-285.207591	-285.207591
+ 0.0005	-285.208053	-285.207364	-285.207985
+ 0.0010	-285.208536	-285.207155	-285.208400
+ 0.0015	-285.209039	-285.206963	-285.208839
+ 0.0020	-285.209564	-285.206789	-285.209299
+ 0.0025	-285.210110	-285.206633	-285.209783
+ 0.0030	-285.210677	-285.206494	-285.210288

Table S39. ³IV_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S41. ³IV_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-285.199594	-285.203752	-285.199959
- 0.0025	-285.199943	-285.203416	-285.200240
- 0.0020	-285.200313	-285.203097	-285.200545
- 0.0015	-285.200703	-285.202796	-285.200873
- 0.0010	-285.201115	-285.202513	-285.201225
- 0.0005	-285.201547	-285.202248	-285.201601
+ 0.0000	-285.202000	-285.202000	-285.202000
+ 0.0005	-285.202474	-285.201770	-285.202422
+ 0.0010	-285.202969	-285.201558	-285.202868
+ 0.0015	-285.203486	-285.201364	-285.203338
+ 0.0020	-285.204023	-285.201188	-285.203830
+ 0.0025	-285.204582	-285.201030	-285.204346
+ 0.0030	-285.205163	-285.200890	-285.204886

Table S40. ³IV_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S42. ³IV_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-608.300800	-608.304300	-608.301800
- 0.0025	-608.301300	-608.304230	-608.302120
- 0.0020	-608.301820	-608.304170	-608.302470
- 0.0015	-608.302350	-608.304130	-608.302830
- 0.0010	-608.302900	-608.304100	-608.303220
- 0.0005	-608.303480	-608.304080	-608.303640
+ 0.0000	-608.304070	-608.304070	-608.304070
+ 0.0005	-608.304680	-608.304080	-608.304530
+ 0.0010	-608.305320	-608.304100	-608.305010
+ 0.0015	-608.305970	-608.304130	-608.305510
+ 0.0020	-608.306640	-608.304170	-608.306040
+ 0.0025	-608.307330	-608.304230	-608.306590
+ 0.0030	-608.308040	-608.304300	-608.307160

Table S41. V1a Under EEFs in Gas. Energy given in Hartree.

Figure S43. V_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-608.308696	-608.312966	-608.309960
- 0.0025	-608.309305	-608.312884	-608.310351
- 0.0020	-608.309938	-608.312818	-608.310769
- 0.0015	-608.310594	-608.312766	-608.311212
- 0.0010	-608.311273	-608.312729	-608.311682
- 0.0005	-608.311975	-608.312707	-608.312177
+ 0.0000	-608.312699	-608.312699	-608.312699
+ 0.0005	-608.313447	-608.312707	-608.313248
+ 0.0010	-608.314218	-608.312729	-608.313822
+ 0.0015	-608.315012	-608.312766	-608.314423
+ 0.0020	-608.315830	-608.312818	-608.315050
+ 0.0025	-608.316670	-608.312884	-608.315704
+ 0.0030	-608.317533	-608.312966	-608.316384

Table S42. V1a Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S44. V1a Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-608.313102	-608.318196	-608.314766
- 0.0025	-608.313832	-608.318102	-608.315213
- 0.0020	-608.314589	-608.318024	-608.315689
- 0.0015	-608.315373	-608.317964	-608.316194
- 0.0010	-608.316184	-608.317921	-608.316729
- 0.0005	-608.317022	-608.317896	-608.317293
+ 0.0000	-608.317887	-608.317887	-608.317887
+ 0.0005	-608.318779	-608.317896	-608.318510
+ 0.0010	-608.319698	-608.317921	-608.319163
+ 0.0015	-608.320644	-608.317964	-608.319845
+ 0.0020	-608.321618	-608.318024	-608.320557
+ 0.0025	-608.322618	-608.318102	-608.321299
+ 0.0030	-608.323646	-608.318196	-608.322070

Table S43. V_{1a} Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S45. V_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-608.313265	-608.318699	-608.315117
- 0.0025	-608.314045	-608.318599	-608.315583
- 0.0020	-608.314853	-608.318517	-608.316079
- 0.0015	-608.315690	-608.318453	-608.316606
- 0.0010	-608.316555	-608.318407	-608.317164
- 0.0005	-608.317448	-608.318380	-608.317752
+ 0.0000	-608.318371	-608.318371	-608.318371
+ 0.0005	-608.319322	-608.318380	-608.319020
+ 0.0010	-608.320302	-608.318407	-608.319701
+ 0.0015	-608.321310	-608.318453	-608.320411
+ 0.0020	-608.322348	-608.318517	-608.321153
+ 0.0025	-608.323414	-608.318599	-608.321926
+ 0.0030	-608.324510	-608.318699	-608.322729

Table S44. V_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S46. V1a Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-608.305354	-608.310858	-608.307246
- 0.0025	-608.306144	-608.310757	-608.307715
- 0.0020	-608.306963	-608.310674	-608.308216
- 0.0015	-608.307810	-608.310609	-608.308747
- 0.0010	-608.308686	-608.310563	-608.309309
- 0.0005	-608.309592	-608.310535	-608.309902
+ 0.0000	-608.310526	-608.310526	-608.310526
+ 0.0005	-608.311489	-608.310535	-608.311181
+ 0.0010	-608.312482	-608.310563	-608.311866
+ 0.0015	-608.313503	-608.310609	-608.312583
+ 0.0020	-608.314554	-608.310674	-608.313330
+ 0.0025	-608.315634	-608.310757	-608.314109
+ 0.0030	-608.316743	-608.310858	-608.314919

Table S45. V1a Under EEFs in SMD Water. Energy given in Hartree.

Figure S47. V_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-608.195360	-608.197090	-608.193970
- 0.0025	-608.195470	-608.196930	-608.194300
- 0.0020	-608.195600	-608.196770	-608.194650
- 0.0015	-608.195750	-608.196640	-608.195030
- 0.0010	-608.195910	-608.196510	-608.195430
- 0.0005	-608.196100	-608.196400	-608.195860
+ 0.0000	-608.196300	-608.196300	-608.196300
+ 0.0005	-608.196530	-608.196220	-608.196780
+ 0.0010	-608.196770	-608.196160	-608.197270
+ 0.0015	-608.197030	-608.196100	-608.197800
+ 0.0020	-608.197310	-608.196060	-608.198340
+ 0.0025	-608.197610	-608.196040	-608.198910
+ 0.0030	-608.197930	-608.196030	-608.199500

Table S46. ³V_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S48. ³V_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-608.201184	-608.203300	-608.199525
- 0.0025	-608.201323	-608.203101	-608.199927
- 0.0020	-608.201484	-608.202918	-608.200357
- 0.0015	-608.201668	-608.202752	-608.200814
- 0.0010	-608.201874	-608.202602	-608.201299
- 0.0005	-608.202102	-608.202469	-608.201812
+ 0.0000	-608.202352	-608.202352	-608.202352
+ 0.0005	-608.202625	-608.202252	-608.202920
+ 0.0010	-608.202921	-608.202169	-608.203517
+ 0.0015	-608.203238	-608.202102	-608.204140
+ 0.0020	-608.203579	-608.202052	-608.204792
+ 0.0025	-608.203942	-608.202019	-608.205471
+ 0.0030	-608.204327	-608.202002	-608.206178

Table S47. ³V_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S49. ³V_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-608.203769	-608.206264	-608.201954
- 0.0025	-608.203937	-608.206033	-608.202411
- 0.0020	-608.204131	-608.205821	-608.202900
- 0.0015	-608.204351	-608.205629	-608.203420
- 0.0010	-608.204598	-608.205456	-608.203972
- 0.0005	-608.204870	-608.205302	-608.204554
+ 0.0000	-608.205168	-608.205168	-608.205168
+ 0.0005	-608.205492	-608.205053	-608.205813
+ 0.0010	-608.205843	-608.204957	-608.206489
+ 0.0015	-608.206220	-608.204881	-608.207196
+ 0.0020	-608.206623	-608.204825	-608.207935
+ 0.0025	-608.207053	-608.204788	-608.208705
+ 0.0030	-608.207509	-608.204771	-608.209506

Table S48. ³V_{1a} Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S50. ³V_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-608.203204	-608.205849	-608.201352
- 0.0025	-608.203384	-608.205606	-608.201828
- 0.0020	-608.203592	-608.205383	-608.202337
- 0.0015	-608.203827	-608.205180	-608.202878
- 0.0010	-608.204089	-608.204998	-608.203452
- 0.0005	-608.204379	-608.204837	-608.204058
+ 0.0000	-608.204697	-608.204697	-608.204697
+ 0.0005	-608.205042	-608.204577	-608.205368
+ 0.0010	-608.205415	-608.204478	-608.206071
+ 0.0015	-608.205816	-608.204400	-608.206807
+ 0.0020	-608.206245	-608.204342	-608.207576
+ 0.0025	-608.206702	-608.204306	-608.208377
+ 0.0030	-608.207188	-608.204290	-608.209211

Table S49. ³V_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S51. ³V_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-608.195915	-608.198590	-608.194056
- 0.0025	-608.196097	-608.198344	-608.194536
- 0.0020	-608.196308	-608.198119	-608.195049
- 0.0015	-608.196545	-608.197914	-608.195594
- 0.0010	-608.196811	-608.197731	-608.196172
- 0.0005	-608.197105	-608.197568	-608.196783
+ 0.0000	-608.197426	-608.197426	-608.197426
+ 0.0005	-608.197776	-608.197306	-608.198103
+ 0.0010	-608.198154	-608.197206	-608.198811
+ 0.0015	-608.198560	-608.197127	-608.199553
+ 0.0020	-608.198994	-608.197070	-608.200327
+ 0.0025	-608.199457	-608.197033	-608.201134
+ 0.0030	-608.199948	-608.197018	-608.201975

Table S50. ³V_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S52. ³V_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-305.970126	-305.973592	-305.973754
- 0.0025	-305.970608	-305.973508	-305.973620
- 0.0020	-305.971110	-305.973440	-305.973511
- 0.0015	-305.971632	-305.973386	-305.973426
-0.0010	-305.972174	-305.973348	-305.973366
- 0.0005	-305.972736	-305.973325	-305.973329
+ 0.0000	-305.973317	-305.973317	-305.973317
+ 0.0005	-305.973919	-305.973325	-305.973329
+ 0.0010	-305.974540	-305.973348	-305.973366
+ 0.0015	-305.975181	-305.973386	-305.973426
+ 0.0020	-305.975841	-305.973440	-305.973511
+ 0.0025	-305.976522	-305.973508	-305.973620
+ 0.0030	-305.977222	-305.973592	-305.973754

Table S51. VI_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S53. VI_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-305.985037	-305.989279	-305.989463
- 0.0025	-305.985633	-305.989181	-305.989309
- 0.0020	-305.986252	-305.989101	-305.989183
- 0.0015	-305.986894	-305.989039	-305.989085
-0.0010	-305.987559	-305.988995	-305.989015
- 0.0005	-305.988247	-305.988968	-305.988973
+ 0.0000	-305.988959	-305.988959	-305.988959
+ 0.0005	-305.989694	-305.988968	-305.988973
+ 0.0010	-305.990452	-305.988995	-305.989015
+ 0.0015	-305.991233	-305.989039	-305.989085
+ 0.0020	-305.992038	-305.989101	-305.989183
+ 0.0025	-305.992866	-305.989181	-305.989309
+ 0.0030	-305.993717	-305.989279	-305.989463

Table S52. VI1a Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S54. VI_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-305.988595	-305.993675	-305.993861
- 0.0025	-305.989312	-305.993560	-305.993689
- 0.0020	-305.990056	-305.993466	-305.993549
- 0.0015	-305.990827	-305.993393	-305.993439
-0.0010	-305.991624	-305.993341	-305.993361
- 0.0005	-305.992448	-305.993309	-305.993315
+ 0.0000	-305.993299	-305.993299	-305.993299
+ 0.0005	-305.994177	-305.993309	-305.993315
+ 0.0010	-305.995081	-305.993341	-305.993361
+ 0.0015	-305.996012	-305.993393	-305.993439
+ 0.0020	-305.996970	-305.993466	-305.993549
+ 0.0025	-305.997955	-305.993560	-305.993689
+ 0.0030	-305.998966	-305.993675	-305.993861

Table S53. VI_{1a} Under EEFs in SMD Dichloromethane.

Figure S55. VI_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-305.988428	-305.993855	-305.994037
- 0.0025	-305.989195	-305.993733	-305.993859
- 0.0020	-305.989990	-305.993632	-305.993713
- 0.0015	-305.990814	-305.993554	-305.993599
-0.0010	-305.991666	-305.993498	-305.993518
- 0.0005	-305.992546	-305.993465	-305.993470
+ 0.0000	-305.993454	-305.993454	-305.993454
+ 0.0005	-305.994390	-305.993465	-305.993470
+ 0.0010	-305.995355	-305.993498	-305.993518
+ 0.0015	-305.996347	-305.993554	-305.993599
+ 0.0020	-305.997369	-305.993632	-305.993713
+ 0.0025	-305.998418	-305.993733	-305.993859
+ 0.0030	-305.999496	-305.993855	-305.994037

Table S54. VI1a Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S56. VI_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-305.975625	-305.981125	-305.981305
- 0.0025	-305.976402	-305.981000	-305.981125
-0.0020	-305.977208	-305.980898	-305.980978
- 0.0015	-305.978043	-305.980819	-305.980864
-0.0010	-305.978906	-305.980763	-305.980783
- 0.0005	-305.979797	-305.980729	-305.980734
+ 0.0000	-305.980717	-305.980717	-305.980717
+ 0.0005	-305.981666	-305.980729	-305.980734
+ 0.0010	-305.982643	-305.980763	-305.980783
+ 0.0015	-305.983649	-305.980819	-305.980864
+ 0.0020	-305.984683	-305.980898	-305.980978
+ 0.0025	-305.985745	-305.981000	-305.981125
+ 0.0030	-305.986837	-305.981125	-305.981305

Table S55. VI1a Under EEFs in SMD Water. Energy given in Hartree.

Figure S57. VI_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-305.858380	-305.859994	-305.860271
- 0.0025	-305.858551	-305.859898	-305.860119
- 0.0020	-305.858742	-305.859820	-305.859990
- 0.0015	-305.858952	-305.859761	-305.859884
-0.0010	-305.859182	-305.859721	-305.859799
- 0.0005	-305.859430	-305.859700	-305.859738
+ 0.0000	-305.859698	-305.859698	-305.859698
+ 0.0005	-305.859985	-305.859715	-305.859681
+ 0.0010	-305.860291	-305.859751	-305.859686
+ 0.0015	-305.860617	-305.859805	-305.859714
+ 0.0020	-305.860962	-305.859879	-305.859764
+ 0.0025	-305.861326	-305.859972	-305.859837
+ 0.0030	-305.861710	-305.860084	-305.859932

Table S56. ³VI_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S58. ³VI_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-305.869624	-305.871607	-305.871904
- 0.0025	-305.869838	-305.871492	-305.871730
-0.0020	-305.870075	-305.871399	-305.871582
- 0.0015	-305.870334	-305.871327	-305.871460
-0.0010	-305.870615	-305.871278	-305.871363
- 0.0005	-305.870920	-305.871251	-305.871292
+ 0.0000	-305.871246	-305.871246	-305.871246
+ 0.0005	-305.871595	-305.871263	-305.871226
+ 0.0010	-305.871967	-305.871303	-305.871232
+ 0.0015	-305.872362	-305.871364	-305.871264
+ 0.0020	-305.872779	-305.871448	-305.871321
+ 0.0025	-305.873219	-305.871555	-305.871404
+ 0.0030	-305.873681	-305.871683	-305.871513

Table S57. ³VI_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S59. ³VI_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-305.871809	-305.874179	-305.874485
- 0.0025	-305.872068	-305.874042	-305.874291
- 0.0020	-305.872352	-305.873931	-305.874125
- 0.0015	-305.872662	-305.873846	-305.873988
-0.0010	-305.872998	-305.873787	-305.873879
- 0.0005	-305.873359	-305.873754	-305.873799
+ 0.0000	-305.873748	-305.873748	-305.873748
+ 0.0005	-305.874162	-305.873767	-305.873725
+ 0.0010	-305.874602	-305.873812	-305.873730
+ 0.0015	-305.875068	-305.873883	-305.873764
+ 0.0020	-305.875561	-305.873981	-305.873827
+ 0.0025	-305.876080	-305.874105	-305.873919
+ 0.0030	-305.876625	-305.874256	-305.874039

 Table S58. ³VI1a Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S60. ³VI_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-305.870894	-305.873422	-305.873729
- 0.0025	-305.871170	-305.873276	-305.873527
- 0.0020	-305.871474	-305.873157	-305.873355
- 0.0015	-305.871805	-305.873067	-305.873212
-0.0010	-305.872163	-305.873004	-305.873099
- 0.0005	-305.872548	-305.872969	-305.873015
+ 0.0000	-305.872961	-305.872961	-305.872961
+ 0.0005	-305.873402	-305.872982	-305.872937
+ 0.0010	-305.873870	-305.873031	-305.872942
+ 0.0015	-305.874366	-305.873107	-305.872977
+ 0.0020	-305.874890	-305.873212	-305.873042
+ 0.0025	-305.875441	-305.873345	-305.873136
+ 0.0030	-305.876020	-305.873507	-305.873260

Table S59. ³VI_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S61. ³VI_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-305.863685	-305.866245	-305.866552
- 0.0025	-305.863964	-305.866097	-305.866349
- 0.0020	-305.864272	-305.865977	-305.866175
- 0.0015	-305.864607	-305.865885	-305.866031
-0.0010	-305.864969	-305.865821	-305.865917
- 0.0005	-305.865360	-305.865785	-305.865833
+ 0.0000	-305.865778	-305.865778	-305.865778
+ 0.0005	-305.866224	-305.865799	-305.865754
+ 0.0010	-305.866698	-305.865849	-305.865759
+ 0.0015	-305.867200	-305.865926	-305.865794
+ 0.0020	-305.867730	-305.866033	-305.865859
+ 0.0025	-305.868288	-305.866168	-305.865954
+ 0.0030	-305.868875	-305.866332	-305.866079

Table S60. ³VI_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S62. ³VI_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-345.278395	-345.281889	-345.282081
- 0.0025	-345.278870	-345.281794	-345.281930
- 0.0020	-345.279367	-345.281717	-345.281806
- 0.0015	-345.279888	-345.281658	-345.281710
- 0.0010	-345.280431	-345.281617	-345.281641
- 0.0005	-345.280997	-345.281593	-345.281600
+ 0.0000	-345.281587	-345.281587	-345.281587
+ 0.0005	-345.282199	-345.281598	-345.281600
+ 0.0010	-345.282834	-345.281627	-345.281641
+ 0.0015	-345.283492	-345.281674	-345.281710
+ 0.0020	-345.284174	-345.281738	-345.281806
+ 0.0025	-345.284878	-345.281820	-345.281930
+ 0.0030	-345.285606	-345.281920	-345.282080

Table S61. VII_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S63. VII_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-345.293356	-345.297623	-345.297860
- 0.0025	-345.293943	-345.297515	-345.297685
- 0.0020	-345.294558	-345.297427	-345.297541
- 0.0015	-345.295199	-345.297361	-345.297429
- 0.0010	-345.295868	-345.297315	-345.297349
- 0.0005	-345.296563	-345.297290	-345.297301
+ 0.0000	-345.297285	-345.297285	-345.297285
+ 0.0005	-345.298034	-345.297301	-345.297301
+ 0.0010	-345.298810	-345.297338	-345.297349
+ 0.0015	-345.299613	-345.297396	-345.297429
+ 0.0020	-345.300443	-345.297474	-345.297541
+ 0.0025	-345.301300	-345.297573	-345.297685
+ 0.0030	-345.302184	-345.297693	-345.297860

Table S62. VII_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S64. VII_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-345.297096	-345.302196	-345.302478
- 0.0025	-345.297808	-345.302073	-345.302280
- 0.0020	-345.298550	-345.301975	-345.302118
- 0.0015	-345.299324	-345.301902	-345.301992
- 0.0010	-345.300128	-345.301853	-345.301901
- 0.0005	-345.300963	-345.301829	-345.301847
+ 0.0000	-345.301829	-345.301829	-345.301829
+ 0.0005	-345.302727	-345.301854	-345.301847
+ 0.0010	-345.303655	-345.301904	-345.301901
+ 0.0015	-345.304614	-345.301978	-345.301992
+ 0.0020	-345.305605	-345.302076	-345.302118
+ 0.0025	-345.306626	-345.302199	-345.302280
+ 0.0030	-345.307679	-345.302347	-345.302478

Table S63. VII_{1a} Under EEFs in SMD Dichloromethane.

Figure S65. VII_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-345.296859	-345.302306	-345.302606
- 0.0025	-345.297623	-345.302178	-345.302399
- 0.0020	-345.298419	-345.302075	-345.302231
- 0.0015	-345.299248	-345.302000	-345.302099
- 0.0010	-345.300110	-345.301950	-345.302006
- 0.0005	-345.301004	-345.301927	-345.301949
+ 0.0000	-345.301931	-345.301931	-345.301931
+ 0.0005	-345.302890	-345.301960	-345.301949
+ 0.0010	-345.303882	-345.302016	-345.302006
+ 0.0015	-345.304907	-345.302099	-345.302099
+ 0.0020	-345.305964	-345.302208	-345.302231
+ 0.0025	-345.307055	-345.302343	-345.302399
+ 0.0030	-345.308178	-345.302505	-345.302606

Table S64. VII $_{1a}$ Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S66. VII_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-345.284153	-345.289672	-345.289976
- 0.0025	-345.284928	-345.289542	-345.289768
- 0.0020	-345.285736	-345.289439	-345.289597
- 0.0015	-345.286576	-345.289363	-345.289465
- 0.0010	-345.287449	-345.289314	-345.289371
- 0.0005	-345.288356	-345.289291	-345.289314
+ 0.0000	-345.289295	-345.289295	-345.289295
+ 0.0005	-345.290267	-345.289326	-345.289314
+ 0.0010	-345.291272	-345.289384	-345.289371
+ 0.0015	-345.292311	-345.289468	-345.289465
+ 0.0020	-345.293382	-345.289579	-345.289598
+ 0.0025	-345.294487	-345.289717	-345.289768
+ 0.0030	-345.295625	-345.289882	-345.289976

Table S65. VII_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S67. VII_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-345.183650	-345.185481	-345.184515
- 0.0025	-345.183655	-345.185186	-345.184367
- 0.0020	-345.183683	-345.184912	-345.184245
- 0.0015	-345.183735	-345.184659	-345.184150
- 0.0010	-345.183809	-345.184427	-345.184082
- 0.0005	-345.183907	-345.184217	-345.184042
+ 0.0000	-345.184028	-345.184028	-345.184028
+ 0.0005	-345.184173	-345.183861	-345.184042
+ 0.0010	-345.184340	-345.183716	-345.184082
+ 0.0015	-345.184531	-345.183592	-345.184150
+ 0.0020	-345.184746	-345.183491	-345.184245
+ 0.0025	-345.184984	-345.183411	-345.184367
+ 0.0030	-345.185246	-345.183354	-345.184516

Table S66. ³VII_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S68. ³VII_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-345.195257	-345.197561	-345.196293
- 0.0025	-345.195267	-345.197193	-345.196120
- 0.0020	-345.195305	-345.196850	-345.195979
- 0.0015	-345.195370	-345.196532	-345.195869
- 0.0010	-345.195462	-345.196239	-345.195791
- 0.0005	-345.195581	-345.195971	-345.195744
+ 0.0000	-345.195728	-345.195728	-345.195728
+ 0.0005	-345.195903	-345.195511	-345.195744
+ 0.0010	-345.196104	-345.195320	-345.195791
+ 0.0015	-345.196334	-345.195154	-345.195870
+ 0.0020	-345.196590	-345.195014	-345.195980
+ 0.0025	-345.196875	-345.194901	-345.196121
+ 0.0030	-345.197187	-345.194814	-345.196294

Table S67. ³VII_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S69. ³VII_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-345.197734	-345.200567	-345.198919
- 0.0025	-345.197746	-345.200112	-345.198725
- 0.0020	-345.197791	-345.199687	-345.198567
- 0.0015	-345.197867	-345.199292	-345.198444
- 0.0010	-345.197975	-345.198927	-345.198356
- 0.0005	-345.198114	-345.198591	-345.198303
+ 0.0000	-345.198286	-345.198286	-345.198286
+ 0.0005	-345.198489	-345.198011	-345.198303
+ 0.0010	-345.198725	-345.197766	-345.198356
+ 0.0015	-345.198993	-345.197553	-345.198444
+ 0.0020	-345.199293	-345.197370	-345.198568
+ 0.0025	-345.199625	-345.197218	-345.198726
+ 0.0030	-345.199990	-345.197097	-345.198920

 Table S68. ³VII1a Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S70. ³VII_{1a} Energy under EEFs in DCM. Axis definitions given in (B).
Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-345.196825	-345.199886	-345.198060
- 0.0025	-345.196837	-345.199391	-345.197859
- 0.0020	-345.196882	-345.198929	-345.197694
- 0.0015	-345.196961	-345.198499	-345.197566
- 0.0010	-345.197074	-345.198101	-345.197475
- 0.0005	-345.197221	-345.197735	-345.197420
+ 0.0000	-345.197402	-345.197402	-345.197402
+ 0.0005	-345.197616	-345.197101	-345.197420
+ 0.0010	-345.197865	-345.196833	-345.197475
+ 0.0015	-345.198148	-345.196598	-345.197566
+ 0.0020	-345.198465	-345.196397	-345.197695
+ 0.0025	-345.198817	-345.196229	-345.197859
+ 0.0030	-345.199203	-345.196095	-345.198061

Table S69. ³VII_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S71. ³VII_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-345.188908	-345.192017	-345.190152
- 0.0025	-345.188919	-345.191514	-345.189949
- 0.0020	-345.188965	-345.191043	-345.189783
- 0.0015	-345.189045	-345.190605	-345.189654
- 0.0010	-345.189158	-345.190200	-345.189562
- 0.0005	-345.189306	-345.189828	-345.189507
+ 0.0000	-345.189489	-345.189489	-345.189489
+ 0.0005	-345.189706	-345.189183	-345.189507
+ 0.0010	-345.189957	-345.188910	-345.189563
+ 0.0015	-345.190243	-345.188671	-345.189655
+ 0.0020	-345.190564	-345.188466	-345.189784
+ 0.0025	-345.190919	-345.188294	-345.189950
+ 0.0030	-345.191310	-345.188158	-345.190153

Table S70. ³VII_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S72. ³VII_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-327.995390	-327.998327	-327.997199
- 0.0025	-327.995767	-327.998222	-327.997261
- 0.0020	-327.996166	-327.998136	-327.997350
- 0.0015	-327.996587	-327.998069	-327.997467
- 0.0010	-327.997030	-327.998021	-327.997611
- 0.0005	-327.997496	-327.997993	-327.997783
+ 0.0000	-327.997983	-327.997983	-327.997983
+ 0.0005	-327.998493	-327.997993	-327.998211
+ 0.0010	-327.999024	-327.998021	-327.998465
+ 0.0015	-327.999578	-327.998069	-327.998748
+ 0.0020	-328.000154	-327.998136	-327.999058
+ 0.0025	-328.000753	-327.998222	-327.999395
+ 0.0030	-328.001373	-327.998327	-327.999761

Table S71. VIII_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S73. VIII_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-328.006387	-328.009991	-328.008681
- 0.0025	-328.006855	-328.009869	-328.008752
- 0.0020	-328.007349	-328.009768	-328.008855
- 0.0015	-328.007870	-328.009690	-328.008991
- 0.0010	-328.008417	-328.009635	-328.009159
- 0.0005	-328.008990	-328.009601	-328.009358
+ 0.0000	-328.009590	-328.009590	-328.009590
+ 0.0005	-328.010216	-328.009601	-328.009854
+ 0.0010	-328.010869	-328.009635	-328.010151
+ 0.0015	-328.011548	-328.009691	-328.010479
+ 0.0020	-328.012254	-328.009769	-328.010840
+ 0.0025	-328.012985	-328.009869	-328.011232
+ 0.0030	-328.013744	-328.009991	-328.011657

Table S72. VIII_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S74. VIII_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-328.011023	-328.015402	-328.013943
- 0.0025	-328.011598	-328.015260	-328.014017
- 0.0020	-328.012203	-328.015143	-328.014128
- 0.0015	-328.012839	-328.015052	-328.014275
- 0.0010	-328.013507	-328.014987	-328.014459
- 0.0005	-328.014206	-328.014948	-328.014679
+ 0.0000	-328.014936	-328.014936	-328.014936
+ 0.0005	-328.015697	-328.014949	-328.015228
+ 0.0010	-328.016489	-328.014988	-328.015557
+ 0.0015	-328.017313	-328.015052	-328.015923
+ 0.0020	-328.018169	-328.015143	-328.016325
+ 0.0025	-328.019055	-328.015260	-328.016763
+ 0.0030	-328.019974	-328.015403	-328.017237

 Table S73. VIII 1a Under EEFs in SMD Dichloromethane.
 Energy given in Hartree.

Figure S75. VIII_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-328.010761	-328.015482	-328.013971
- 0.0025	-328.011382	-328.015330	-328.014045
- 0.0020	-328.012036	-328.015205	-328.014157
- 0.0015	-328.012723	-328.015109	-328.014307
- 0.0010	-328.013444	-328.015040	-328.014495
- 0.0005	-328.014197	-328.014998	-328.014721
+ 0.0000	-328.014985	-328.014985	-328.014985
+ 0.0005	-328.015805	-328.014999	-328.015287
+ 0.0010	-328.016659	-328.015040	-328.015626
+ 0.0015	-328.017547	-328.015109	-328.016004
+ 0.0020	-328.018468	-328.015206	-328.016420
+ 0.0025	-328.019423	-328.015330	-328.016873
+ 0.0030	-328.020412	-328.015482	-328.017365

Table S74. VIII_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S76. VIII_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-328.000709	-328.005502	-328.003981
- 0.0025	-328.001340	-328.005348	-328.004055
- 0.0020	-328.002004	-328.005222	-328.004167
- 0.0015	-328.002702	-328.005124	-328.004317
- 0.0010	-328.003434	-328.005054	-328.004506
- 0.0005	-328.004199	-328.005012	-328.004733
+ 0.0000	-328.004998	-328.004998	-328.004998
+ 0.0005	-328.005832	-328.005012	-328.005302
+ 0.0010	-328.006699	-328.005054	-328.005644
+ 0.0015	-328.007600	-328.005124	-328.006024
+ 0.0020	-328.008535	-328.005222	-328.006442
+ 0.0025	-328.009504	-328.005348	-328.006899
+ 0.0030	-328.010508	-328.005502	-328.007394

Table S75. VIII_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S77. VIII_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-327.923106	-327.924137	-327.922553
- 0.0025	-327.923080	-327.923944	-327.922603
- 0.0020	-327.923077	-327.923772	-327.922683
- 0.0015	-327.923095	-327.923619	-327.922790
- 0.0010	-327.923136	-327.923487	-327.922926
- 0.0005	-327.923198	-327.923375	-327.923090
+ 0.0000	-327.923283	-327.923283	-327.923283
+ 0.0005	-327.923389	-327.923211	-327.923504
+ 0.0010	-327.923518	-327.923160	-327.923753
+ 0.0015	-327.923668	-327.923128	-327.924031
+ 0.0020	-327.923841	-327.923117	-327.924337
+ 0.0025	-327.924035	-327.923127	-327.924671
+ 0.0030	-327.924252	-327.923157	-327.925035

Table S76. ³VIII_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S78. ³VIII_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-327.930927	-327.932164	-327.930346
- 0.0025	-327.930900	-327.931937	-327.930398
- 0.0020	-327.930898	-327.931734	-327.930484
- 0.0015	-327.930924	-327.931554	-327.930602
- 0.0010	-327.930975	-327.931398	-327.930754
- 0.0005	-327.931053	-327.931266	-327.930939
+ 0.0000	-327.931157	-327.931157	-327.931157
+ 0.0005	-327.931287	-327.931071	-327.931407
+ 0.0010	-327.931443	-327.931010	-327.931691
+ 0.0015	-327.931626	-327.930972	-327.932008
+ 0.0020	-327.931835	-327.930957	-327.932358
+ 0.0025	-327.932070	-327.930967	-327.932741
+ 0.0030	-327.932332	-327.931000	-327.933158

 Table S77. ³VIII_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S79. ³VIII_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-327.932928	-327.934402	-327.932392
- 0.0025	-327.932900	-327.934137	-327.932438
- 0.0020	-327.932904	-327.933901	-327.932522
- 0.0015	-327.932939	-327.933691	-327.932643
- 0.0010	-327.933004	-327.933510	-327.932801
- 0.0005	-327.933101	-327.933355	-327.932996
+ 0.0000	-327.933229	-327.933229	-327.933229
+ 0.0005	-327.933388	-327.933130	-327.933499
+ 0.0010	-327.933578	-327.933059	-327.933806
+ 0.0015	-327.933799	-327.933015	-327.934151
+ 0.0020	-327.934051	-327.932999	-327.934533
+ 0.0025	-327.934334	-327.933012	-327.934952
+ 0.0030	-327.934649	-327.933052	-327.935409

 Table S78. ³VIII_{1a} Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S80. ³VIII_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-327.931658	-327.933237	-327.931161
- 0.0025	-327.931631	-327.932956	-327.931203
- 0.0020	-327.931637	-327.932705	-327.931283
- 0.0015	-327.931676	-327.932483	-327.931402
- 0.0010	-327.931749	-327.932290	-327.931560
- 0.0005	-327.931854	-327.932127	-327.931757
+ 0.0000	-327.931993	-327.931993	-327.931993
+ 0.0005	-327.932165	-327.931888	-327.932268
+ 0.0010	-327.932370	-327.931814	-327.932581
+ 0.0015	-327.932608	-327.931768	-327.932934
+ 0.0020	-327.932880	-327.931753	-327.933325
+ 0.0025	-327.933184	-327.931767	-327.933755
+ 0.0030	-327.933522	-327.931811	-327.934225

 Table S79. ³VIII_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S81. ³VIII_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-327.922035	-327.923637	-327.921547
- 0.0025	-327.922008	-327.923352	-327.921588
- 0.0020	-327.922015	-327.923098	-327.921667
- 0.0015	-327.922055	-327.922873	-327.921786
- 0.0010	-327.922129	-327.922678	-327.921944
- 0.0005	-327.922236	-327.922512	-327.922141
+ 0.0000	-327.922377	-327.922377	-327.922377
+ 0.0005	-327.922552	-327.922271	-327.922652
+ 0.0010	-327.922760	-327.922196	-327.922967
+ 0.0015	-327.923002	-327.922150	-327.923321
+ 0.0020	-327.923277	-327.922135	-327.923714
+ 0.0025	-327.923587	-327.922149	-327.924147
+ 0.0030	-327.923930	-327.922194	-327.924618

 Table S80. ³VIII_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S82. ³VIII_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-320.817020	-320.818120	-320.820280
- 0.0025	-320.817120	-320.818050	-320.819820
- 0.0020	-320.817240	-320.817990	-320.819390
- 0.0015	-320.817380	-320.817950	-320.818980
- 0.0010	-320.817530	-320.817920	-320.818600
- 0.0005	-320.817700	-320.817900	-320.818240
+ 0.0000	-320.817890	-320.817890	-320.817890
+ 0.0005	-320.818100	-320.817900	-320.817570
+ 0.0010	-320.818330	-320.817920	-320.817280
+ 0.0015	-320.818570	-320.817950	-320.817000
+ 0.0020	-320.818830	-320.817990	-320.816750
+ 0.0025	-320.819110	-320.818050	-320.816520
+ 0.0030	-320.819410	-320.818120	-320.816310

Table S81. IX_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S83. IX1a Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-320.834909	-320.836315	-320.838881
- 0.0025	-320.835047	-320.836235	-320.838346
- 0.0020	-320.835207	-320.836170	-320.837837
- 0.0015	-320.835387	-320.836119	-320.837353
- 0.0010	-320.835589	-320.836083	-320.836895
- 0.0005	-320.835811	-320.836061	-320.836462
+ 0.0000	-320.836054	-320.836054	-320.836054
+ 0.0005	-320.836318	-320.836061	-320.835672
+ 0.0010	-320.836603	-320.836083	-320.835315
+ 0.0015	-320.836909	-320.836119	-320.834983
+ 0.0020	-320.837236	-320.836170	-320.834677
+ 0.0025	-320.837584	-320.836235	-320.834396
+ 0.0030	-320.837953	-320.836315	-320.834141

Table S82. IX_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S84. IX_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-320.839211	-320.840990	-320.843916
- 0.0025	-320.839396	-320.840898	-320.843308
- 0.0020	-320.839606	-320.840822	-320.842728
- 0.0015	-320.839840	-320.840763	-320.842176
- 0.0010	-320.840098	-320.840721	-320.841652
- 0.0005	-320.840381	-320.840696	-320.841156
+ 0.0000	-320.840688	-320.840688	-320.840688
+ 0.0005	-320.841019	-320.840696	-320.840247
+ 0.0010	-320.841375	-320.840721	-320.839835
+ 0.0015	-320.841755	-320.840763	-320.839451
+ 0.0020	-320.842159	-320.840822	-320.839095
+ 0.0025	-320.842588	-320.840897	-320.838766
+ 0.0030	-320.843042	-320.840989	-320.838466

Table S83. IX1a Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S85. IX_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-320.839550	-320.841494	-320.844549
- 0.0025	-320.839757	-320.841396	-320.843914
- 0.0020	-320.839988	-320.841315	-320.843308
- 0.0015	-320.840246	-320.841253	-320.842731
- 0.0010	-320.840529	-320.841208	-320.842183
- 0.0005	-320.840838	-320.841182	-320.841663
+ 0.0000	-320.841173	-320.841173	-320.841173
+ 0.0005	-320.841533	-320.841182	-320.840711
+ 0.0010	-320.841919	-320.841208	-320.840278
+ 0.0015	-320.842331	-320.841253	-320.839874
+ 0.0020	-320.842769	-320.841315	-320.839499
+ 0.0025	-320.843233	-320.841395	-320.839153
+ 0.0030	-320.843723	-320.841493	-320.838836

Table S84. IX_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S86. IX1a Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-320.825461	-320.827439	-320.830519
- 0.0025	-320.825671	-320.827339	-320.829879
- 0.0020	-320.825908	-320.827258	-320.829268
- 0.0015	-320.826170	-320.827195	-320.828686
- 0.0010	-320.826458	-320.827150	-320.828132
- 0.0005	-320.826773	-320.827122	-320.827608
+ 0.0000	-320.827113	-320.827113	-320.827113
+ 0.0005	-320.827480	-320.827122	-320.826647
+ 0.0010	-320.827873	-320.827149	-320.826210
+ 0.0015	-320.828291	-320.827194	-320.825803
+ 0.0020	-320.828736	-320.827258	-320.825424
+ 0.0025	-320.829207	-320.827339	-320.825074
+ 0.0030	-320.829705	-320.827438	-320.824753

Table S85. IX_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S87. IX_{1a} Energy under EEFs in Water. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-320.679890	-320.678510	-320.681760
- 0.0025	-320.679650	-320.678510	-320.681190
- 0.0020	-320.679420	-320.678520	-320.680650
- 0.0015	-320.679220	-320.678550	-320.680130
- 0.0010	-320.679030	-320.678590	-320.679640
- 0.0005	-320.678870	-320.678650	-320.679170
+ 0.0000	-320.678720	-320.678720	-320.678720
+ 0.0005	-320.678590	-320.678810	-320.678290
+ 0.0010	-320.678480	-320.678910	-320.677890
+ 0.0015	-320.678380	-320.679030	-320.677520
+ 0.0020	-320.678310	-320.679160	-320.677160
+ 0.0025	-320.678250	-320.679310	-320.676840
+ 0.0030	-320.678210	-320.679470	-320.676530

Table S86. ³IX_{1a} Under EEFs in Gas. Energy given in Hartree.

Figure S88. ³IX_{1a} Energy under EEFs in Gas. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-320.694880	-320.693259	-320.697148
- 0.0025	-320.694599	-320.693256	-320.696475
- 0.0020	-320.694339	-320.693272	-320.695829
- 0.0015	-320.694101	-320.693306	-320.695210
- 0.0010	-320.693884	-320.693358	-320.694618
- 0.0005	-320.693689	-320.693428	-320.694053
+ 0.0000	-320.693516	-320.693516	-320.693516
+ 0.0005	-320.693364	-320.693621	-320.693005
+ 0.0010	-320.693235	-320.693744	-320.692522
+ 0.0015	-320.693127	-320.693885	-320.692065
+ 0.0020	-320.693042	-320.694042	-320.691636
+ 0.0025	-320.692979	-320.694217	-320.691233
+ 0.0030	-320.692938	-320.694410	-320.690858

Table S87. ³IX_{1a} Under EEFs in SMD Toluene. Energy given in Hartree.

Figure S89. ³IX_{1a} Energy under EEFs in Toluene. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-320.698132	-320.696295	-320.700754
- 0.0025	-320.697812	-320.696291	-320.699985
- 0.0020	-320.697517	-320.696308	-320.699246
- 0.0015	-320.697247	-320.696346	-320.698537
- 0.0010	-320.697003	-320.696406	-320.697858
- 0.0005	-320.696783	-320.696488	-320.697209
+ 0.0000	-320.696590	-320.696590	-320.696590
+ 0.0005	-320.696421	-320.696712	-320.696000
+ 0.0010	-320.696278	-320.696856	-320.695440
+ 0.0015	-320.696161	-320.697020	-320.694910
+ 0.0020	-320.696070	-320.697204	-320.694411
+ 0.0025	-320.696004	-320.697409	-320.693941
+ 0.0030	-320.695965	-320.697634	-320.693501

Table S88. ³IX_{1a} Under EEFs in SMD Dichloromethane. Energy given in Hartree.

Figure S90. ³IX_{1a} Energy under EEFs in DCM. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-320.698078	-320.696165	-320.700830
- 0.0025	-320.697743	-320.696158	-320.700026
- 0.0020	-320.697435	-320.696175	-320.699253
- 0.0015	-320.697153	-320.696214	-320.698510
- 0.0010	-320.696898	-320.696276	-320.697799
- 0.0005	-320.696670	-320.696361	-320.697118
+ 0.0000	-320.696469	-320.696469	-320.696469
+ 0.0005	-320.696294	-320.696599	-320.695850
+ 0.0010	-320.696147	-320.696750	-320.695262
+ 0.0015	-320.696027	-320.696924	-320.694705
+ 0.0020	-320.695935	-320.697120	-320.694179
+ 0.0025	-320.695870	-320.697337	-320.693684
+ 0.0030	-320.695832	-320.697576	-320.693219

 Table S89. ³IX_{1a} Under EEFs in SMD Acetonitrile. Energy given in Hartree.

Figure S91. ³IX_{1a} Energy under EEFs in MeCN. Axis definitions given in (B).

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-320.686313	-320.684385	-320.689090
- 0.0025	-320.685975	-320.684378	-320.688279
- 0.0020	-320.685664	-320.684394	-320.687499
- 0.0015	-320.685380	-320.684433	-320.686751
- 0.0010	-320.685123	-320.684496	-320.686033
- 0.0005	-320.684893	-320.684582	-320.685346
+ 0.0000	-320.684690	-320.684690	-320.684690
+ 0.0005	-320.684515	-320.684822	-320.684066
+ 0.0010	-320.684367	-320.684975	-320.683472
+ 0.0015	-320.684246	-320.685151	-320.682910
+ 0.0020	-320.684154	-320.685349	-320.682378
+ 0.0025	-320.684089	-320.685569	-320.681878
+ 0.0030	-320.684052	-320.685811	-320.681409

 Table 90. ³IX_{1a} Under EEFs in SMD Water. Energy given in Hartree.

Figure S92. ³IX_{1a} Energy under EEFs in Water. Axis definitions given in (B).

S4. Electronic Singlet-Triplet Gaps of NHCs in Test Set under EEFs Across Different Solvents

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-354.521265	-359.509715	-359.798520
- 0.0025	-355.335170	-359.483460	-359.719755
- 0.0020	-356.122820	-359.483460	-359.640990
- 0.0015	-356.884215	-359.430950	-359.562225
- 0.0010	-357.698120	-359.404695	-359.457205
- 0.0005	-358.485770	-359.325930	-359.378440
+ 0.0000	-359.273420	-359.273420	-359.273420
+ 0.0005	-360.087325	-359.194655	-359.194655
+ 0.0010	-360.874975	-359.142145	-359.115890
+ 0.0015	-361.662625	-359.010870	-359.010870
+ 0.0020	-362.476530	-358.932105	-358.905850
+ 0.0025	-363.290435	-358.800830	-358.800830
+ 0.0030	-364.051830	-358.669555	-358.695810

Table S91. ΔE_{ST} I_{1a} Under EEFs in Gas. Energy given in kJ/mol.

Figure S93. I_{1a} Singlet Triplet Splitting under EEFs in Gas. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-365.100476	-371.239493	-371.545755
- 0.0025	-366.070454	-371.224562	-371.454889
- 0.0020	-367.043204	-371.196963	-371.361317
- 0.0015	-368.018722	-371.156819	-371.265155
- 0.0010	-368.996996	-371.104212	-371.166473
- 0.0005	-369.978009	-371.039191	-371.065333
+ 0.0000	-370.961752	-370.961752	-370.961752
+ 0.0005	-371.948205	-370.871855	-370.855742
+ 0.0010	-372.937341	-370.769413	-370.747280
+ 0.0015	-373.929145	-370.654306	-370.636321
+ 0.0020	-374.923584	-370.526355	-370.522805
+ 0.0025	-375.920631	-370.385345	-370.406630
+ 0.0030	-376.920251	-370.230999	-370.287666

Table S92. ΔE_{sT} I_{1a} Under EEFs in Toluene. Energy given in kJ/mol.

Singlet-Triplet Splitting; I1a Toluene

Figure S94. I_{1a} Singlet Triplet Splitting under EEFs in Toluene. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-370.458533	-377.942941	-378.233689
- 0.0025	-371.637343	-377.921572	-378.135789
- 0.0020	-372.820176	-377.885196	-378.034127
- 0.0015	-374.007030	-377.833951	-377.928803
-0.0010	-375.197891	-377.767930	-377.819905
- 0.0005	-376.392749	-377.687149	-377.707489
+ 0.0000	-377.591583	-377.591583	-377.591583
+ 0.0005	-378.794372	-377.481139	-377.472194
+ 0.0010	-380.001089	-377.355669	-377.349307
+ 0.0015	-381.211702	-377.214966	-377.222882
+ 0.0020	-382.426166	-377.058749	-377.092851
+ 0.0025	-383.644445	-376.886676	-376.959121
+ 0.0030	-384.866476	-376.698320	-376.821566

Table S93. ΔE_{ST} I_{1a} Under EEFs in DCM. Energy given in kJ/mol.

Figure S95. I_{1a} Singlet Triplet Splitting under EEFs in DCM. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔΕ, Y-EEF	ΔE, Z-EEF
- 0.0030	-372.724993	-380.786132	-381.062649
- 0.0025	-373.992509	-380.761893	-380.962371
- 0.0020	-375.264637	-380.721424	-380.857850
- 0.0015	-376.541378	-380.664868	-380.749201
-0.0010	-377.822725	-380.592312	-380.636504
- 0.0005	-379.108663	-380.503767	-380.519819
+ 0.0000	-380.399180	-380.399180	-380.399180
+ 0.0005	-381.694245	-380.278426	-380.274587
+ 0.0010	-382.993836	-380.141311	-380.146032
+ 0.0015	-384.297909	-379.987567	-380.013471
+ 0.0020	-385.606421	-379.816852	-379.876842
+ 0.0025	-386.919315	-379.628732	-379.736050
+ 0.0030	-388.236529	-379.422681	-379.590970

Table S94. ΔE_{ST} I_1a Under EEFs in MeCN. Energy given in kJ/mol.

Figure S96. I_{1a} Singlet Triplet Splitting under EEFs in MeCN. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-363.143966	-371.325901	-371.598995
- 0.0025	-364.430002	-371.301085	-371.498247
- 0.0020	-365.720784	-371.259752	-371.393159
- 0.0015	-367.016306	-371.202054	-371.283843
-0.0010	-368.316564	-371.128072	-371.170382
- 0.0005	-369.621542	-371.037818	-371.052833
+ 0.0000	-370.931228	-370.931228	-370.931228
+ 0.0005	-372.245598	-370.808174	-370.805577
+ 0.0010	-373.564618	-370.668444	-370.675861
+ 0.0015	-374.888253	-370.511765	-370.542042
+ 0.0020	-376.216452	-370.337771	-370.404062
+ 0.0025	-377.549161	-370.146007	-370.261818
+ 0.0030	-378.886309	-369.935922	-370.115189

Table S95. ΔE_{sT} I_{1a} Under EEFs in Water. Energy given in kJ/mol.

Figure S97. I_{1a} Singlet Triplet Splitting under EEFs in Water. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-159.767246	-177.591154	-177.582290
- 0.0025	-162.738091	-177.627008	-177.620772
- 0.0020	-165.716527	-177.656172	-177.652100
- 0.0015	-168.702621	-177.678730	-177.676359
- 0.0010	-171.696421	-177.694748	-177.693622
- 0.0005	-174.697971	-177.704268	-177.703932
+ 0.0000	-177.707325	-177.707325	-177.707325
+ 0.0005	-180.724512	-177.703919	-177.703801
+ 0.0010	-183.749582	-177.694047	-177.693357
+ 0.0015	-186.782570	-177.677677	-177.675966
+ 0.0020	-189.823524	-177.654767	-177.651572
+ 0.0025	-192.872488	-177.625251	-177.620113
+ 0.0030	-195.929515	-177.589048	-177.581497

Table S96. ΔE_{ST} II_{1a} Under EEFs in Gas. Energy given in kJ/mol.

_

Field Strength, eH

Figure S98. II_{1a} Singlet Triplet Splitting under EEFs in Gas. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-186.018292	-207.896728	-207.852349
- 0.0025	-189.666325	-207.940112	-207.909205
- 0.0020	-193.322916	-207.975391	-207.955513
- 0.0015	-196.988198	-208.002675	-207.991396
- 0.0010	-200.662284	-208.022043	-208.016937
- 0.0005	-204.345269	-208.033556	-208.032209
+ 0.0000	-208.037245	-208.037245	-208.037245
+ 0.0005	-211.738286	-208.033123	-208.032057
+ 0.0010	-215.448464	-208.021180	-208.016635
+ 0.0015	-219.167850	-208.001378	-207.990939
+ 0.0020	-222.896504	-207.973661	-207.954907
+ 0.0025	-226.634489	-207.937951	-207.908446
+ 0.0030	-230.381865	-207.894134	-207.851438

Table S97. ΔE_{st} II_{1a} Under EEFs in Toluene. Energy given in KJ/mol.

Figure S99. II_{1a} Singlet Triplet Splitting under EEFs in Toluene. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔΕ, Y-EEF	ΔE, Z-EEF
- 0.0030	-209.954390	-235.992713	-235.909637
- 0.0025	-214.295749	-236.044112	-235.986291
- 0.0020	-218.647316	-236.085884	-236.048752
- 0.0015	-223.009277	-236.118173	-236.097166
-0.0010	-227.381800	-236.141088	-236.131641
- 0.0005	-231.765025	-236.154709	-236.152265
+ 0.0000	-236.159078	-236.159078	-236.159078
+ 0.0005	-240.564066	-236.154210	-236.152097
+ 0.0010	-244.980088	-236.140093	-236.131305
+ 0.0015	-249.407233	-236.116679	-236.096659
+ 0.0020	-253.845575	-236.083894	-236.048080
+ 0.0025	-258.295188	-236.041623	-235.985448
+ 0.0030	-262.756133	-235.989725	-235.908626

Table S98. ΔE_{ST} II_{1a} Under EEFs in DCM. Energy given in KJ/mol.

Figure S100. II_{1a} Singlet Triplet Splitting under EEFs in DCM. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔΕ, Y-EEF	ΔE, Z-EEF
- 0.0030	-219.325417	-247.051130	-246.953005
- 0.0025	-223.947791	-247.106263	-247.037950
- 0.0020	-228.581231	-247.151049	-247.107177
- 0.0015	-233.225948	-247.185653	-247.160839
- 0.0010	-237.882128	-247.210209	-247.199061
- 0.0005	-242.549926	-247.224802	-247.221929
+ 0.0000	-247.229485	-247.229485	-247.229485
+ 0.0005	-251.920926	-247.224282	-247.221756
+ 0.0010	-256.624346	-247.209167	-247.198717
+ 0.0015	-261.339844	-247.184091	-247.160325
+ 0.0020	-266.067493	-247.148967	-247.106489
+ 0.0025	-270.807358	-247.103661	-247.037091
+ 0.0030	-275.559497	-247.048006	-246.951975

Table S99. ΔE_{st} II_{1a} Under EEFs in MeCN. Energy given in KJ/mol.

Figure S101. II_{1a} Singlet Triplet Splitting under EEFs in MeCN. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-217.896557	-245.970183	-245.869091
- 0.0025	-222.576870	-246.026145	-245.955761
- 0.0020	-227.268439	-246.071601	-246.026395
- 0.0015	-231.971479	-246.106719	-246.081152
- 0.0010	-236.686184	-246.131638	-246.120151
- 0.0005	-241.412711	-246.146446	-246.143487
+ 0.0000	-246.151201	-246.151201	-246.151201
+ 0.0005	-250.901778	-246.145921	-246.143314
+ 0.0010	-255.664545	-246.130588	-246.119807
+ 0.0015	-260.439597	-246.105144	-246.080635
+ 0.0020	-265.227004	-246.069500	-246.025707
+ 0.0025	-270.026839	-246.023520	-245.954902
+ 0.0030	-274.839146	-245.967030	-245.868061

Table S100. ΔE_{ST} II_{1a} Under EEFs in Water. Energy given in KJ/mol.

Figure S102. II_{1a} Singlet Triplet Splitting under EEFs in Water. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-252.25804	-266.461995	-273.47208
- 0.0025	-255.014815	-266.85582	-272.68443
- 0.0020	-257.745335	-267.249645	-271.89678
- 0.0015	-260.475855	-267.617215	-271.082875
-0.0010	-263.206375	-267.984785	-270.32148
- 0.0005	-265.96315	-268.352355	-269.48132
+ 0.0000	-268.69367	-268.69367	-268.69367
+ 0.0005	-271.42419	-269.06124	-267.879765
+ 0.0010	-274.15471	-269.3763	-267.092115
+ 0.0015	-276.88523	-269.717615	-266.251955
+ 0.0020	-279.61575	-270.032675	-265.464305
+ 0.0025	-282.320015	-270.347735	-264.6504
+ 0.0030	-285.050535	-270.662795	-263.836495

Table S101. ΔE_{ST} III_{1a} Under EEFs in Gas. Energy given in KJ/mol.

Figure S103. III_{1a} Singlet Triplet Splitting under EEFs in Gas. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-271.060545	-288.442227	-297.042325
- 0.0025	-274.423401	-288.922628	-296.074721
- 0.0020	-277.782392	-289.393036	-295.103168
- 0.0015	-281.137456	-289.853640	-294.127708
- 0.0010	-284.488505	-290.304591	-293.148354
- 0.0005	-287.835408	-290.746016	-292.165120
+ 0.0000	-291.178006	-291.178006	-291.178006
+ 0.0005	-294.516087	-291.600625	-290.186998
+ 0.0010	-297.849406	-292.013915	-289.192067
+ 0.0015	-301.177669	-292.417882	-288.193188
+ 0.0020	-304.500530	-292.812516	-287.190310
+ 0.0025	-307.817590	-293.197771	-286.183373
+ 0.0030	-311.128385	-293.573572	-285.172314

Table S102. ΔE_{ST} III_{1a} Under EEFs in Toluene. Energy given in KJ/mol.

Figure S104. III_{1a} Singlet Triplet Splitting under EEFs in Toluene. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-287.353978	-308.041479	-318.403871
- 0.0025	-291.384262	-308.639613	-317.256611
- 0.0020	-295.408203	-309.224430	-316.103754
- 0.0015	-299.425675	-309.796290	-314.945342
-0.0010	-303.436484	-310.355498	-313.781395
- 0.0005	-307.440355	-310.902303	-312.611926
+ 0.0000	-311.436926	-311.436926	-311.436926
+ 0.0005	-315.425743	-311.959529	-310.256377
+ 0.0010	-319.406245	-312.470246	-309.070245
+ 0.0015	-323.377749	-312.969165	-307.878483
+ 0.0020	-327.339432	-313.456342	-306.681029
+ 0.0025	-331.290308	-313.931791	-305.477812
+ 0.0030	-335.229191	-314.395491	-304.268738

Table S103. ΔE_{ST} III_{1a} Under EEFs in DCM. Energy given in KJ/mol.

Figure S105. III_{1a} Singlet Triplet Splitting under EEFs in DCM. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-293.799518	-315.819006	-326.953426
- 0.0025	-298.110350	-316.477324	-325.734813
- 0.0020	-302.413647	-317.120277	-324.509860
- 0.0015	-306.709266	-317.748347	-323.278600
-0.0010	-310.996965	-318.361952	-322.041055
- 0.0005	-315.276402	-318.961440	-320.797229
+ 0.0000	-319.547111	-319.547111	-319.547111
+ 0.0005	-323.808507	-320.119207	-318.290678
+ 0.0010	-328.059843	-320.677924	-317.027883
+ 0.0015	-332.300201	-321.223409	-315.758672
+ 0.0020	-336.528454	-321.755760	-314.482973
+ 0.0025	-340.743213	-322.275045	-313.200694
+ 0.0030	-344.942787	-322.781270	-311.911739

Table S104. ΔE_{ST} III_{1a} Under EEFs in MeCN. Energy given in KJ/mol.

Figure S106. III_{1a} Singlet Triplet Splitting under EEFs in MeCN. Axis definitions given in S2.
Field	ΔE, X-EEF	ΔΕ, Y-EEF	ΔE, Z-EEF
- 0.0030	-290.153969	-312.445931	-323.745052
- 0.0025	-294.523360	-313.117873	-322.511867
- 0.0020	-298.884959	-313.773954	-321.272177
- 0.0015	-303.238615	-314.414678	-320.026020
-0.0010	-307.584080	-315.040503	-318.773421
- 0.0005	-311.920994	-315.651796	-317.514378
+ 0.0000	-316.248879	-316.248879	-316.248879
+ 0.0005	-320.567107	-316.832013	-314.976895
+ 0.0010	-324.874896	-317.401408	-313.698384
+ 0.0015	-329.171270	-317.957231	-312.413289
+ 0.0020	-333.455028	-318.499591	-311.121527
+ 0.0025	-337.724687	-319.028564	-309.823015
+ 0.0030	-341.978424	-319.544168	-308.517637

Table S105. ΔE_{ST} III_{1a} Under EEFs in Water. Energy given in KJ/mol.

_

Figure S107. III_{1a} Singlet Triplet Splitting under EEFs in Water. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔΕ, Y-EEF	ΔE, Z-EEF
- 0.0030	-327.636145	-330.077860	-328.843875
- 0.0025	-328.476305	-330.576705	-329.500250
- 0.0020	-329.316465	-330.996785	-330.156625
- 0.0015	-330.156625	-331.443120	-330.813000
-0.0010	-331.049295	-331.863200	-331.469375
- 0.0005	-331.889455	-332.335790	-332.099495
+ 0.0000	-332.729615	-332.729615	-332.729615
+ 0.0005	-333.622285	-333.175950	-333.412245
+ 0.0010	-334.462445	-333.569775	-334.042365
+ 0.0015	-335.328860	-334.016110	-334.698740
+ 0.0020	-336.221530	-334.409935	-335.355115
+ 0.0025	-337.087945	-334.830015	-335.985235
+ 0.0030	-337.980615	-335.197585	-336.641610

Table S106. ΔE_{ST} IV_{1a} Under EEFs in Gas. Energy given in KJ/mol.

_

Figure S108. IV_{1a} Singlet Triplet Splitting under EEFs in Gas. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-337.094876	-340.072902	-338.659233
- 0.0025	-338.106975	-340.611621	-339.420179
- 0.0020	-339.122366	-341.144455	-340.180469
- 0.0015	-340.141023	-341.671385	-340.940170
- 0.0010	-341.162923	-342.192371	-341.699342
- 0.0005	-342.188031	-342.707368	-342.458046
+ 0.0000	-343.216319	-343.216319	-343.216319
+ 0.0005	-344.247757	-343.719157	-343.974211
+ 0.0010	-345.282306	-344.215805	-344.731755
+ 0.0015	-346.319928	-344.706169	-345.488983
+ 0.0020	-347.360581	-345.190149	-346.245925
+ 0.0025	-348.404223	-345.667620	-347.002608
+ 0.0030	-349.450802	-346.138453	-347.759051

Table S107. ΔE_{ST} IV_{1a} Under EEFs in Toluene. Energy given in KJ/mol.

Figure S109. IV_{1a} Singlet Triplet Splitting under EEFs in Toluene. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-344.189794	-347.758980	-346.230679
- 0.0025	-345.380891	-348.382788	-347.094644
- 0.0020	-346.576195	-348.999741	-347.957468
- 0.0015	-347.775668	-349.609837	-348.819222
- 0.0010	-348.979273	-350.213053	-349.679974
- 0.0005	-350.186966	-350.809357	-350.539781
+ 0.0000	-351.398695	-351.398695	-351.398695
+ 0.0005	-352.614406	-351.981012	-352.256763
+ 0.0010	-353.834038	-352.556225	-353.114029
+ 0.0015	-355.057518	-353.124250	-353.970524
+ 0.0020	-356.284777	-353.684964	-354.826282
+ 0.0025	-357.515729	-354.238252	-355.681337
+ 0.0030	-358.750273	-354.783957	-356.535704

Table S108. ΔE_{ST} IV_{1a} Under EEFs in DCM. Energy given in KJ/mol.

Figure S110. IV_{1a} Singlet Triplet Splitting under EEFs in DCM. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-346.753516	-350.535013	-348.987362
- 0.0025	-348.013386	-351.194384	-349.889523
- 0.0020	-349.277850	-351.846395	-350.790285
- 0.0015	-350.546864	-352.491052	-351.689721
- 0.0010	-351.820387	-353.128348	-352.587902
- 0.0005	-353.098365	-353.758258	-353.484888
+ 0.0000	-354.380735	-354.380735	-354.380735
+ 0.0005	-355.667430	-354.995722	-355.275487
+ 0.0010	-356.958380	-355.603142	-356.169194
+ 0.0015	-358.253497	-356.202908	-357.061890
+ 0.0020	-359.552687	-356.794903	-357.953610
+ 0.0025	-360.855840	-357.378996	-358.844387
+ 0.0030	-362.162841	-357.955036	-359.734243

Table S109. ΔE_{ST} IV_{1a} Under EEFs in MeCN. Energy given in KJ/mol.

Figure S111. IV_{1a} Singlet Triplet Splitting under EEFs in MeCN. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-340.993930	-344.852165	-343.360057
- 0.0025	-342.273255	-345.517864	-344.259926
- 0.0020	-343.557282	-346.176447	-345.158380
- 0.0015	-344.845972	-346.827915	-346.055498
- 0.0010	-346.139275	-347.472262	-346.951347
- 0.0005	-347.437138	-348.109474	-347.845997
+ 0.0000	-348.739504	-348.739504	-348.739504
+ 0.0005	-350.046297	-349.362305	-349.631920
+ 0.0010	-351.357451	-349.977803	-350.523290
+ 0.0015	-352.672866	-350.585916	-351.413663
+ 0.0020	-353.992447	-351.186544	-352.303069
+ 0.0025	-355.316085	-351.779555	-353.191549
+ 0.0030	-356.643654	-352.364816	-354.079133

Table S110. ΔE_{ST} IV_{1a} Under EEFs in Water. Energy given in KJ/mol.

Figure S112. IV_{1a} Singlet Triplet Splitting under EEFs in Water. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔΕ, Y-EEF	ΔE, Z-EEF
- 0.0030	-276.832720	-281.479855	-283.107665
- 0.0025	-277.856665	-281.716150	-283.081410
- 0.0020	-278.880610	-281.978700	-283.081410
- 0.0015	-279.878300	-282.214995	-283.028900
-0.0010	-280.902245	-282.477545	-283.002645
- 0.0005	-281.926190	-282.713840	-282.976390
+ 0.0000	-282.950135	-282.950135	-282.950135
+ 0.0005	-283.947825	-283.186430	-282.897625
+ 0.0010	-284.998025	-283.396470	-282.871370
+ 0.0015	-286.021970	-283.632765	-282.792605
+ 0.0020	-287.045915	-283.842805	-282.766350
+ 0.0025	-288.069860	-284.052845	-282.713840
+ 0.0030	-289.093805	-284.262885	-282.661330

Table S111. ΔE_{ST} V_{1a} Under EEFs in Gas. Energy given in KJ/mol.

Figure S113. V1a Singlet Triplet Splitting under EEFs in Gas. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-282.272184	-287.927561	-289.947085
- 0.0025	-283.508280	-288.237115	-289.918876
- 0.0020	-284.746287	-288.542169	-289.886514
- 0.0015	-285.986169	-288.842694	-289.850062
- 0.0010	-287.227888	-289.138649	-289.809574
- 0.0005	-288.471404	-289.429992	-289.765095
+ 0.0000	-289.716668	-289.716671	-289.716671
+ 0.0005	-290.963636	-289.998626	-289.664326
+ 0.0010	-292.212258	-290.275795	-289.608104
+ 0.0015	-293.462479	-290.548114	-289.548022
+ 0.0020	-294.714247	-290.815492	-289.484099
+ 0.0025	-295.967495	-291.077848	-289.416353
+ 0.0030	-297.222161	-291.335087	-289.344795

Table S112. ΔE_{ST} V_{1a} Under EEFs in Toluene. Energy given in KJ/mol.

Singlet-Triplet Splitting; V1a Toluene

Figure S114. V1a Singlet Triplet Splitting under EEFs in Toluene. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔΕ, Y-EEF	ΔE, Z-EEF
- 0.0030	-287.053253	-293.877075	-296.189744
- 0.0025	-288.528845	-294.235826	-296.160556
- 0.0020	-290.007009	-294.588945	-296.126603
- 0.0015	-291.487697	-294.936406	-296.087958
-0.0010	-292.970860	-295.278160	-296.044667
- 0.0005	-294.456433	-295.614163	-295.996785
+ 0.0000	-295.944351	-295.944351	-295.944351
+ 0.0005	-297.434549	-296.268664	-295.887407
+ 0.0010	-298.926938	-296.587011	-295.825973
+ 0.0015	-300.421433	-296.899314	-295.760070
+ 0.0020	-301.917939	-297.205468	-295.689725
+ 0.0025	-303.416349	-297.505361	-295.614938
+ 0.0030	-304.916541	-297.798868	-295.535716

Table S113. ΔE_{ST} V_{1a} Under EEFs in DCM. Energy given in KJ/mol.

Figure S115. V_{1a} Singlet Triplet Splitting under EEFs in DCM. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-288.964864	-296.287221	-298.689737
- 0.0025	-290.538927	-296.663489	-298.662245
- 0.0020	-292.115876	-297.033587	-298.629779
- 0.0015	-293.695661	-297.397474	-298.592405
-0.0010	-295.278218	-297.755106	-298.550176
- 0.0005	-296.863479	-298.106424	-298.503151
+ 0.0000	-298.451365	-298.451365	-298.451365
+ 0.0005	-300.041791	-298.789850	-298.394857
+ 0.0010	-301.634658	-299.121787	-298.333654
+ 0.0015	-303.229859	-299.447076	-298.267772
+ 0.0020	-304.827269	-299.765601	-298.197233
+ 0.0025	-306.426755	-300.077232	-298.122041
+ 0.0030	-308.028163	-300.381825	-298.042197

Table S114. ΔE_{ST} V_{1a} Under EEFs in MeCN. Energy given in KJ/mol.

Figure S116. V_{1a} Singlet Triplet Splitting under EEFs in MeCN. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔΕ, Y-EEF	ΔE, Z-EEF
- 0.0030	-287.333276	-294.759931	-297.178875
- 0.0025	-288.927679	-295.139630	-297.151871
- 0.0020	-290.525041	-295.513037	-297.119853
- 0.0015	-292.125304	-295.880111	-297.082886
-0.0010	-293.728403	-296.240810	-297.041025
- 0.0005	-295.334275	-296.595069	-296.994326
+ 0.0000	-296.942827	-296.942827	-296.942827
+ 0.0005	-298.553978	-297.284000	-296.886565
+ 0.0010	-300.167623	-297.618494	-296.825566
+ 0.0015	-301.783653	-297.946206	-296.759850
+ 0.0020	-303.401929	-298.267016	-296.689434
+ 0.0025	-305.022320	-298.580787	-296.614324
+ 0.0030	-306.644658	-298.887372	-296.534522

Table S115. ΔE_{ST} V_{1a} Under EEFs in Water. Energy given in KJ/mol.

Figure S117. V1a Singlet Triplet Splitting under EEFs in Water. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔΕ, Y-EEF	ΔE, Z-EEF
- 0.0030	-293.389806	-298.252211	-297.949774
- 0.0025	-294.205294	-298.285095	-297.997419
- 0.0020	-295.022494	-298.308470	-298.049800
- 0.0015	-295.841353	-298.322380	-298.106957
-0.0010	-296.661827	-298.326848	-298.168935
- 0.0005	-297.483861	-298.321865	-298.235743
+ 0.0000	-298.307409	-298.307409	-298.307409
+ 0.0005	-299.132420	-298.283425	-298.383921
+ 0.0010	-299.958849	-298.249840	-298.465288
+ 0.0015	-300.786648	-298.206553	-298.551481
+ 0.0020	-301.615762	-298.153442	-298.642483
+ 0.0025	-302.446150	-298.090356	-298.738251
+ 0.0030	-303.277762	-298.017115	-298.838742

Table S116. ΔE_{st} VI_{1a} Under EEFs in Gas. Energy given in KJ/mol.

_

Figure S118. VI_{1a} Singlet Triplet Splitting under EEFs in Gas. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-303.015645	-308.947636	-308.650283
- 0.0025	-304.017667	-308.994034	-308.702840
- 0.0020	-305.021627	-309.029024	-308.761341
- 0.0015	-306.027453	-309.052659	-308.825832
- 0.0010	-307.035083	-309.064957	-308.896339
- 0.0005	-308.044449	-309.065910	-308.972889
+ 0.0000	-309.055484	-309.055484	-309.055484
+ 0.0005	-310.068116	-309.033606	-309.144121
+ 0.0010	-311.082286	-309.000191	-309.238791
+ 0.0015	-312.097919	-308.955106	-309.339474
+ 0.0020	-313.114946	-308.898201	-309.446127
+ 0.0025	-314.133296	-308.829287	-309.558714
+ 0.0030	-315.152901	-308.748133	-309.677171

Table S117. ΔE_{ST} VI_{1a} Under EEFs in Toluene. Energy given in KJ/mol.

Singlet-Triplet Splitting; VI1a Toluene

Figure S119. VI_{1a} Singlet Triplet Splitting under EEFs in Toluene. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-306.620561	-313.736333	-313.421431
- 0.0025	-307.825805	-313.794425	-313.480940
- 0.0020	-309.033196	-313.838990	-313.547342
- 0.0015	-310.242646	-313.870084	-313.620683
-0.0010	-311.454081	-313.887725	-313.700986
- 0.0005	-312.667400	-313.891889	-313.788266
+ 0.0000	-313.882518	-313.882518	-313.882518
+ 0.0005	-315.099351	-313.859524	-313.983745
+ 0.0010	-316.317798	-313.822773	-314.091918
+ 0.0015	-317.537774	-313.772092	-314.207012
+ 0.0020	-318.759175	-313.707272	-314.328985
+ 0.0025	-319.981907	-313.628060	-314.457789
+ 0.0030	-321.205873	-313.534151	-314.593352

Table S118. ΔE_{ST} VI_{1a} Under EEFs in DCM. Energy given in KJ/mol.

_

Figure S120. VI_{1a} Singlet Triplet Splitting under EEFs in DCM. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-308.583364	-316.197382	-315.866963
- 0.0025	-309.872981	-316.259473	-315.929815
- 0.0020	-311.164829	-316.307047	-315.999866
- 0.0015	-312.458815	-316.340160	-316.077155
- 0.0010	-313.754840	-316.358816	-316.161707
- 0.0005	-315.052809	-316.362996	-316.253529
+ 0.0000	-316.352626	-316.352626	-316.352626
+ 0.0005	-317.654186	-316.327594	-316.458979
+ 0.0010	-318.957387	-316.287744	-316.572577
+ 0.0015	-320.262124	-316.232879	-316.693381
+ 0.0020	-321.568289	-316.162749	-316.821351
+ 0.0025	-322.875775	-316.077064	-316.956430
+ 0.0030	-324.184458	-315.975472	-317.098556

Table S119. ΔE_{ST} VI_{1a} Under EEFs in MeCN. Energy given in KJ/mol.

Singlet-Triplet Splitting; VI1a MeCN

Figure S121. VI_{1a} Singlet Triplet Splitting under EEFs in MeCN. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-293.898798	-301.616584	-301.282258
- 0.0025	-295.205893	-301.679446	-301.345840
- 0.0020	-296.515235	-301.727569	-301.416679
- 0.0015	-297.826730	-301.761010	-301.494811
-0.0010	-299.140278	-301.779777	-301.580260
- 0.0005	-300.455782	-301.783847	-301.673035
+ 0.0000	-301.773140	-301.773140	-301.773140
+ 0.0005	-303.092246	-301.747539	-301.880557
+ 0.0010	-304.412999	-301.706886	-301.995268
+ 0.0015	-305.735287	-301.650976	-302.117241
+ 0.0020	-307.059007	-301.579551	-302.246431
+ 0.0025	-308.384036	-301.492306	-302.382786
+ 0.0030	-309.710258	-301.388880	-302.526238

Table S120. ΔE_{ST} VI_{1a} Under EEFs in Water. Energy given in KJ/mol.

_

Figure S122. VI_{1a} Singlet Triplet Splitting under EEFs in Water. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-248.753462	-253.118114	-256.156921
- 0.0025	-249.986174	-253.645202	-256.151748
- 0.0020	-251.218213	-254.163189	-256.147450
- 0.0015	-252.449575	-254.671849	-256.144048
- 0.0010	-253.680247	-255.170946	-256.141564
- 0.0005	-254.910205	-255.660223	-256.140012
+ 0.0000	-256.139398	-256.139398	-256.139398
+ 0.0005	-257.367785	-256.608184	-256.139731
+ 0.0010	-258.595291	-257.066249	-256.140997
+ 0.0015	-259.821848	-257.513246	-256.143197
+ 0.0020	-261.047363	-257.948801	-256.146314
+ 0.0025	-262.271734	-258.372501	-256.150325
+ 0.0030	-263.494849	-258.783901	-256.155211

Table S121. ΔE_{st} VII_{1a} Under EEFs in Gas. Energy given in KJ/mol.

Singlet-Triplet Splitting; VII1a Gas

Figure S123. VII_{1a} Singlet Triplet Splitting under EEFs in Gas. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-257.558833	-262.711728	-266.665660
- 0.0025	-259.074641	-263.394534	-266.657306
- 0.0020	-260.589408	-264.066305	-266.650385
- 0.0015	-262.103122	-264.726792	-266.644932
- 0.0010	-263.615753	-265.375710	-266.640973
- 0.0005	-265.127267	-266.012754	-266.638526
+ 0.0000	-266.637599	-266.637599	-266.637599
+ 0.0005	-268.146681	-267.249894	-266.638203
+ 0.0010	-269.654427	-267.849254	-266.640327
+ 0.0015	-271.160732	-268.435263	-266.643963
+ 0.0020	-272.665477	-269.007465	-266.649091
+ 0.0025	-274.168531	-269.565378	-266.655691
+ 0.0030	-275.669744	-270.108463	-266.663717

Table S122. ΔE_{ST} VII_{1a} Under EEFs in Toluene. Energy given in KJ/mol.

Figure S124. VII_{1a} Singlet Triplet Splitting under EEFs in Toluene. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-260.875262	-266.825509	-271.893133
- 0.0025	-262.710904	-267.698023	-271.881392
- 0.0020	-264.544227	-268.557191	-271.871678
- 0.0015	-266.375227	-269.402707	-271.864037
- 0.0010	-268.203870	-270.234237	-271.858505
- 0.0005	-270.030105	-271.051416	-271.855105
+ 0.0000	-271.853850	-271.853850	-271.853850
+ 0.0005	-273.675018	-272.641109	-271.854746
+ 0.0010	-275.493492	-273.412723	-271.857789
+ 0.0015	-277.309133	-274.168179	-271.862961
+ 0.0020	-279.121791	-274.906924	-271.870241
+ 0.0025	-280.931286	-275.628356	-271.879599
+ 0.0030	-282.737417	-276.331814	-271.890983

Table S123. ΔE_{ST} VII_{1a} Under EEFs in DCM. Energy given in KJ/mol.

Figure S125. VII_{1a} Singlet Triplet Splitting under EEFs in DCM. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-262.639144	-268.904692	-274.484840
- 0.0025	-264.614231	-269.864795	-274.471647
- 0.0020	-266.586095	-270.810401	-274.460736
- 0.0015	-268.554721	-271.741177	-274.452158
- 0.0010	-270.520083	-272.656765	-274.445949
- 0.0005	-272.482117	-273.556766	-274.442142
+ 0.0000	-274.440745	-274.440745	-274.440745
+ 0.0005	-276.395860	-275.308229	-274.441766
+ 0.0010	-278.347334	-276.158704	-274.445203
+ 0.0015	-280.295017	-276.991602	-274.451037
+ 0.0020	-282.238730	-277.806318	-274.459244
+ 0.0025	-284.178273	-278.602173	-274.469781
+ 0.0030	-286.113419	-279.378449	-274.482601

Table S124. ΔE_{ST} VII_{1a} Under EEFs in MeCN. Energy given in KJ/mol.

Singlet-Triplet Splitting; VII1a MeCN

Figure S126. VII_{1a} Singlet Triplet Splitting under EEFs in MeCN. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-250.065653	-256.395264	-262.086255
- 0.0025	-252.070290	-257.374347	-262.072750
- 0.0020	-254.071470	-258.338669	-262.061586
- 0.0015	-256.069192	-259.287898	-262.052809
- 0.0010	-258.063420	-260.221659	-262.046461
- 0.0005	-260.054097	-261.139555	-262.042562
+ 0.0000	-262.041136	-262.041136	-262.041136
+ 0.0005	-264.024434	-262.925927	-262.042186
+ 0.0010	-266.003858	-263.793395	-262.045710
+ 0.0015	-267.979253	-264.642962	-262.051683
+ 0.0020	-269.950434	-265.474004	-262.060084
+ 0.0025	-271.917199	-266.285837	-262.070873
+ 0.0030	-273.879311	-267.077719	-262.084000

Table S125. ΔE_{sT} VII_{1a} Under EEFs in Water. Energy given in KJ/mol.

Singlet-Triplet Splitting; VII1a Water

Figure S127. VII_{1a} Singlet Triplet Splitting under EEFs in Water. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-189.783669	-194.786234	-195.983338
- 0.0025	-190.840026	-195.016364	-196.012006
- 0.0020	-191.896640	-195.243793	-196.038749
- 0.0015	-192.953519	-195.468499	-196.063545
-0.0010	-194.010690	-195.690461	-196.086371
- 0.0005	-195.068168	-195.909633	-196.107194
+ 0.0000	-196.125974	-196.125974	-196.125974
+ 0.0005	-197.184129	-196.339424	-196.142675
+ 0.0010	-198.242654	-196.549918	-196.157243
+ 0.0015	-199.301579	-196.757383	-196.169631
+ 0.0020	-200.360918	-196.961731	-196.179778
+ 0.0025	-201.420704	-197.162870	-196.187607
+ 0.0030	-202.480957	-197.360686	-196.193055

Table S126. ΔE_{ST} VIII_{1a} Under EEFs in Gas. Energy given in KJ/mol.

Figure S128. VIII_{1a} Singlet Triplet Splitting under EEFs in Gas. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-198.120422	-204.335424	-205.670467
- 0.0025	-199.421168	-204.609198	-205.718779
- 0.0020	-200.722037	-204.879653	-205.764953
- 0.0015	-202.023075	-205.146764	-205.808965
- 0.0010	-203.324328	-205.410503	-205.850778
- 0.0005	-204.625844	-205.670821	-205.890363
+ 0.0000	-205.927664	-205.927664	-205.927664
+ 0.0005	-207.229838	-206.180964	-205.962633
+ 0.0010	-208.532414	-206.430641	-205.995210
+ 0.0015	-209.835437	-206.676606	-206.025330
+ 0.0020	-211.138956	-206.918745	-206.052913
+ 0.0025	-212.443015	-207.156941	-206.077876
+ 0.0030	-213.747663	-207.391062	-206.100122

Table S127. ΔE_{ST} VIII_{1a} Under EEFs in Toluene. Energy given in KJ/mol.

Figure S129. VIII_{1a} Singlet Triplet Splitting under EEFs in Toluene. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-205.039536	-212.667411	-214.111738
- 0.0025	-206.619346	-212.986759	-214.185588
- 0.0020	-208.199186	-213.301976	-214.257215
- 0.0015	-209.779149	-213.613032	-214.326586
-0.0010	-211.359337	-213.919890	-214.393664
- 0.0005	-212.939841	-214.222490	-214.458409
+ 0.0000	-214.520760	-214.520760	-214.520760
+ 0.0005	-216.102190	-214.814616	-214.580663
+ 0.0010	-217.684217	-215.103952	-214.638036
+ 0.0015	-219.266936	-215.388637	-214.692809
+ 0.0020	-220.850436	-215.668544	-214.744885
+ 0.0025	-222.434807	-215.943505	-214.794171
+ 0.0030	-224.020139	-216.213343	-214.840543

Table S128. ΔE_{ST} VIII_{1a} Under EEFs in DCM. Energy given in KJ/mol.

Figure S130. VIII_{1a} Singlet Triplet Splitting under EEFs in DCM. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-207.684779	-215.932270	-217.416319
- 0.0025	-209.386001	-216.270949	-217.501758
- 0.0020	-211.087236	-216.605057	-217.584981
- 0.0015	-212.788620	-216.934563	-217.665951
- 0.0010	-214.490280	-217.259419	-217.744627
- 0.0005	-216.192337	-217.579564	-217.820969
+ 0.0000	-217.894913	-217.894913	-217.894913
+ 0.0005	-219.598138	-218.205365	-217.966398
+ 0.0010	-221.302122	-218.510806	-218.035341
+ 0.0015	-223.006987	-218.811084	-218.101669
+ 0.0020	-224.712851	-219.106043	-218.165274
+ 0.0025	-226.419822	-219.395502	-218.226060
+ 0.0030	-228.128020	-219.679250	-218.283899

Table S129. ΔE_{ST} VIII_{1a} Under EEFs in MeCN. Energy given in KJ/mol.

Singlet-Triplet Splitting; VIII1a MeCN

Figure S131. VIII_{1a} Singlet Triplet Splitting under EEFs in MeCN. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-206.558387	-214.936873	-216.429086
- 0.0025	-208.285242	-215.279642	-216.516985
- 0.0020	-210.012117	-215.617736	-216.602671
- 0.0015	-211.739147	-215.951124	-216.686107
- 0.0010	-213.466464	-216.279763	-216.767258
- 0.0005	-215.194203	-216.603582	-216.846073
+ 0.0000	-216.922494	-216.922494	-216.922494
+ 0.0005	-218.651461	-217.236396	-216.996454
+ 0.0010	-220.381238	-217.545168	-217.067878
+ 0.0015	-222.111939	-217.848662	-217.136682
+ 0.0020	-223.843692	-218.146712	-217.202766
+ 0.0025	-225.576614	-218.439129	-217.266027
+ 0.0030	-227.310825	-218.725697	-217.326337

Table S130. ΔE_{ST} VIII_{1a} Under EEFs in Water. Energy given in KJ/mol.

Figure S132. VIII_{1a} Singlet Triplet Splitting under EEFs in Water. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-360.034815	-366.546055	-363.684260
- 0.0025	-360.927485	-366.362270	-363.973065
- 0.0020	-361.846410	-366.178485	-364.261870
- 0.0015	-362.739080	-365.994700	-364.550675
-0.0010	-363.631750	-365.810915	-364.839480
- 0.0005	-364.498165	-365.600875	-365.128285
+ 0.0000	-365.390835	-365.390835	-365.390835
+ 0.0005	-366.283505	-365.180795	-365.679640
+ 0.0010	-367.176175	-364.970755	-365.968445
+ 0.0015	-368.068845	-364.734460	-366.204740
+ 0.0020	-368.935260	-364.498165	-366.493545
+ 0.0025	-369.827930	-364.261870	-366.729840
+ 0.0030	-370.720600	-364.025575	-366.992390

Table S131. ΔE_{ST} IX_{1a} Under EEFs in Gas. Energy given in KJ/mol.

Singlet-Triplet Splitting; IX1a Gas

Figure S133. IX_{1a} Singlet Triplet Splitting under EEFs in Gas. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔΕ, Y-EEF	ΔE, Z-EEF
- 0.0030	-367.644002	-375.594736	-372.119873
- 0.0025	-368.747227	-375.392068	-372.483426
- 0.0020	-369.848687	-375.179240	-372.842498
- 0.0015	-370.948262	-374.956692	-373.197124
- 0.0010	-372.045842	-374.724813	-373.547331
- 0.0005	-373.141303	-374.483976	-373.893128
+ 0.0000	-374.234506	-374.234506	-374.234506
+ 0.0005	-375.325312	-373.976706	-374.571450
+ 0.0010	-376.413579	-373.710850	-374.903933
+ 0.0015	-377.499142	-373.437202	-375.231907
+ 0.0020	-378.581830	-373.155993	-375.555324
+ 0.0025	-379.661470	-372.867437	-375.874110
+ 0.0030	-380.737862	-372.571738	-376.188185

Table S132. ΔE_{ST} IX_{1a} Under EEFs in Toluene. Energy given in KJ/mol.

Figure S134. IX_{1a} Singlet Triplet Splitting under EEFs in Toluene. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-370.401531	-379.896654	-375.872401
- 0.0025	-371.728587	-379.666049	-376.294479
- 0.0020	-373.053577	-379.422486	-376.711492
- 0.0015	-374.376346	-379.166558	-377.123496
-0.0010	-375.696736	-378.898796	-377.530517
- 0.0005	-377.014572	-378.619685	-377.932573
+ 0.0000	-378.329664	-378.329664	-378.329664
+ 0.0005	-379.641805	-378.029133	-378.721774
+ 0.0010	-380.950782	-377.718466	-379.108878
+ 0.0015	-382.256354	-377.397992	-379.490938
+ 0.0020	-383.558266	-377.068025	-379.867900
+ 0.0025	-384.856245	-376.728847	-380.239694
+ 0.0030	-386.149989	-376.380713	-380.606240

Table S133. ΔE_{ST} IX_{1a} Under EEFs in DCM. Energy given in KJ/mol.

Singlet-Triplet Splitting; IX1a DCM

Figure S135. IX_{1a} Singlet Triplet Splitting under EEFs in DCM. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-371.435203	-381.560893	-377.336078
- 0.0025	-372.855410	-381.321434	-377.779756
- 0.0020	-374.273413	-381.067509	-378.218159
- 0.0015	-375.689052	-380.799797	-378.651340
-0.0010	-377.102127	-380.518916	-379.079333
- 0.0005	-378.512454	-380.225417	-379.502154
+ 0.0000	-379.919809	-379.919809	-379.919809
+ 0.0005	-381.323957	-379.602556	-380.332288
+ 0.0010	-382.724641	-379.274072	-380.739558
+ 0.0015	-384.121580	-378.934747	-381.141588
+ 0.0020	-385.514479	-378.584933	-381.538322
+ 0.0025	-386.903006	-378.224949	-381.929692
+ 0.0030	-388.286804	-377.855086	-382.315622

Table S134. ΔE_{ST} IX_{1a} Under EEFs in MeCN. Energy given in KJ/mol.

Figure S136. IX_{1a} Singlet Triplet Splitting under EEFs in MeCN. Axis definitions given in S2.

Field	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-365.331428	-375.586935	-371.322409
- 0.0025	-366.770945	-375.345862	-371.770398
- 0.0020	-368.208235	-375.089981	-372.213073
- 0.0015	-369.643118	-374.819987	-372.650479
-0.0010	-371.075413	-374.536517	-373.082657
- 0.0005	-372.504908	-374.240143	-373.509627
+ 0.0000	-373.931384	-373.931384	-373.931384
+ 0.0005	-375.354600	-373.610724	-374.347928
+ 0.0010	-376.774284	-373.278588	-374.759225
+ 0.0015	-378.190153	-372.935375	-375.165241
+ 0.0020	-379.601897	-372.581447	-375.565918
+ 0.0025	-381.009170	-372.217135	-375.961198
+ 0.0030	-382.411605	-371.842741	-376.350995

Table S135. ΔE_{ST} IX_{1a} Under EEFs in Water. Energy given in KJ/mol.

Singlet-Triplet Splitting; IX1a Water

Figure S137. IX_{1a} Singlet Triplet Splitting under EEFs in Water. Axis definitions given in S2.

S5. Benchmark: Effect of Geometry Optimisation versus Single-Points of I_{1a} under EEFs

Energy of structure optimised under electric field, measured relative to energy of structure optimised without external electric field. In the worst case, the maximum change relative to the optimisation without external field is only 5 kJ/mol in the triplet state, and 0.63 kJ/mol in the singlet state.

Table S136. Change in Energy of I1a due to Optimisation under EEFs in Gas. Energy given in Hartree	, changes
in energy given in KJ/mol.	

Field	E, X-EEF	E, Y-EEF	E, Z-EEF	ΔE, X-EEF	ΔΕ, Y-EEF	ΔE, Z-EEF
- 0.0030	-304.774663	-304.777589	-304.777699	-0.033339	-0.233446	-0.050215
- 0.0025	-304.775044	-304.777485	-304.777561	-0.009339	-0.170104	-0.029652
- 0.0020	-304.775444	-304.777400	-304.777449	-0.011657	-0.103833	-0.022422
- 0.0015	-304.775865	-304.777333	-304.777361	-0.014015	-0.061271	-0.002240
- 0.0010	-304.776306	-304.777284	-304.777298	0.010064	-0.011613	0.005427
- 0.0005	-304.776767	-304.777257	-304.777261	0.008320	-0.018914	-0.001392
+ 0.0000	-304.777248	-304.777248	-304.777248	0.005658	0.005658	0.005658
+ 0.0005	-304.777749	-304.777257	-304.777261	0.002731	-0.018791	-0.001405
+ 0.0010	-304.778270	-304.777284	-304.777298	-0.000289	-0.011366	0.005395
+ 0.0015	-304.778811	-304.777333	-304.777361	-0.002980	-0.060360	-0.002316
+ 0.0020	-304.779372	-304.777399	-304.777449	-0.005766	-0.102607	-0.022522
+ 0.0025	-304.779953	-304.777484	-304.777561	-0.008680	-0.168554	-0.029778
+ 0.0030	-304.780554	-304.777588	-304.777699	-0.038015	-0.231590	-0.050368

Table S137. Change in Energy of ³I_{1a} due to Optimisation under EEFs in Gas. Energy given in Hartree, changes in energy given in KJ/mol.

Field	E, X-EEF	E, Y-EEF	E, Z-EEF	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-304.639710	-304.641438	-304.641446	-0.236765	-2.280241	-2.115896
- 0.0025	-304.639780	-304.641192	-304.641167	-0.209867	-1.816402	-1.645852
- 0.0020	-304.639867	-304.640972	-304.640928	-0.176951	-1.395697	-1.229010
- 0.0015	-304.639969	-304.640780	-304.640731	-0.103148	-0.971380	-0.841785
- 0.0010	-304.640093	-304.640619	-304.640576	-0.061156	-0.600875	-0.487471
- 0.0005	-304.640252	-304.640492	-304.640466	-0.056912	-0.266633	-0.225601
+ 0.0000	-304.640410	-304.640410	-304.640410	-0.000158	-0.000158	-0.000158
+ 0.0005	-304.640604	-304.640453	-304.640464	-0.010872	-0.033843	-0.035927
+ 0.0010	-304.640821	-304.640542	-304.640571	-0.001856	-0.135282	-0.133360
+ 0.0015	-304.641059	-304.640664	-304.640723	0.002400	-0.247451	-0.270581
+ 0.0020	-304.641316	-304.640818	-304.640918	-0.015068	-0.440102	-0.467171
+ 0.0025	-304.641592	-304.641000	-304.641154	-0.032708	-0.629797	-0.693040
+ 0.0030	-304.641889	-304.641210	-304.641430	-0.023737	-0.839892	-0.972435

Field	E, X-EEF	E, Y-EEF	E, Z-EEF	ΔΕ, X-ΕΕF	ΔΕ, Y-ΕΕF	ΔE, Z-EEF
- 0.0030	-304.790591	-304.794242	-304.794347	-0.223721	-0.614609	-0.343867
- 0.0025	-304.791070	-304.794114	-304.794186	-0.226641	-0.508625	-0.318660
- 0.0020	-304.791573	-304.794010	-304.794056	-0.231430	-0.422674	-0.300596
- 0.0015	-304.792100	-304.793928	-304.793954	-0.238051	-0.356146	-0.286565
- 0.0010	-304.792650	-304.793871	-304.793881	-0.246471	-0.309019	-0.276560
- 0.0005	-304.793225	-304.793836	-304.793838	-0.256664	-0.279692	-0.270568
+ 0.0000	-304.793823	-304.793823	-304.793823	-0.268594	-0.268594	-0.268594
+ 0.0005	-304.794446	-304.793835	-304.793838	-0.282236	-0.279490	-0.270626
+ 0.0010	-304.795092	-304.793870	-304.793881	-0.297572	-0.308268	-0.276673
+ 0.0015	-304.795762	-304.793928	-304.793954	-0.314582	-0.355028	-0.286739
+ 0.0020	-304.796457	-304.794009	-304.794056	-0.336739	-0.421170	-0.300825
+ 0.0025	-304.797175	-304.794113	-304.794186	-0.357396	-0.506764	-0.318948
+ 0.0030	-304.797917	-304.794241	-304.794347	-0.379739	-0.612369	-0.344221

Table S138. Change in Energy of I_{1a} due to Optimisation under EEFs in Toluene. Energy given in Hartree,changes in energy given in KJ/mol.

Table S139. Change in Energy of ³**I**_{1a} **due to Optimisation under EEFs in Toluene**. Energy given in Hartree, changes in energy given in KJ/mol.

Field	E, X-EEF	E, Y-EEF	E, Z-EEF	ΔΕ <i>,</i> X-EEF	ΔΕ, Y-EEF	ΔE, Z-EEF
- 0.0030	-304.651540	-304.653993	-304.653984	-0.246789	-3.629134	-3.365421
- 0.0025	-304.651643	-304.653652	-304.653607	-0.230201	-2.949224	-2.683621
- 0.0020	-304.651768	-304.653351	-304.653283	-0.217651	-2.321415	-2.062837
- 0.0015	-304.651918	-304.653085	-304.653009	-0.209137	-1.729207	-1.501439
-0.0010	-304.652091	-304.652855	-304.652788	-0.204566	-1.175765	-1.001500
- 0.0005	-304.652288	-304.652661	-304.652620	-0.204046	-0.664291	-0.567922
+ 0.0000	-304.652508	-304.652508	-304.652508	-0.207454	-0.207454	-0.207454
+ 0.0005	-304.652752	-304.652610	-304.652613	-0.214952	-0.364089	-0.339603
+ 0.0010	-304.653020	-304.652757	-304.652775	-0.226607	-0.583278	-0.549727
+ 0.0015	-304.653312	-304.652941	-304.652993	-0.242394	-0.848433	-0.828747
+ 0.0020	-304.653628	-304.653162	-304.653264	-0.262461	-1.153141	-1.174074
+ 0.0025	-304.653967	-304.653417	-304.653588	-0.286839	-1.494863	-1.585492
+ 0.0030	-304.654331	-304.653708	-304.653965	-0.315848	-1.871661	-2.059062

Field	E, X-EEF	E, Y-EEF	E, Z-EEF	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-304.794822	-304.799299	-304.799349	-0.558034	-1.152240	-0.723472
- 0.0025	-304.795409	-304.799135	-304.799170	-0.564863	-0.992323	-0.696311
- 0.0020	-304.796024	-304.799001	-304.799024	-0.574115	-0.862369	-0.674118
- 0.0015	-304.796667	-304.798898	-304.798911	-0.585760	-0.762267	-0.656884
- 0.0010	-304.797339	-304.798824	-304.798830	-0.599769	-0.691604	-0.644594
- 0.0005	-304.798038	-304.798780	-304.798781	-0.616126	-0.649381	-0.637235
+ 0.0000	-304.798765	-304.798765	-304.798765	-0.634807	-0.634807	-0.634807
+ 0.0005	-304.799521	-304.798779	-304.798781	-0.655792	-0.646472	-0.637303
+ 0.0010	-304.800304	-304.798824	-304.798830	-0.679067	-0.690685	-0.644731
+ 0.0015	-304.801116	-304.798897	-304.798911	-0.704616	-0.760838	-0.657092
+ 0.0020	-304.801956	-304.799001	-304.799025	-0.732430	-0.860466	-0.674394
+ 0.0025	-304.802824	-304.799134	-304.799170	-0.762492	-0.989913	-0.696655
+ 0.0030	-304.803721	-304.799298	-304.799349	-0.794802	-1.149431	-0.723884

Table S140. Change in Energy of I_{1a} due to Optimisation under EEFs in DCM. Energy given in Hartree, changes in energy given in KJ/mol.

Table S141. Change in Energy of ³I_{1a} due to Optimisation under EEFs in DCM. Energy given in Hartree, changes in energy given in KJ/mol.

Field	E, X-EEF	E, Y-EEF	E, Z-EEF	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-304.653651	-304.656830	-304.656727	-0.372075	-5.042454	-4.502882
- 0.0025	-304.653780	-304.656390	-304.656257	-0.354939	-4.137646	-3.611927
- 0.0020	-304.653937	-304.656001	-304.655849	-0.344962	-3.299198	-2.799817
- 0.0015	-304.654123	-304.655644	-304.655504	-0.341971	-2.482479	-2.070490
-0.0010	-304.654337	-304.655340	-304.655220	-0.345794	-1.742699	-1.416281
- 0.0005	-304.654579	-304.654751	-304.654772	-0.356448	-0.187689	-0.248118
+ 0.0000	-304.654849	-304.654849	-304.654849	-0.373845	-0.373845	-0.373845
+ 0.0005	-304.655148	-304.655007	-304.654995	-0.398378	-0.655309	-0.598391
+ 0.0010	-304.655475	-304.655215	-304.655208	-0.430151	-1.002476	-0.913309
+ 0.0015	-304.655831	-304.655470	-304.655487	-0.469308	-1.406906	-1.319424
+ 0.0020	-304.656215	-304.655769	-304.655832	-0.516179	-1.864113	-1.814620
+ 0.0025	-304.656629	-304.656111	-304.656240	-0.571989	-2.370462	-2.391179
+ 0.0030	-304.657073	-304.656496	-304.656708	-0.636673	-2.921410	-3.042527

Field	E, X-EEF	E, Y-EEF	E, Z-EEF	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-304.794963	-304.799805	-304.799818	-0.730002	-1.441877	-0.925161
- 0.0025	-304.795597	-304.799624	-304.799633	-0.740260	-1.253626	-0.896272
- 0.0020	-304.796261	-304.799476	-304.799482	-0.753180	-1.101087	-0.872674
- 0.0015	-304.796954	-304.799360	-304.799364	-0.768725	-0.982060	-0.854346
-0.0010	-304.797677	-304.799278	-304.799280	-0.786873	-0.898275	-0.841278
- 0.0005	-304.798430	-304.799229	-304.799230	-0.807596	-0.848194	-0.833454
+ 0.0000	-304.799213	-304.799213	-304.799213	-0.830871	-0.830871	-0.830871
+ 0.0005	-304.800025	-304.799229	-304.799230	-0.856680	-0.847703	-0.833525
+ 0.0010	-304.800868	-304.799278	-304.799280	-0.885004	-0.897283	-0.841423
+ 0.0015	-304.801741	-304.799360	-304.799364	-0.915827	-0.980519	-0.854566
+ 0.0020	-304.802643	-304.799475	-304.799482	-0.949142	-1.099116	-0.872966
+ 0.0025	-304.803576	-304.799623	-304.799633	-0.984935	-1.251069	-0.896640
+ 0.0030	-304.804539	-304.799804	-304.799818	-1.023199	-1.438813	-0.925602

Table S142. Change in Energy of I_{1a} due to Optimisation under EEFs in MeCN. Energy given in Hartree, changes in energy given in KJ/mol.

Table S143. Change in Energy of ³**I**_{1a} **due to Optimisation under EEFs in MeCN**. Energy given in Hartree, changes in energy given in KJ/mol.

Field	E, X-EEF	E, Y-EEF	E, Z-EEF	ΔΕ, X-ΕΕF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-304.652914	-304.656455	-304.656273	-0.503495	-5.861739	-5.112655
- 0.0025	-304.653054	-304.655965	-304.655761	-0.484623	-4.840837	-4.124248
- 0.0020	-304.653224	-304.655514	-304.655316	-0.475163	-3.850802	-3.222746
- 0.0015	-304.653425	-304.655119	-304.654937	-0.474549	-2.940660	-2.409542
-0.0010	-304.653656	-304.654769	-304.654105	-0.482478	-2.080234	-0.320230
- 0.0005	-304.653918	-304.654084	-304.654118	-0.498950	-0.274023	-0.362432
+ 0.0000	-304.654210	-304.654210	-304.654210	-0.524494	-0.524494	-0.524494
+ 0.0005	-304.654532	-304.654397	-304.654375	-0.558806	-0.869933	-0.791538
+ 0.0010	-304.654886	-304.654639	-304.654612	-0.602471	-1.288798	-1.160870
+ 0.0015	-304.655270	-304.654932	-304.654921	-0.656102	-1.772034	-1.631922
+ 0.0020	-304.655686	-304.655273	-304.655299	-0.720490	-2.313202	-2.197801
+ 0.0025	-304.656134	-304.655661	-304.655743	-0.796650	-2.907463	-2.850642
+ 0.0030	-304.656615	-304.656094	-304.656252	-0.886243	-3.550563	-3.585212

Field	E, X-EEF	E, Y-EEF	E, Z-EEF	ΔE, X-EEF	ΔΕ, Υ-ΕΕ Γ	ΔE, Z-EEF
- 0.0030	-304.780028	-304.784929	-304.784932	-0.572661	-1.265236	-0.726177
- 0.0025	-304.780668	-304.784744	-304.784746	-0.575297	-1.070926	-0.696587
- 0.0020	-304.781339	-304.784592	-304.784594	-0.580719	-0.911996	-0.672417
- 0.0015	-304.782040	-304.784474	-304.784475	-0.588889	-0.788404	-0.653642
-0.0010	-304.782770	-304.784390	-304.784390	-0.599777	-0.700528	-0.640252
- 0.0005	-304.783531	-304.784340	-304.784340	-0.613354	-0.647713	-0.632236
+ 0.0000	-304.784323	-304.784323	-304.784323	-0.629590	-0.629590	-0.629590
+ 0.0005	-304.785144	-304.784338	-304.784340	-0.648464	-0.644085	-0.632310
+ 0.0010	-304.785996	-304.784390	-304.784390	-0.669957	-0.699525	-0.640399
+ 0.0015	-304.786878	-304.784474	-304.784475	-0.694048	-0.786904	-0.653865
+ 0.0020	-304.787791	-304.784592	-304.784594	-0.720726	-0.909988	-0.672711
+ 0.0025	-304.788734	-304.784743	-304.784746	-0.749977	-1.068418	-0.696957
+ 0.0030	-304.789708	-304.784928	-304.784932	-0.781793	-1.262188	-0.726620

Table S144. Change in Energy of I_{1a} due to Optimisation under EEFs in Water. Energy given in Hartree, changes in energy given in KJ/mol.

Table S145. Change in Energy of ³I_{1a} due to Optimisation under EEFs in Water. Energy given in Hartree, changes in energy given in KJ/mol.

Field	E, X-EEF	E, Y-EEF	E, Z-EEF	ΔE, X-EEF	ΔE, Y-EEF	ΔE, Z-EEF
- 0.0030	-304.641824	-304.645156	-304.644948	-0.862876	-5.616837	-4.795702
- 0.0025	-304.641981	-304.644715	-304.644505	-0.881399	-4.727029	-3.991926
- 0.0020	-304.642167	-304.644319	-304.644120	-0.904886	-3.885388	-3.251918
- 0.0015	-304.642382	-304.643968	-304.643797	-0.933347	-3.090647	-2.587071
-0.0010	-304.642626	-304.643662	-304.643465	-0.966759	-2.345643	-1.812259
- 0.0005	-304.642899	-304.643403	-304.643134	-1.005144	-1.655866	-0.949835
+ 0.0000	-304.643202	-304.643202	-304.643202	-1.048551	-1.048551	-1.048551
+ 0.0005	-304.643534	-304.643342	-304.643334	-1.097057	-1.265139	-1.227610
+ 0.0010	-304.643896	-304.643533	-304.643528	-1.150835	-1.547661	-1.481764
+ 0.0015	-304.644288	-304.643772	-304.643783	-1.210038	-1.886829	-1.809642
+ 0.0020	-304.644709	-304.644059	-304.644100	-1.274880	-2.279183	-2.212084
+ 0.0025	-304.645161	-304.644391	-304.644479	-1.345821	-2.720924	-2.688050
+ 0.0030	-304.645642	-304.644768	-304.644919	-1.423197	-3.208466	-3.235774
S6. Benchmark: Point Charges Approximately Reproduce D-LEF Electrostatic Switches

When the charged D-LEFs are replaced by simple point charges at the heavy-atom position (N/B) in the optimised structure of I_{1a} , we observe that a negative charge raises the nucleophilicity, while a positive charge lowers it, and vice-versa.

We note that the effects of the positive charge upon the GEI values are unrealistically large in magnitude; we ascribe this to the lack of polarisation on the point charge, especially considering the already highly polarisable nature of the LUMO and its unfavourable interaction with a bare charge. To be specific, when the point charge is replaced by the corresponding cation, the latter can polarise to accommodate the unfavourable electrostatic interactions, reducing its impact on the measured quantities, while the former cannot. That reasonable results are seen for the corresponding anion is because the interactions between it and the LUMO are favourable and balanced.

Species	E(HOMO)	E(LUMO)	GEI	Ν	ΔGEI	ΔΝ
I _{1a} No Charge	-7.430886	-0.159459	0.990406	3.492582		
I _{1a} Positive Charge	-12.112334	-9.120442	18.835519	-1.188866	17.845	-4.68
I1a Negative Charge	-3.919801	1.973370	0.080360	7.003668	-0.910	3.51
I _{2a} No Charge	-7.491840	-0.181228	1.006687	3.431628		
I _{2a} Positive Charge	-12.386353	-9.545483	21.164537	-1.462884	20.158	-4.89
I _{2a} Negative Charge	-3.826738	1.923845	0.078709	7.096731	-0.912	3.67

Table S146. Point Charge Benchmarks. All quantities given in eV.

S7. Benchmark: Comparison of CCSD(T) and DFT Energies of I_{1a} under EEFs

The relative changes in energy of the singlet I_{1a} at the M06-2X and CCSD(T) levels of theory compare favourably, being in the X-axis 15.46 kJ/mol and 15.65 kJ/mol in each case, and negligible along the other axes. For the triplet, these values along the X-axis are 5.94 kJ/mol and 6.08 kJ/mol, respectively, and negligible along the other axes.

Table S147. Energy of I _{1a} Under EEFs in	Gas at CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ. Energy given in
Hartree.	

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-304.280532	-304.283405	-304.283584
- 0.0020	-304.281328	-304.283267	-304.283346
-0.0010	-304.282202	-304.283184	-304.283204
+ 0.0000	-304.283156	-304.283156	-304.283156
+ 0.0010	-304.284189	-304.283184	-304.283204
+ 0.0020	-304.285301	-304.283267	-304.283346
+ 0.0030	-304.286493	-304.283405	-304.283584

Table S148. Energy of ³I_{1a} Under EEFs in Gas at CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ. Energy given in Hartree.

Field	Energy, X-EEF	Energy, Y-EEF	Energy, Z-EEF
- 0.0030	-304.143339	-304.144318	-304.144397
- 0.0020	-304.143535	-304.144190	-304.144218
-0.0010	-304.143807	-304.144135	-304.144137
+ 0.0000	-304.144155	-304.144155	-304.144155
+ 0.0010	-304.144579	-304.144248	-304.144271
+ 0.0020	-304.145079	-304.144416	-304.144486
+ 0.0030	-304.145656	-304.144658	-304.144799

S8. Benchmark: Investigation of Spin-State Switching of Simple Carbenes Under EEFs

We selected several carbenes, given below, to assess whether it was feasible to switch the spin state of simple carbenes under EEFs. Broadly, we found that it was not feasible under the field strengths we investigated. These field strengths were chosen to be physically reasonable, with reference to our previous STM experiments, in the range of +/- 0.003 a.u. Calculations were performed at the M06-2X/def2-TZVP level of theory.

Of all the species given below, we only observe electrostatic switching of spin states with A12 and A21.

Figure S138. Species Selected for Possible Spin Switching Under EEFs.

Field	Energy A1, X-EEF	Energy A1, Y-EEF	Energy A1, Z-EEF	Energy ³ A1, X-EEF	Energy ³ A1, Y-EEF	Energy ³ A1, Z-EEF	ΔE _{st} , X- EEF	ΔΕ _{sτ} , Υ- ΕΕF	ΔΕ _{sτ} , Ζ- ΕΕF
- 0.0030	-383.303884	-383.308712	-383.309583	-383.195103	-383.199942	-383.200131	-285.61	-285.58	-287.37
- 0.0025	-383.304673	-383.308713	-383.309400	-383.195562	-383.199602	-383.199732	-286.47	-286.47	-287.93
- 0.0020	-383.305487	-383.308732	-383.309251	-383.196046	-383.199285	-383.199366	-287.34	-287.35	-288.50
- 0.0015	-383.306324	-383.308769	-383.309134	-383.196556	-383.198989	-383.199034	-288.20	-288.23	-289.07
-0.0010	-383.307187	-383.308823	-383.309051	-383.197090	-383.198716	-383.198735	-289.06	-289.09	-289.63
- 0.0005	-383.308073	-383.308895	-383.309001	-383.197650	-383.198465	-383.198469	-289.91	-289.93	-290.20
+ 0.0000	-383.308984	-383.308984	-383.308984	-383.198236	-383.198236	-383.198236	-290.77	-290.77	-290.77
+ 0.0005	-383.309919	-383.309091	-383.309001	-383.198847	-383.198029	-383.198036	-291.62	-291.59	-291.34
+ 0.0010	-383.310879	-383.309216	-383.309051	-383.199483	-383.197844	-383.197870	-292.47	-292.41	-291.90
+ 0.0015	-383.311863	-383.309358	-383.309134	-383.200144	-383.197681	-383.197737	-293.32	-293.21	-292.47
+ 0.0020	-383.312872	-383.309517	-383.309250	-383.200831	-383.197539	-383.197637	-294.16	-294.00	-293.04
+ 0.0025	-383.313905	-383.309694	-383.309400	-383.201544	-383.197420	-383.197571	-295.00	-294.78	-293.61
+ 0.0030	-383.314962	-383.309889	-383.309583	-383.202281	-383.197323	-383.197538	-295.84	-295.54	-294.17

Table S149. Energy of A1 and ³A1 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Table S150. Energy of A2 and ³A2 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Field	Energy A2, X-EEF	Energy A2, Y-EEF	Energy A2, Z-EEF	Energy ³ A2, X-EEF	Energy ³ A2, Y-EEF	Energy ³ A2, Z-EEF	ΔΕ _{st} , X- EEF	ΔΕ _{sτ} , Υ- ΕΕF	ΔE _{st} , Z-EEF
- 0.0030	-499.055716	-499.058211	-499.061321	-499.044275	-499.043858	-499.043805	-30.04	-37.68	-45.99
- 0.0025	-499.056043	-499.058137	-499.060699	-499.044103	-499.043751	-499.043693	-31.35	-37.77	-44.65
- 0.0020	-499.056390	-499.058076	-499.060102	-499.043948	-499.043662	-499.043606	-32.67	-37.84	-43.31
- 0.0015	-499.056756	-499.058029	-499.059531	-499.043808	-499.043592	-499.043541	-33.99	-37.91	-41.98
- 0.0010	-499.057141	-499.057996	-499.058985	-499.043685	-499.043539	-499.043500	-35.33	-37.96	-40.66
- 0.0005	-499.057545	-499.057975	-499.058464	-499.043578	-499.043504	-499.043482	-36.67	-38.00	-39.34
+ 0.0000	-499.057969	-499.057969	-499.057969	-499.043487	-499.043487	-499.043487	-38.02	-38.02	-38.02
+ 0.0005	-499.058412	-499.057976	-499.057499	-499.043412	-499.043488	-499.043515	-39.38	-38.04	-36.71
+ 0.0010	-499.058874	-499.057997	-499.057054	-499.043353	-499.043507	-499.043567	-40.75	-38.04	-35.41
+ 0.0015	-499.059356	-499.058031	-499.056634	-499.043311	-499.043544	-499.043641	-42.13	-38.03	-34.11
+ 0.0020	-499.059857	-499.058078	-499.056240	-499.043284	-499.043599	-499.043739	-43.51	-38.02	-32.82
+ 0.0025	-499.060378	-499.058139	-499.055871	-499.043274	-499.043672	-499.043861	-44.90	-37.98	-31.53
+ 0.0030	-499.060917	-499.058214	-499.055527	-499.043280	-499.043763	-499.044005	-46.31	-37.94	-30.25

Field	Energy A3, X-EEF	Energy A3, Y-EEF	Energy A3, Z-EEF	Energy ³ A3, X-EEF	Energy ³ A3, Y-EEF	Energy ³ A3, Z-EEF	ΔΕ _{sτ} , Χ- ΕΕF	ΔΕ _{sτ} , Υ- ΕΕF	ΔEsτ, Z- EEF
- 0.0030	- 593.742181	- 593.743284	- 593.747248	- 593.696529	- 593.696100	- 593.698251	-119.86	-123.88	-128.64
- 0.0025	- 593.742470	- 593.743399	- 593.746674	- 593.696425	- 593.696065	- 593.697834	-120.89	-124.28	-128.23
- 0.0020	- 593.742783	- 593.743534	- 593.746132	- 593.696343	- 593.696052	- 593.697448	-121.93	-124.66	-127.82
- 0.0015	- 593.743119	- 593.743689	- 593.745620	- 593.696282	- 593.696062	- 593.697095	-122.97	-125.04	-127.40
-0.0010	- 593.743480	- 593.743863	- 593.745139	- 593.696243	- 593.696095	- 593.696774	-124.02	-125.41	-126.98
- 0.0005	- 593.743863	- 593.744057	- 593.744689	- 593.696225	- 593.696150	- 593.696485	-125.08	-125.78	-126.56
+ 0.0000	- 593.744270	- 593.744270	- 593.744270	- 593.696228	- 593.696228	- 593.696228	-126.14	-126.14	-126.14
+ 0.0005	- 593.744701	- 593.744504	- 593.743883	- 593.696253	- 593.696328	- 593.696003	-127.20	-126.48	-125.71
+ 0.0010	- 593.745156	- 593.744757	- 593.743526	- 593.696299	- 593.696451	- 593.695811	-128.27	-126.83	-125.27
+ 0.0015	- 593.745634	- 593.745029	- 593.743199	- 593.696367	- 593.696597	- 593.695650	-129.35	-127.16	-124.84
+ 0.0020	- 593.746135	- 593.745321	- 593.742904	- 593.696456	- 593.696765	- 593.695522	-130.43	-127.48	-124.40
+ 0.0025	- 593.746660	- 593.745633	- 593.742640	- 593.696567	- 593.696956	- 593.695426	-131.52	-127.80	-123.96
+ 0.0030	- 593.747209	- 593.745964	- 593.742407	- 593.696699	- 593.697169	- 593.695362	-132.61	-128.11	-123.52

Table S151. Energy of A3 and ³A3 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Table S152. Energy of A4 and ³A4 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Field	Energy A4, X-EEF	Energy A4, Y-EEF	Energy A4, Z-EEF	Energy ³ A4, X-EEF	Energy ³ A4, Y-EEF	Energy ³ A4, Z-EEF	ΔΕ _{sτ} , Χ- ΕΕF	ΔΕ _{st} , Υ- EEF	ΔΕ _{sτ} , Ζ-ΕΕF
- 0.0030	-782.573527	-782.575738	-782.581885	-782.546026	-782.545414	-782.545889	-72.20	-79.61	-94.51
- 0.0025	-782.573805	-782.575659	-782.580747	-782.545672	-782.545158	-782.545532	-73.86	-80.08	-92.46
- 0.0020	-782.574103	-782.575594	-782.579638	-782.545334	-782.544919	-782.545201	-75.53	-80.54	-90.41
- 0.0015	-782.574418	-782.575543	-782.578556	-782.545013	-782.544699	-782.544898	-77.20	-80.98	-88.37
-0.0010	-782.574753	-782.575507	-782.577502	-782.544709	-782.544498	-782.544622	-78.88	-81.42	-86.33
- 0.0005	-782.575106	-782.575485	-782.576476	-782.544421	-782.544314	-782.544372	-80.56	-81.84	-84.29
+ 0.0000	-782.575477	-782.575477	-782.575477	-782.544149	-782.544149	-782.544149	-82.25	-82.25	-82.25
+ 0.0005	-782.575867	-782.575483	-782.574506	-782.543894	-782.544003	-782.543953	-83.94	-82.65	-80.22
+ 0.0010	-782.576276	-782.575504	-782.573564	-782.543656	-782.543875	-782.543784	-85.64	-83.04	-78.19
+ 0.0015	-782.576703	-782.575539	-782.572648	-782.543434	-782.543765	-782.543642	-87.35	-83.42	-76.16
+ 0.0020	-782.577149	-782.575588	-782.571761	-782.543229	-782.543673	-782.543526	-89.06	-83.79	-74.13
+ 0.0025	-782.577613	-782.575651	-782.570901	-782.543041	-782.543600	-782.543437	-90.77	-84.15	-72.11
+ 0.0030	-782.578096	-782.575729	-782.570070	-782.542869	-782.543545	-782.543374	-92.49	-84.50	-70.09

Field	Energy A5, X-EEF	Energy A5, Y-EEF	Energy A5, Z-EEF	Energy ³ A5, X-EEF	Energy ³ A5, Y-EEF	Energy ³ A5, Z-EEF	ΔΕ _{sτ} , Χ- ΕΕ F	ΔΕ _{sτ} , Υ- ΕΕF	ΔEst, Z- EEF
- 0.0030	-39.120717	-39.122949	-39.122974	-39.143871	-39.144625	-39.144639	60.79	56.91	56.88
- 0.0025	-39.121073	-39.122935	-39.122952	-39.143982	-39.144610	-39.144620	60.15	56.91	56.89
- 0.0020	-39.121431	-39.122923	-39.122934	-39.144096	-39.144598	-39.144605	59.51	56.91	56.90
- 0.0015	-39.121794	-39.122914	-39.122920	-39.144213	-39.144589	-39.144593	58.86	56.91	56.90
-0.0010	-39.122160	-39.122907	-39.122910	-39.144332	-39.144583	-39.144584	58.21	56.91	56.91
- 0.0005	-39.122529	-39.122903	-39.122904	-39.144453	-39.144579	-39.144579	57.56	56.91	56.91
+ 0.0000	-39.122902	-39.122902	-39.122902	-39.144577	-39.144577	-39.144577	56.91	56.91	56.91
+ 0.0005	-39.123279	-39.122903	-39.122904	-39.144704	-39.144579	-39.144579	56.25	56.91	56.91
+ 0.0010	-39.123659	-39.122907	-39.122910	-39.144833	-39.144583	-39.144584	55.59	56.91	56.91
+ 0.0015	-39.124042	-39.122914	-39.122920	-39.144965	-39.144589	-39.144593	54.93	56.91	56.90
+ 0.0020	-39.124429	-39.122923	-39.122934	-39.145100	-39.144598	-39.144605	54.27	56.91	56.90
+ 0.0025	-39.124820	-39.122935	-39.122952	-39.145237	-39.144610	-39.144620	53.60	56.91	56.89
+ 0.0030	-39.125214	-39.122949	-39.122974	-39.145376	-39.144625	-39.144639	52.94	56.91	56.88

Table S153. Energy of A5 and ³A5 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Table S154. Energy of A6 and ³ A6 Under EEFs in Gas.	. Energy given in Hartree,	changes in energy given in
kJ/mol.		

Field	Energy A6, X-EEF	Energy A6, Y-EEF	Energy A6, Z-EEF	Energy ³ A6, X-EEF	Energy ³ A6, Y-EEF	Energy ³ A6, Z-EEF	ΔΕ _{sτ} , Χ- ΕΕ F	ΔΕ _{sτ} , Υ- ΕΕF	ΔΕ _{sτ} , Ζ- ΕΕF
- 0.0030	-501.246528	-501.249412	-501.250147	-501.259118	-501.259599	-501.260361	33.05	26.75	26.82
- 0.0025	-501.246848	-501.249275	-501.249785	-501.259046	-501.259479	-501.260008	32.02	26.79	26.84
- 0.0020	-501.247203	-501.249163	-501.249489	-501.259009	-501.259380	-501.259719	31.00	26.83	26.86
- 0.0015	-501.247592	-501.249076	-501.249259	-501.259006	-501.259304	-501.259494	29.97	26.85	26.87
-0.0010	-501.248015	-501.249013	-501.249095	-501.259038	-501.259249	-501.259334	28.94	26.87	26.88
- 0.0005	-501.248472	-501.248976	-501.248996	-501.259104	-501.259216	-501.259238	27.92	26.89	26.89
+ 0.0000	-501.248964	-501.248964	-501.248964	-501.259206	-501.259206	-501.259206	26.89	26.89	26.89
+ 0.0005	-501.249489	-501.248976	-501.248996	-501.259341	-501.259216	-501.259238	25.87	26.89	26.89
+ 0.0010	-501.250050	-501.249013	-501.249095	-501.259512	-501.259249	-501.259334	24.84	26.87	26.88
+ 0.0015	-501.250644	-501.249076	-501.249259	-501.259717	-501.259304	-501.259494	23.82	26.85	26.87
+ 0.0020	-501.251273	-501.249163	-501.249489	-501.259956	-501.259380	-501.259719	22.80	26.83	26.86
+ 0.0025	-501.251936	-501.249275	-501.249785	-501.260230	-501.259479	-501.260008	21.78	26.79	26.84
+ 0.0030	-501.252633	-501.249412	-501.250147	-501.260539	-501.259599	-501.260361	20.76	26.75	26.82

Field	Energy A7, X-EEF	Energy A7, Y-EEF	Energy A7, Z-EEF	Energy ³ A7, X-EEF	Energy ³ A7, Y-EEF	Energy ³ A7, Z-EEF	ΔΕ _{sτ} , Χ- ΕΕ F	ΔEst, Y- EEF	ΔEst, Z- EEF
- 0.0030	-498.758577	-498.760447	-498.760330	-498.755339	-498.755954	-498.755276	-8.50	-11.80	-13.27
- 0.0025	-498.758861	-498.760422	-498.760316	-498.755417	-498.755931	-498.755357	-9.04	-11.79	-13.02
- 0.0020	-498.759151	-498.760402	-498.760310	-498.755500	-498.755912	-498.755445	-9.59	-11.79	-12.77
- 0.0015	-498.759446	-498.760386	-498.760312	-498.755588	-498.755898	-498.755542	-10.13	-11.78	-12.52
-0.0010	-498.759747	-498.760375	-498.760322	-498.755680	-498.755887	-498.755647	-10.68	-11.78	-12.27
- 0.0005	-498.760054	-498.760368	-498.760340	-498.755777	-498.755881	-498.755759	-11.23	-11.78	-12.03
+ 0.0000	-498.760366	-498.760366	-498.760366	-498.755879	-498.755879	-498.755879	-11.78	-11.78	-11.78
+ 0.0005	-498.760684	-498.760368	-498.760400	-498.755985	-498.755881	-498.756007	-12.34	-11.78	-11.53
+ 0.0010	-498.761007	-498.760375	-498.760442	-498.756097	-498.755887	-498.756142	-12.89	-11.78	-11.29
+ 0.0015	-498.761336	-498.760386	-498.760493	-498.756212	-498.755898	-498.756286	-13.45	-11.78	-11.05
+ 0.0020	-498.761670	-498.760402	-498.760551	-498.756333	-498.755912	-498.756437	-14.01	-11.79	-10.80
+ 0.0025	-498.762011	-498.760422	-498.760617	-498.756458	-498.755931	-498.756595	-14.58	-11.79	-10.56
+ 0.0030	-498.762356	-498.760447	-498.760692	-498.756588	-498.755954	-498.756762	-15.14	-11.80	-10.32

Table S155. Energy of A7 and ³A7 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Table S156. Energy of A8 and ³A8 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Field	Energy A8, X-EEF	Energy A8, Y-EEF	Energy A8, Z-EEF	Energy ³ A8, X-EEF	Energy ³ A8, Y-EEF	Energy ³ A8, Z-EEF	ΔΕ _{sτ} , Χ- ΕΕF	ΔΕ _{st} , Υ- ΕΕF	ΔΕ _{st} , Ζ- ΕΕF
- 0.0030	-270.187722	-270.190979	-270.194457	-270.202620	-270.203178	-270.203640	39.12	32.03	24.11
- 0.0025	-270.188174	-270.190916	-270.193776	-270.202627	-270.203117	-270.203461	37.95	32.03	25.43
- 0.0020	-270.188649	-270.190865	-270.193122	-270.202656	-270.203067	-270.203310	36.77	32.04	26.75
- 0.0015	-270.189147	-270.190826	-270.192494	-270.202705	-270.203029	-270.203187	35.60	32.04	28.07
-0.0010	-270.189667	-270.190797	-270.191894	-270.202775	-270.203001	-270.203090	34.42	32.04	29.39
- 0.0005	-270.190209	-270.190780	-270.191321	-270.202866	-270.202984	-270.203021	33.23	32.04	30.72
+ 0.0000	-270.190775	-270.190775	-270.190775	-270.202979	-270.202979	-270.202979	32.04	32.04	32.04
+ 0.0005	-270.191363	-270.190780	-270.190255	-270.203112	-270.202984	-270.202964	30.85	32.04	33.37
+ 0.0010	-270.191973	-270.190798	-270.189763	-270.203266	-270.203001	-270.202976	29.65	32.04	34.69
+ 0.0015	-270.192606	-270.190826	-270.189297	-270.203442	-270.203029	-270.203015	28.45	32.04	36.02
+ 0.0020	-270.193262	-270.190866	-270.188857	-270.203639	-270.203067	-270.203081	27.24	32.04	37.35
+ 0.0025	-270.193940	-270.190917	-270.188445	-270.203856	-270.203117	-270.203175	26.03	32.03	38.67
+ 0.0030	-270.194641	-270.190979	-270.188059	-270.204095	-270.203178	-270.203296	24.82	32.03	40.00

Field	Energy A9, X-EEF	Energy A9, Y-EEF	Energy A9, Z-EEF	Energy ³ A9, X-EEF	Energy ³ A9, Y-EEF	Energy ³ A9, Z-EEF	ΔΕ _{sτ} , Χ- ΕΕF	ΔEst, Y- EEF	ΔEst, Z- EEF
- 0.0030	-500.045394	-500.049182	-500.049909	-500.060090	-500.060581	-500.061315	38.59	29.93	29.95
- 0.0025	-500.045875	-500.049080	-500.049584	-500.060027	-500.060482	-500.060992	37.15	29.94	29.95
- 0.0020	-500.046395	-500.048996	-500.049319	-500.059999	-500.060400	-500.060727	35.72	29.94	29.95
- 0.0015	-500.046951	-500.048931	-500.049113	-500.060009	-500.060337	-500.060521	34.28	29.95	29.95
-0.0010	-500.047546	-500.048885	-500.048966	-500.060055	-500.060292	-500.060374	32.84	29.95	29.95
- 0.0005	-500.048178	-500.048857	-500.048877	-500.060137	-500.060265	-500.060286	31.40	29.95	29.95
+ 0.0000	-500.048848	-500.048848	-500.048848	-500.060256	-500.060256	-500.060256	29.95	29.95	29.95
+ 0.0005	-500.049555	-500.048857	-500.048877	-500.060412	-500.060265	-500.060286	28.50	29.95	29.95
+ 0.0010	-500.050300	-500.048885	-500.048966	-500.060604	-500.060292	-500.060374	27.05	29.95	29.95
+ 0.0015	-500.051083	-500.048931	-500.049113	-500.060833	-500.060337	-500.060521	25.60	29.95	29.95
+ 0.0020	-500.051904	-500.048996	-500.049319	-500.061098	-500.060400	-500.060727	24.14	29.94	29.95
+ 0.0025	-500.052762	-500.049080	-500.049584	-500.061400	-500.060482	-500.060992	22.68	29.94	29.95
+ 0.0030	-500.053658	-500.049182	-500.049909	-500.061739	-500.060581	-500.061315	21.22	29.93	29.95

Table S157. Energy of A9 and ³A9 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Table S158. Energy of A10 and ³ A10 Under EEFs in Gas	. Energy given in Hartree,	changes in energy given in
kJ/mol.		

Field	Energy A10, X- EEF	Energy A10, Y- EEF	Energy A10, Z- EEF	Energy ³ A10, X- EEF	Energy ³ A10, Y- EEF	Energy ³ A10, Z- EEF	ΔE _{st} , X- EEF	ΔE _{st} , Y- EEF	ΔE _{st} , Z- EEF
- 0.0030	-270.187722	-270.190979	-270.194457	-270.202620	-270.203178	-270.203640	39.12	32.03	24.11
- 0.0025	-270.188174	-270.190917	-270.193776	-270.202627	-270.203117	-270.203461	37.95	32.03	25.43
- 0.0020	-270.188649	-270.190866	-270.193122	-270.202656	-270.203067	-270.203310	36.77	32.04	26.75
- 0.0015	-270.189147	-270.190826	-270.192495	-270.202705	-270.203028	-270.203187	35.60	32.04	28.07
-0.0010	-270.189667	-270.190797	-270.191894	-270.202775	-270.203001	-270.203090	34.42	32.04	29.39
- 0.0005	-270.190209	-270.190780	-270.191321	-270.202866	-270.202984	-270.203021	33.23	32.04	30.72
+ 0.0000	-270.190775	-270.190775	-270.190775	-270.202979	-270.202979	-270.202979	32.04	32.04	32.04
+ 0.0005	-270.191363	-270.190780	-270.190255	-270.203112	-270.202984	-270.202964	30.85	32.04	33.37
+ 0.0010	-270.191973	-270.190797	-270.189762	-270.203266	-270.203001	-270.202976	29.65	32.04	34.69
+ 0.0015	-270.192606	-270.190826	-270.189296	-270.203442	-270.203029	-270.203015	28.45	32.04	36.02
+ 0.0020	-270.193262	-270.190866	-270.188857	-270.203638	-270.203067	-270.203081	27.24	32.04	37.35
+ 0.0025	-270.193940	-270.190917	-270.188444	-270.203856	-270.203117	-270.203175	26.03	32.03	38.67
+ 0.0030	-270.194641	-270.190979	-270.188058	-270.204095	-270.203178	-270.203295	24.82	32.03	40.00

Field	Energy A11, X- EEF	Energy A11, Y- EEF	Energy A11, Z- EEF	Energy ³ A11, X- EEF	Energy ³ A11, Y- EEF	Energy ³ A11, Z- EEF	ΔE _{st} , X- EEF	ΔΕ _{sτ} , Υ- ΕΕF	ΔΕ _{sτ} , Ζ- ΕΕF
- 0.0030	-345.428062	-345.430325	-345.435448	-345.436692	-345.435864	-345.437259	22.66	14.54	4.76
- 0.0025	-345.428345	-345.430260	-345.434479	-345.436465	-345.435801	-345.436914	21.32	14.55	6.39
- 0.0020	-345.428650	-345.430206	-345.433542	-345.436260	-345.435749	-345.436601	19.98	14.55	8.03
- 0.0015	-345.428980	-345.430164	-345.432637	-345.436076	-345.435709	-345.436318	18.63	14.56	9.67
-0.0010	-345.429333	-345.430134	-345.431763	-345.435915	-345.435680	-345.436067	17.28	14.56	11.30
- 0.0005	-345.429709	-345.430116	-345.430921	-345.435775	-345.435663	-345.435846	15.93	14.56	12.93
+ 0.0000	-345.430109	-345.430109	-345.430109	-345.435657	-345.435657	-345.435657	14.56	14.56	14.56
+ 0.0005	-345.430533	-345.430115	-345.429329	-345.435561	-345.435663	-345.435498	13.20	14.57	16.20
+ 0.0010	-345.430981	-345.430132	-345.428580	-345.435486	-345.435680	-345.435370	11.83	14.57	17.83
+ 0.0015	-345.431452	-345.430161	-345.427862	-345.435433	-345.435709	-345.435272	10.45	14.57	19.46
+ 0.0020	-345.431946	-345.430202	-345.427175	-345.435402	-345.435750	-345.435206	9.07	14.56	21.08
+ 0.0025	-345.432465	-345.430255	-345.426519	-345.435393	-345.435802	-345.435169	7.69	14.56	22.71
+ 0.0030	-345.433007	-345.430320	-345.425893	-345.435406	-345.435866	-345.435163	6.30	14.56	24.34

Table S159. Energy of A11 and ³A11 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Table S160. Energy of A12 and ³A12 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Field	Energy A12, X- EEF	Energy A12, Y- EEF	Energy A12, Z- EEF	Energy ³ A12, X- EEF	Energy ³ A12, Y- EEF	Energy ³ A12, Z- EEF	ΔEst, X- EEF	ΔE _{st} , Y- EEF	ΔEsτ, Z- EEF
- 0.0030	-325.557123	-325.562247	-325.569432	-325.563014	-325.565368	-325.566888	15.47	8.19	-6.68
- 0.0025	-325.557879	-325.562182	-325.568112	-325.563129	-325.565117	-325.566328	13.78	7.71	-4.68
- 0.0020	-325.558661	-325.562129	-325.566828	-325.563267	-325.564879	-325.565803	12.09	7.22	-2.69
- 0.0015	-325.559469	-325.562090	-325.565579	-325.563428	-325.564654	-325.565313	10.40	6.73	-0.70
- 0.0010	-325.560302	-325.562062	-325.564366	-325.563613	-325.564440	-325.564857	8.69	6.24	1.29
- 0.0005	-325.561161	-325.562047	-325.563188	-325.563820	-325.564239	-325.564437	6.98	5.76	3.28
+ 0.0000	-325.562045	-325.562045	-325.562045	-325.564051	-325.564051	-325.564051	5.27	5.27	5.27
+ 0.0005	-325.562955	-325.562055	-325.560938	-325.564305	-325.563875	-325.563699	3.54	4.78	7.25
+ 0.0010	-325.563891	-325.562078	-325.559865	-325.564582	-325.563711	-325.563382	1.81	4.29	9.23
+ 0.0015	-325.564853	-325.562113	-325.558827	-325.564882	-325.563560	-325.563099	0.08	3.80	11.22
+ 0.0020	-325.565840	-325.562161	-325.557824	-325.565205	-325.563421	-325.562851	-1.67	3.31	13.20
+ 0.0025	-325.566853	-325.562222	-325.556856	-325.565552	-325.563294	-325.562636	-3.42	2.82	15.18
+ 0.0030	-325.567892	-325.562295	-325.555922	-325.565922	-325.563180	-325.562455	-5.17	2.33	17.15

Field	Energy A13, X- EEF	Energy A13, Y- EEF	Energy A13, Z- EEF	Energy ³ A13, X- EEF	Energy ³ A13, Y- EEF	Energy ³ A13, Z- EEF	ΔE _{st} , X- EEF	ΔΕ _{sτ} , Υ- EEF	ΔΕ _{sτ} , Ζ- ΕΕF
- 0.0030	-668.380894	-668.383377	-668.387706	-668.391409	-668.392626	-668.392331	27.61	24.28	12.14
- 0.0025	-668.381197	-668.383300	-668.386841	-668.391504	-668.392547	-668.392236	27.06	24.28	14.16
- 0.0020	-668.381527	-668.383238	-668.386017	-668.391624	-668.392482	-668.392180	26.51	24.27	16.18
- 0.0015	-668.381885	-668.383189	-668.385234	-668.391770	-668.392431	-668.392165	25.95	24.26	18.20
- 0.0010	-668.382271	-668.383154	-668.384491	-668.391940	-668.392393	-668.392189	25.39	24.26	20.21
- 0.0005	-668.382685	-668.383133	-668.383789	-668.392136	-668.392368	-668.392253	24.82	24.25	22.22
+ 0.0000	-668.383126	-668.383126	-668.383126	-668.392358	-668.392358	-668.392358	24.24	24.24	24.24
+ 0.0005	-668.383595	-668.383133	-668.382504	-668.392604	-668.392360	-668.392501	23.65	24.23	26.25
+ 0.0010	-668.384093	-668.383154	-668.381921	-668.392875	-668.392377	-668.392684	23.06	24.22	28.26
+ 0.0015	-668.384618	-668.383188	-668.381378	-668.393172	-668.392407	-668.392906	22.46	24.20	30.27
+ 0.0020	-668.385171	-668.383237	-668.380874	-668.393494	-668.392451	-668.393168	21.85	24.19	32.28
+ 0.0025	-668.385752	-668.383299	-668.380410	-668.393841	-668.392508	-668.393469	21.24	24.18	34.29
+ 0.0030	-668.386361	-668.383375	-668.379985	-668.394214	-668.392579	-668.393808	20.62	24.16	36.29

Table S161. Energy of A13 and ³A13 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Table S162. Energy of A14 and ³ A14 Under EEFs in Gas	. Energy given in Hartree,	changes in energy given in
kJ/mol.		

Field	Energy A14, X- EEF	Energy A14, Y- EEF	Energy A14, Z- EEF	Energy ³ A14, X- EEF	Energy ³ A14, Y- EEF	Energy ³ A14, Z- EEF	ΔΕ _{5Τ} , Χ- ΕΕ F	ΔE _{st} , Y- EEF	ΔE _{st} , Z- EEF
- 0.0030	-474.700432	-474.701017	-474.699637	-474.722205	-474.720601	-474.715286	57.16	51.42	41.09
- 0.0025	-474.700424	-474.700948	-474.699745	-474.721837	-474.720534	-474.716043	56.22	51.42	42.79
- 0.0020	-474.700442	-474.700891	-474.699886	-474.721495	-474.720479	-474.716837	55.27	51.43	44.50
- 0.0015	-474.700488	-474.700846	-474.700062	-474.721178	-474.720436	-474.717668	54.32	51.43	46.23
- 0.0010	-474.700561	-474.700814	-474.700271	-474.720887	-474.720406	-474.718536	53.37	51.44	47.95
- 0.0005	-474.700661	-474.700795	-474.700513	-474.720621	-474.720387	-474.719440	52.40	51.44	49.69
+ 0.0000	-474.700789	-474.700789	-474.700789	-474.720381	-474.720381	-474.720381	51.44	51.44	51.44
+ 0.0005	-474.700944	-474.700795	-474.701098	-474.720167	-474.720387	-474.721360	50.47	51.44	53.20
+ 0.0010	-474.701126	-474.700814	-474.701441	-474.719979	-474.720406	-474.722375	49.50	51.44	54.96
+ 0.0015	-474.701336	-474.700846	-474.701817	-474.719816	-474.720437	-474.723428	48.52	51.44	56.74
+ 0.0020	-474.701573	-474.700890	-474.702226	-474.719678	-474.720480	-474.724518	47.54	51.43	58.53
+ 0.0025	-474.701837	-474.700947	-474.702669	-474.719567	-474.720535	-474.725646	46.55	51.43	60.33
+ 0.0030	-474.702129	-474.701016	-474.703144	-474.719481	-474.720602	-474.726812	45.56	51.42	62.14

Field	Energy A15, X- EEF	Energy A15, Y- EEF	Energy A15, Z- EEF	Energy ³ A15, X- EEF	Energy ³ A15, Y- EEF	Energy ³ A15, Z- EEF	ΔE _{st} , X- EEF	ΔΕ _{sτ} , Υ- EEF	ΔΕ _{sτ} , Ζ- ΕΕF
- 0.0030	-384.721365	-384.724044	-384.730060	-384.729897	-384.729469	-384.731478	22.40	14.24	3.72
- 0.0025	-384.721704	-384.723965	-384.728920	-384.729723	-384.729390	-384.731007	21.05	14.25	5.48
- 0.0020	-384.722069	-384.723900	-384.727817	-384.729574	-384.729327	-384.730574	19.70	14.25	7.24
- 0.0015	-384.722459	-384.723849	-384.726752	-384.729448	-384.729277	-384.730178	18.35	14.25	8.99
- 0.0010	-384.722875	-384.723813	-384.725725	-384.729346	-384.729241	-384.729819	16.99	14.25	10.75
- 0.0005	-384.723317	-384.723792	-384.724736	-384.729267	-384.729220	-384.729497	15.62	14.25	12.50
+ 0.0000	-384.723784	-384.723784	-384.723784	-384.729213	-384.729213	-384.729213	14.25	14.25	14.25
+ 0.0005	-384.724277	-384.723791	-384.722870	-384.729181	-384.729219	-384.728965	12.88	14.25	16.00
+ 0.0010	-384.724796	-384.723813	-384.721994	-384.729174	-384.729241	-384.728754	11.50	14.25	17.75
+ 0.0015	-384.725340	-384.723849	-384.721155	-384.729190	-384.729276	-384.728580	10.11	14.25	19.49
+ 0.0020	-384.725909	-384.723899	-384.720353	-384.729230	-384.729325	-384.728442	8.72	14.25	21.24
+ 0.0025	-384.726505	-384.723964	-384.719588	-384.729294	-384.729389	-384.728341	7.32	14.24	22.98
+ 0.0030	-384.727126	-384.724043	-384.718860	-384.729381	-384.729467	-384.728277	5.92	14.24	24.72

Table S163. Energy of A15 and ³A15 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Table S164. Energy of A16 and ³A16 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Field	Energy A16, X- EEF	Energy A16, Y- EEF	Energy A16, Z- EEF	Energy ³ A16, X- EEF	Energy ³ A16, Y- EEF	Energy ³ A16, Z- EEF	ΔEsτ, X- EEF	ΔE _{st} , Y- EEF	ΔEsτ, Z- EEF
- 0.0030	-345.421649	-345.423545	-345.426177	-345.436561	-345.435987	-345.435403	39.15	32.66	24.22
- 0.0025	-345.421869	-345.423480	-345.425630	-345.436373	-345.435922	-345.435393	38.08	32.67	25.63
- 0.0020	-345.422113	-345.423427	-345.425113	-345.436208	-345.435870	-345.435412	37.01	32.67	27.04
- 0.0015	-345.422381	-345.423385	-345.424624	-345.436066	-345.435829	-345.435459	35.93	32.67	28.45
-0.0010	-345.422674	-345.423356	-345.424165	-345.435946	-345.435800	-345.435536	34.85	32.67	29.86
- 0.0005	-345.422990	-345.423338	-345.423734	-345.435849	-345.435782	-345.435641	33.76	32.67	31.26
+ 0.0000	-345.423332	-345.423332	-345.423332	-345.435776	-345.435776	-345.435776	32.67	32.67	32.67
+ 0.0005	-345.423697	-345.423338	-345.422958	-345.435724	-345.435781	-345.435938	31.58	32.67	34.08
+ 0.0010	-345.424087	-345.423355	-345.422614	-345.435696	-345.435798	-345.436130	30.48	32.67	35.49
+ 0.0015	-345.424501	-345.423385	-345.422297	-345.435690	-345.435826	-345.436351	29.38	32.67	36.90
+ 0.0020	-345.424940	-345.423426	-345.422010	-345.435708	-345.435866	-345.436600	28.27	32.66	38.31
+ 0.0025	-345.425403	-345.423479	-345.421751	-345.435748	-345.435918	-345.436878	27.16	32.66	39.72
+ 0.0030	-345.425890	-345.423544	-345.421520	-345.435811	-345.435981	-345.437184	26.05	32.65	41.13

Field	Energy A17, X- EEF	Energy A17, Y- EEF	Energy A17, Z- EEF	Energy ³ A17, X- EEF	Energy ³ A17, Y- EEF	Energy ³ A17, Z- EEF	ΔE _{st} , X- EEF	ΔΕ _{sτ} , Υ- ΕΕF	ΔΕ _{sτ} , Ζ- ΕΕF
- 0.0030	-325.548912	-325.550129	-325.556096	-325.563779	-325.562307	-325.565085	39.04	31.97	23.60
- 0.0025	-325.549198	-325.550245	-325.555170	-325.563628	-325.562429	-325.564697	37.88	31.99	25.02
- 0.0020	-325.549510	-325.550373	-325.554275	-325.563500	-325.562565	-325.564341	36.73	32.01	26.43
- 0.0015	-325.549848	-325.550514	-325.553412	-325.563397	-325.562712	-325.564017	35.57	32.03	27.84
- 0.0010	-325.550211	-325.550667	-325.552581	-325.563317	-325.562872	-325.563723	34.41	32.04	29.25
- 0.0005	-325.550599	-325.550833	-325.551781	-325.563261	-325.563045	-325.563461	33.25	32.06	30.67
+ 0.0000	-325.551012	-325.551012	-325.551012	-325.563230	-325.563230	-325.563230	32.08	32.08	32.08
+ 0.0005	-325.551451	-325.551204	-325.550275	-325.563222	-325.563427	-325.563030	30.90	32.09	33.49
+ 0.0010	-325.551915	-325.551408	-325.549569	-325.563239	-325.563637	-325.562861	29.73	32.11	34.90
+ 0.0015	-325.552405	-325.551625	-325.548894	-325.563279	-325.563859	-325.562723	28.55	32.12	36.31
+ 0.0020	-325.552920	-325.551854	-325.548250	-325.563343	-325.564093	-325.562616	27.37	32.13	37.72
+ 0.0025	-325.553460	-325.552096	-325.547637	-325.563432	-325.564340	-325.562540	26.18	32.15	39.13
+ 0.0030	-325.554026	-325.552351	-325.547055	-325.563544	-325.564599	-325.562496	24.99	32.16	40.54

Table S165. Energy of A17 and ³A17 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Table S166. Energy of A18 and ³ A18 Under EEFs in Gas	. Energy given in Hartree,	changes in energy given in
kJ/mol.		

Field	Energy A18, X- EEF	Energy A18, Y- EEF	Energy A18, Z- EEF	Energy ³ A18, X- EEF	Energy ³ A18, Y- EEF	Energy ³ A18, Z- EEF	ΔEsτ, X- EEF	ΔE _{st} , Y- EEF	ΔΕ _{sτ} , Ζ- ΕΕF
- 0.0030	-668.375988	-668.378638	-668.381059	-668.389741	-668.391611	-668.391899	36.11	34.06	28.46
- 0.0025	-668.376328	-668.378570	-668.380533	-668.389934	-668.391524	-668.391710	35.72	34.01	29.35
- 0.0020	-668.376696	-668.378517	-668.380043	-668.390154	-668.391452	-668.391557	35.33	33.96	30.23
- 0.0015	-668.377091	-668.378477	-668.379589	-668.390400	-668.391393	-668.391439	34.94	33.91	31.11
-0.0010	-668.377513	-668.378451	-668.379171	-668.390673	-668.391347	-668.391357	34.55	33.86	31.99
- 0.0005	-668.377963	-668.378439	-668.378788	-668.390972	-668.391315	-668.391309	34.15	33.81	32.87
+ 0.0000	-668.378441	-668.378441	-668.378441	-668.391297	-668.391297	-668.391297	33.75	33.75	33.75
+ 0.0005	-668.378946	-668.378457	-668.378129	-668.391649	-668.391293	-668.391320	33.35	33.70	34.63
+ 0.0010	-668.379479	-668.378486	-668.377852	-668.392028	-668.391302	-668.391379	32.95	33.65	35.51
+ 0.0015	-668.380039	-668.378530	-668.377611	-668.392433	-668.391324	-668.391472	32.54	33.59	36.39
+ 0.0020	-668.380627	-668.378587	-668.377405	-668.392864	-668.391361	-668.391601	32.13	33.54	37.27
+ 0.0025	-668.381242	-668.378659	-668.377234	-668.393322	-668.391411	-668.391764	31.72	33.48	38.15
+ 0.0030	-668.381885	-668.378744	-668.377098	-668.393806	-668.391474	-668.391963	31.30	33.42	39.03

Field	Energy A19, X- EEF	Energy A19, Y- EEF	Energy A19, Z- EEF	Energy ³ A19, X- EEF	Energy ³ A19, Y- EEF	Energy ³ A19, Z- EEF	ΔE _{st} , X- EEF	ΔΕ _{sτ} , Υ- EEF	ΔΕ _{sτ} , Ζ- ΕΕF
- 0.0030	-474.696778	-474.702498	-474.701204	-474.714438	-474.718299	-474.714406	46.37	41.49	34.66
- 0.0025	-474.697626	-474.702429	-474.701299	-474.714979	-474.718232	-474.714935	45.56	41.49	35.80
- 0.0020	-474.698501	-474.702372	-474.701427	-474.715547	-474.718177	-474.715498	44.75	41.50	36.94
- 0.0015	-474.699403	-474.702328	-474.701588	-474.716141	-474.718134	-474.716093	43.95	41.50	38.08
- 0.0010	-474.700332	-474.702296	-474.701782	-474.716761	-474.718104	-474.716722	43.13	41.50	39.22
- 0.0005	-474.701288	-474.702277	-474.702010	-474.717407	-474.718085	-474.717384	42.32	41.50	40.37
+ 0.0000	-474.702271	-474.702271	-474.702271	-474.718079	-474.718079	-474.718079	41.51	41.51	41.51
+ 0.0005	-474.703280	-474.702277	-474.702565	-474.718777	-474.718086	-474.718808	40.69	41.51	42.65
+ 0.0010	-474.704317	-474.702296	-474.702892	-474.719502	-474.718104	-474.719569	39.87	41.51	43.79
+ 0.0015	-474.705380	-474.702327	-474.703252	-474.720252	-474.718135	-474.720364	39.05	41.50	44.93
+ 0.0020	-474.706470	-474.702371	-474.703645	-474.721028	-474.718178	-474.721191	38.22	41.50	46.07
+ 0.0025	-474.707587	-474.702428	-474.704072	-474.721831	-474.718234	-474.722052	37.40	41.50	47.21
+ 0.0030	-474.708730	-474.702497	-474.704531	-474.722659	-474.718301	-474.722946	36.57	41.49	48.35

 Table S167. Energy of A19 and ³A19 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Table S168. Energy of A20 and ³ A20 Under EEFs in Gas	. Energy given in Hartree,	changes in energy given in
kJ/mol.		

Field	Energy A20, X- EEF	Energy A20, Y- EEF	Energy A20, Z- EEF	Energy ³ A20, X- EEF	Energy ³ A20, Y- EEF	Energy ³ A20, Z- EEF	ΔΕ _{5Τ} , Χ- ΕΕ F	ΔΕ _{sτ} , Υ- ΕΕF	ΔE _{st} , Z- EEF
- 0.0030	-384.715863	-384.717516	-384.720816	-384.730450	-384.729581	-384.729616	38.30	31.68	23.10
- 0.0025	-384.716025	-384.717436	-384.720141	-384.730196	-384.729504	-384.729489	37.21	31.68	24.54
- 0.0020	-384.716215	-384.717371	-384.719499	-384.729969	-384.729440	-384.729393	36.11	31.69	25.98
- 0.0015	-384.716432	-384.717320	-384.718889	-384.729769	-384.729391	-384.729329	35.01	31.69	27.41
- 0.0010	-384.716678	-384.717283	-384.718311	-384.729595	-384.729357	-384.729297	33.91	31.70	28.84
- 0.0005	-384.716951	-384.717261	-384.717766	-384.729449	-384.729336	-384.729298	32.81	31.70	30.28
+ 0.0000	-384.717253	-384.717253	-384.717253	-384.729330	-384.729330	-384.729330	31.71	31.71	31.71
+ 0.0005	-384.717583	-384.717260	-384.716772	-384.729237	-384.729337	-384.729393	30.60	31.71	33.14
+ 0.0010	-384.717940	-384.717281	-384.716324	-384.729172	-384.729359	-384.729489	29.49	31.71	34.57
+ 0.0015	-384.718326	-384.717316	-384.715907	-384.729133	-384.729395	-384.729616	28.37	31.71	35.99
+ 0.0020	-384.718740	-384.717366	-384.715523	-384.729122	-384.729445	-384.729776	27.26	31.72	37.42
+ 0.0025	-384.719182	-384.717430	-384.715170	-384.729137	-384.729510	-384.729966	26.14	31.72	38.85
+ 0.0030	-384.719651	-384.717508	-384.714850	-384.729179	-384.729588	-384.730189	25.02	31.72	40.27

Field	Energy A21, X- EEF	Energy A21, Y- EEF	Energy A21, Z- EEF	Energy ³ A21, X- EEF	Energy ³ A21, Y- EEF	Energy ³ A21, Z- EEF	ΔE _{st} , X- EEF	ΔΕ _{sτ} , Υ- ΕΕF	ΔΕ _{sτ} , Ζ- ΕΕF
- 0.0030	-721.819741	-721.821838	-721.813228	-721.824420	-721.823633	-721.818560	12.28	4.71	14.00
- 0.0025	-721.819971	-721.821744	-721.814502	-721.824173	-721.823541	-721.819248	11.03	4.72	12.46
- 0.0020	-721.820228	-721.821668	-721.815820	-721.823952	-721.823465	-721.819979	9.78	4.72	10.92
- 0.0015	-721.820512	-721.821608	-721.817181	-721.823757	-721.823406	-721.820753	8.52	4.72	9.38
- 0.0010	-721.820825	-721.821566	-721.818587	-721.823588	-721.823364	-721.821569	7.26	4.72	7.83
- 0.0005	-721.821164	-721.821540	-721.820037	-721.823446	-721.823339	-721.822428	5.99	4.72	6.28
+ 0.0000	-721.821532	-721.821532	-721.821532	-721.823330	-721.823330	-721.823330	4.72	4.72	4.72
+ 0.0005	-721.821926	-721.821540	-721.823070	-721.823240	-721.823339	-721.824275	3.45	4.72	3.16
+ 0.0010	-721.822349	-721.821566	-721.824654	-721.823177	-721.823364	-721.825264	2.17	4.72	1.60
+ 0.0015	-721.822799	-721.821608	-721.826281	-721.823140	-721.823406	-721.826296	0.90	4.72	0.04
+ 0.0020	-721.823276	-721.821668	-721.827954	-721.823129	-721.823465	-721.827371	-0.39	4.72	-1.53
+ 0.0025	-721.823781	-721.821744	-721.829671	-721.823145	-721.823541	-721.828490	-1.67	4.72	-3.10
+ 0.0030	-721.824314	-721.821838	-721.831434	-721.823186	-721.823633	-721.829653	-2.96	4.71	-4.67

Table S169. Energy of A21 and ³A21 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Table S170. Energy of A22 and ³A22 Under EEFs in Gas. Energy given in Hartree, changes in energy given in kJ/mol.

Field	Energy A22, X- EEF	Energy A22, Y- EEF	Energy A22, Z- EEF	Energy ³ A22, X- EEF	Energy ³ A22, Y- EEF	Energy ³ A22, Z- EEF	ΔEsτ, X- EEF	ΔΕ _{sτ} , Υ- ΕΕF	ΔEsτ, Z- EEF
- 0.0030	-721.807502	-721.810669	-721.803586	-721.820654	-721.821491	-721.816889	34.53	28.41	34.93
- 0.0025	-721.807909	-721.810575	-721.804614	-721.820676	-721.821399	-721.817505	33.52	28.42	33.85
- 0.0020	-721.808344	-721.810498	-721.805683	-721.820725	-721.821323	-721.818162	32.51	28.42	32.76
- 0.0015	-721.808807	-721.810439	-721.806792	-721.820800	-721.821264	-721.818859	31.49	28.42	31.68
-0.0010	-721.809297	-721.810396	-721.807941	-721.820903	-721.821222	-721.819595	30.47	28.42	30.60
- 0.0005	-721.809816	-721.810370	-721.809131	-721.821032	-721.821197	-721.820372	29.45	28.42	29.51
+ 0.0000	-721.810362	-721.810362	-721.810362	-721.821188	-721.821188	-721.821188	28.43	28.43	28.43
+ 0.0005	-721.810936	-721.810370	-721.811633	-721.821371	-721.821197	-721.822045	27.40	28.42	27.34
+ 0.0010	-721.811538	-721.810396	-721.812945	-721.821581	-721.821222	-721.822942	26.37	28.42	26.25
+ 0.0015	-721.812167	-721.810439	-721.814298	-721.821817	-721.821264	-721.823879	25.34	28.42	25.15
+ 0.0020	-721.812825	-721.810498	-721.815691	-721.822081	-721.821323	-721.824856	24.30	28.42	24.06
+ 0.0025	-721.813510	-721.810575	-721.817126	-721.822371	-721.821399	-721.825874	23.26	28.42	22.97
+ 0.0030	-721.814223	-721.810669	-721.818601	-721.822688	-721.821491	-721.826931	22.22	28.41	21.87

S9. Natural Resonance Theory Calculation Results

Figure S139. The NRT results for I_{1a}, demonstrating that in the Natural Bonding Orbital basis, the carbenic structure is ylidic, and not formally carbenic, in the gas phase.

S10. Gibbs Free Energies and Components, Frontier Orbital Energies, Nucleophilicity and Electrophilicity Parameters of Unsubstituted NHCs in Test Set Across Different Solvents

Species	DFT Energy	ZPVE	тс	S	TS	н	G	E(HOMO)
TCE, Gas	-447.521116	0.047645	0.010036	394.029200	0.044746	-447.463434	-447.508180	-10.923
TCE, TOL ^a	-447.524835	0.047476	0.010157	396.712900	0.045050	-447.467202	-447.509233	-10.640
TCE, DCM ^a	-447.532845	0.047581	0.010133	396.356700	0.045010	-447.475130	-447.517121	-10.407
TCE, MeCN ^a	-447.534565	0.047652	0.010109	395.968900	0.044966	-447.476803	-447.518750	-10.321
TCE, Water ^a	-447.527489	0.047403	0.010098	395.664100	0.044931	-447.469988	-447.511900	-10.294

Table S171. Reference Species. Entropy given in J/mol.K and frontier orbital energy given in eV. All other quantities given in Hartree.

^a The Gibbs free energies for these species are phase-corrected via the Direct method to account for solvation

Table S172. Unsubstituted NHCs in Test Set in Gas. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G
l _{1a}	-304.777248	0.127783	0.007878	341.729700	0.038807	-304.641587	-304.680394
³ _{1a}	-304.640405	0.125222	0.008220	354.795100	0.040290	-304.506962	-304.547253
II _{1a}	-383.326623	0.182763	0.011173	404.772100	0.045966	-383.132687	-383.178652
³ _{1a}	-383.258939	0.180579	0.011164	405.032300	0.045995	-383.067197	-383.113192
III _{1a}	-344.060072	0.155410	0.009548	374.889500	0.042572	-343.895114	-343.937686
³ _{1a}	-343.957724	0.152556	0.009969	389.966400	0.044284	-343.795199	-343.839483
IV _{1a}	-285.327785	0.086895	0.006065	303.317400	0.034444	-285.234825	-285.269270
³ IV _{1a}	-285.201048	0.084569	0.006585	322.646500	0.036639	-285.109894	-285.146534
V _{1a}	-608.304080	0.083758	0.006444	314.938500	0.035764	-608.213878	-608.249642
³ V _{1a}	-608.196307	0.081862	0.007069	336.380300	0.038199	-608.107376	-608.145575
VI1a	-305.973317	0.150582	0.008534	347.482700	0.039460	-305.814201	-305.853661
³ VI _{1a}	-305.859700	0.149471	0.008326	356.266200	0.040457	-305.701903	-305.742360
VII1a	-345.281574	0.180342	0.009263	367.321600	0.041713	-345.091970	-345.133682
³ VII _{1a}	-345.184027	0.179025	0.009146	372.390100	0.042288	-344.995856	-345.038145
VIII _{1a}	-327.997986	0.165895	0.009336	365.808900	0.041541	-327.822755	-327.864296
³ VIII _{1a}	-327.923282	0.164367	0.009707	382.781000	0.043468	-327.749208	-327.792676
IX _{1a}	-320.817894	0.116342	0.007686	338.829800	0.038477	-320.693866	-320.732343
³ IX _{1a}	-320.678717	0.113727	0.008069	353.652400	0.040160	-320.556921	-320.597081

Species	E(HOMO)	E(LUMO)	СНІ	ΕΤΑ	GEI	Ν
l _{1a}	-7.440410	-0.163813	3.802111	7.276598	0.993325	3.483058
3 _{1a}	-4.319808	-2.359500	3.339654	1.960309	2.844779	6.603660
II _{1a}	-5.875211	-0.542867	3.209039	5.332344	0.965610	5.048257
³ _{1a}	-4.239807	-1.787516	3.013661	2.452290	1.851770	6.683662
III _{1a}	-6.449372	-0.398919	3.424145	6.050453	0.968917	4.474097
³ _{1a}	-4.328788	-1.837585	3.083187	2.491203	1.907922	6.594680
IV _{1a}	-8.069266	-0.279733	4.174499	7.789533	1.118581	2.854203
³ IV _{1a}	-5.130163	-2.695832	3.912998	2.434331	3.144920	5.793305
V _{1a}	-7.775383	-0.267488	4.021435	7.507895	1.076996	3.148086
³ V _{1a}	-4.708115	-2.400045	3.554080	2.308070	2.736373	6.215354
VI _{1a}	-7.227889	-0.239188	3.733539	6.988701	0.997275	3.695579
³ VI _{1a}	-4.593555	-2.236776	3.415166	2.356778	2.474428	6.329914
VII _{1a}	-6.725295	-0.252522	3.488908	6.472773	0.940283	4.198173
³ VII _{1a}	-4.722537	-1.980173	3.351355	2.742364	2.047792	6.200932
VIII _{1a}	-7.108976	-0.215786	3.662381	6.893189	0.972919	3.814493
³ VIII _{1a}	-5.098870	-2.126842	3.612856	2.972028	2.195930	5.824598
IX _{1a}	-7.873616	-0.198099	4.035857	7.675517	1.061045	3.049853
³ IX _{1a}	-4.604167	-2.714064	3.659116	1.890103	3.541904	6.319301

 Table S173. Orbital Energies and Philicity Parameters of Unsubstituted NHCs in Test Set. All quantities given in eV.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Toluene)
l _{1a}	-304.793823	0.128038	0.007860	341.802100	0.038815	-304.657926	-304.696740	-304.693721
II _{1a}	-383.347085	0.183061	0.011151	404.834200	0.045973	-383.152873	-383.198846	-383.195827
III _{1a}	-344.080315	0.155669	0.009533	374.765700	0.042558	-343.915113	-343.957671	-343.954652
IV _{1a}	-285.336113	0.087198	0.006032	302.652600	0.034369	-285.242883	-285.277252	-285.274233
V _{1a}	-608.312739	0.083961	0.006411	314.263300	0.035688	-608.222368	-608.258055	-608.255036
VI _{1a}	-305.989059	0.150721	0.008553	348.356600	0.039559	-305.829785	-305.869344	-305.866325
VII_{1a}	-345.297371	0.180456	0.009275	367.959200	0.041785	-345.107640	-345.149426	-345.146407
VIII _{1a}	-328.009647	0.166108	0.009289	364.973000	0.041446	-327.834251	-327.875697	-327.872678
IX _{1a}	-320.836154	0.116398	0.007655	338.072700	0.038391	-320.712101	-320.750492	-320.747473

Table S174. Unsubstituted Singlet NHCs in Test Set in SMD Toluene.Entropy given in J/mol.K. All otherquantities given in Hartree.

Table S175. Unsubstituted Singlet NHCs in Test Set in SMD DCM. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(DCM)
l _{1a}	-304.798765	0.127896	0.007882	342.638700	0.038910	-304.662986	-304.701896	-304.698877
II _{1a}	-383.361529	0.183093	0.011180	406.047500	0.046110	-383.167256	-383.213367	-383.210348
III _{1a}	-344.090936	0.155777	0.009508	374.425800	0.042520	-343.925651	-343.968171	-343.965152
IV _{1a}	-285.341627	0.087106	0.006036	302.833500	0.034390	-285.248485	-285.282875	-285.279856
V _{1a}	-608.318001	0.083973	0.006407	314.216200	0.035682	-608.227621	-608.263303	-608.260284
VI_{1a}	-305.993524	0.150640	0.008557	348.208400	0.039542	-305.834328	-305.873870	-305.870851
VII1a	-345.302062	0.180246	0.009329	369.384100	0.041947	-345.112487	-345.154434	-345.151415
VIII _{1a}	-328.015110	0.165955	0.009277	364.766900	0.041423	-327.839879	-327.881301	-327.878282
IX _{1a}	-320.840927	0.116365	0.007655	338.118000	0.038396	-320.716907	-320.755303	-320.752284

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(MeCN)
I _{1a}	-304.799213	0.127870	0.007882	342.646800	0.038911	-304.663460	-304.702371	-304.699352
II _{1a}	-383.364921	0.183393	0.011049	402.965300	0.045760	-383.170478	-383.216238	-383.213219
III _{1a}	-344.093313	0.155827	0.009482	373.836200	0.042453	-343.928003	-343.970456	-343.967437
IV _{1a}	-285.342796	0.087088	0.006042	303.079900	0.034418	-285.249665	-285.284083	-285.281064
V _{1a}	-608.318523	0.083963	0.006419	314.654100	0.035732	-608.228140	-608.263872	-608.260853
VI _{1a}	-305.993746	0.150606	0.008568	348.513400	0.039577	-305.834573	-305.874150	-305.871131
VII_{1a}	-345.302245	0.180197	0.009333	369.499200	0.041960	-345.112715	-345.154675	-345.151656
VIII _{1a}	-328.015226	0.165926	0.009267	364.550600	0.041398	-327.840033	-327.881431	-327.878412
IX _{1a}	-320.841486	0.116359	0.007655	338.138400	0.038399	-320.717473	-320.755871	-320.752852

Table S176. Unsubstituted Singlet NHCs in Test Set in SMD MeCN. Entropy given in J/mol.K. All otherquantities given in Hartree.

Table S177. Unsubstituted Singlet NHCs in Test Set in SMD Water.Entropy given in J/mol.K. All otherquantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(Water)
l _{1a}	-304.784323	0.127864	0.007929	343.570000	0.039016	-304.648529	-304.687545	-304.684526
II _{1a}	-383.357607	0.183628	0.011042	402.870800	0.045750	-383.162938	-383.208687	-383.205668
III _{1a}	-344.081096	0.155912	0.009518	374.538300	0.042532	-343.915666	-343.958198	-343.955179
IV _{1a}	-285.335190	0.086797	0.006085	303.823400	0.034502	-285.242308	-285.276810	-285.273791
V _{1a}	-608.310676	0.084011	0.006434	314.931400	0.035763	-608.220231	-608.255994	-608.252975
VI_{1a}	-305.981202	0.150817	0.008514	346.637000	0.039364	-305.821871	-305.861235	-305.858216
VII1a	-345.289543	0.180299	0.009414	371.435300	0.042180	-345.099830	-345.142010	-345.138991
VIII _{1a}	-328.005237	0.165998	0.009283	364.821500	0.041429	-327.829955	-327.871384	-327.868365
IX _{1a}	-320.827393	0.116449	0.007691	338.840400	0.038478	-320.703253	-320.741731	-320.738712

Species	E(HOMO)	E(LUMO)	СНІ	ΕΤΑ	GEI	Ν
l _{1a}	-7.652931	-0.043810	3.848371	7.609121	0.973171	3.270537
ll _{1a}	-6.283382	-0.269665	3.276523	6.013717	0.892593	4.640086
III _{1a}	-6.795500	-0.174425	3.484963	6.621075	0.917144	4.127968
IV _{1a}	-8.223010	-0.090342	4.156676	8.132668	1.062256	2.700458
V _{1a}	-7.899739	-0.094151	3.996945	7.805587	1.023342	3.023730
VI _{1a}	-7.283673	-0.093063	3.688368	7.190610	0.945960	3.639796
VII _{1a}	-6.889924	-0.101498	3.495711	6.788425	0.900061	4.033544
VIII _{1a}	-7.258638	-0.072110	3.665374	7.186528	0.934733	3.664830
IX _{1a}	-8.045320	-0.048981	4.047150	7.996339	1.024183	2.878149

Table S178. Orbital Energies and Philicity Parameters of Unsubstituted Singlet NHCs in Test Set in SMDToluene. All quantities given in eV.

Table S179. Orbital Energies and Philicity Parameters of Unsubstituted Singlet NHCs in Test Set in SMD DCM.All quantities given in eV.

Species	E(HOMO)	E(LUMO)	СНІ	ΕΤΑ	GEI	Ν
l _{1a}	-7.814023	0.021769	3.896127	7.835792	0.968620	3.109446
II _{1a}	-6.770738	-0.087076	3.428907	6.683662	0.879563	4.152730
III _{1a}	-7.200134	-0.033198	3.616666	7.166936	0.912543	3.723334
IV _{1a}	-8.413762	0.026395	4.193683	8.440157	1.041863	2.509706
V _{1a}	-8.076885	0.008436	4.034225	8.085320	1.006452	2.846584
VI _{1a}	-7.298095	-0.007075	3.652585	7.291020	0.914918	3.625373
VII _{1a}	-7.130201	-0.015783	3.572992	7.114418	0.897211	3.793268
VIII _{1a}	-7.464901	0.003265	3.730818	7.468166	0.931889	3.458568
IX _{1a}	-8.247772	0.021497	4.113138	8.269269	1.022938	2.675696

Species	E(HOMO)	E(LUMO)	СНІ	ΕΤΑ	GEI	Ν
l _{1a}	-7.837969	0.037007	3.900481	7.874976	0.965955	3.085500
ll _{1a}	-6.973463	-0.037552	3.505507	6.935911	0.885866	3.950005
III _{1a}	-7.284217	0.000544	3.641836	7.284761	0.910323	3.639251
IV _{1a}	-8.408592	0.053606	4.177493	8.462198	1.031141	2.514877
V _{1a}	-8.151716	0.034286	4.058715	8.186002	1.006179	2.771752
VI _{1a}	-7.305442	0.013878	3.645782	7.319320	0.907989	3.618026
VII _{1a}	-7.234964	0.004626	3.615169	7.239590	0.902637	3.688504
VIII _{1a}	-7.553882	-0.022041	3.787962	7.531841	0.952533	3.369586
IX _{1a}	-8.328046	0.034558	4.146744	8.362604	1.028118	2.595422

Table S180. Orbital Energies and Philicity Parameters of Unsubstituted Singlet NHCs in Test Set in SMDMeCN. All quantities given in eV.

Table S181. Orbital Energies and Philicity Parameters of Unsubstituted Singlet NHCs in Test Set in SMDWater. All quantities given in eV.

Species	E(HOMO)	E(LUMO)	СНІ	ΕΤΑ	GEI	Ν
l _{1a}	-7.842867	0.039457	3.901705	7.882323	0.965661	3.080601
ll _{1a}	-7.015641	-0.029388	3.522514	6.986252	0.888037	3.907828
III _{1a}	-7.302449	0.005987	3.648231	7.308435	0.910564	3.621020
IV _{1a}	-8.453490	0.076192	4.188649	8.529682	1.028455	2.469978
V _{1a}	-8.168587	0.038368	4.065110	8.206955	1.006775	2.754881
VI _{1a}	-7.424084	0.025307	3.699388	7.449390	0.918563	3.499385
VII _{1a}	-7.258910	0.006803	3.626054	7.265713	0.904816	3.664558
VIII _{1a}	-7.574018	-0.025579	3.799798	7.548440	0.956388	3.349450
IX _{1a}	-8.345189	0.036463	4.154363	8.381652	1.029554	2.578279

S11. Correction Procedure for Electrostatic Switch Values

For some BF₂-substituted species used in the calculation of electrostatic switches, we observe the favourable formation of an organoboron compound via an intramolecular carbene addition, or otherwise a notable interaction. However, using the uncharged member of each D-LEF pair to calculate our electrostatic switches is not strictly necessary. In the ideal case where the effects we observe are purely electrostatic (i.e. no throughbond effects), we could simply use the unsubstituted species as a reference, provided that the difference between the measured GEI and N values obtained for the uncharged species possessing no C-B interactions are small.

To that point, we find that the maximum difference in the GEI values of the BF₂-substituted species relative to the unsubstituted carbenes is 12.00%, with an average difference of 0.029 eV regardless of position, in the gas-phase. Likewise, we find that the maximum difference in the N values of the BF₂-substituted species relative to the unsubstituted carbenes is 19.39%, with an average difference of 0.002 eV regardless of position, in the gas-phase. However, we also find that these differences increase on average with increasing solvent polarity; therefore, while we have confidence that our correction procedure is valid for low-polarity environments, the values obtained for the BF₂ to BF₃⁻ switches at the R₁ positions which have formed C-B interactions should in general be regarded with some caution.

S12. Gibbs Free Energies and Components, Frontier Orbital Energies, Nucleophilicity and Electrophilicity Parameters of D-LEF-Substituted NHCs in Test Set Across Different Solvents

Species	DFT Energy	ZPVE	тс	S	тs	н	G	G(Gas)
l _{1b} ^a	-528.884820	0.128363	0.010003	391.314600	0.044437	-528.746453	-528.790891	-528.790891
I _{1c}	-628.864102	0.129903	0.011241	415.938100	0.047234	-628.722958	-628.770192	-628.770192
I _{1d}	-438.734088	0.202546	0.011189	410.023900	0.046562	-438.520353	-438.566915	-438.566915
I _{1e}	-478.416093	0.245437	0.012391	430.284800	0.048863	-478.158265	-478.207128	-478.207128
I _{2b}	-568.189054	0.156232	0.011938	430.578900	0.048896	-568.020885	-568.069781	-568.069781
I _{2c}	-668.179075	0.158056	0.012750	443.252400	0.050335	-668.008269	-668.058605	-668.058605
I _{2d}	-478.041002	0.230407	0.012916	443.445900	0.050357	-477.797680	-477.848037	-477.848037
l _{2e}	-517.719598	0.273647	0.013998	460.557000	0.052301	-517.431952	-517.484253	-517.484253

Table S182. Energies of I_{1b-e} & I_{2b-e} in Gas. Entropy given in J/mol.K. All other quantities given in Hartree.

^a Forms a weak C-B interaction

Table S183. Energies of I_{1b-e} & I_{2b-e} in SMD Toluene. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Toluene)
I _{1b} a	-528.890910	0.128116	0.010293	399.732200	0.045393	-528.752501	-528.797894	-528.794875
lıc	-628.925655	0.130203	0.011205	415.695400	0.047206	-628.784247	-628.831453	-628.828434
l _{1d}	-438.752816	0.202763	0.011148	409.331300	0.046483	-438.538905	-438.585389	-438.582370
l _{1e}	-478.483721	0.245304	0.011589	414.948000	0.047121	-478.226827	-478.273949	-478.270930
I _{2b}	-568.207108	0.156283	0.011940	431.053500	0.048950	-568.038885	-568.087835	-568.084816
I _{2c}	-668.240664	0.158298	0.012756	444.217900	0.050445	-668.069609	-668.120054	-668.117035
I _{2d}	-478.059796	0.230503	0.012878	442.303400	0.050228	-477.816415	-477.866643	-477.863624
l _{2e}	-517.790690	0.275000	0.013599	450.040100	0.051106	-517.502092	-517.553198	-517.550179

^a Forms a weak C-B interaction

Table S184. Energies of I_{1b-e} & I_{2b-e} in SMD DCM. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	тѕ	н	G	G(DCM)
I _{1b}	-528.898025	0.127952	0.010306	400.145700	0.045440	-528.759766	-528.805206	-528.802187
I _{1c}	-628.956931	0.130109	0.011214	416.991900	0.047353	-628.815608	-628.862962	-628.859943
I _{1d}	-438.758929	0.202660	0.011137	409.254200	0.046475	-438.545133	-438.591607	-438.588588
l _{1e}	-478.514616	0.246134	0.012257	428.129700	0.048618	-478.256225	-478.304843	-478.301824
I _{2b}	-568.214484	0.156098	0.011893	429.188100	0.048738	-568.046493	-568.095231	-568.092212
I _{2c}	-668.271562	0.158256	0.012766	444.731100	0.050503	-668.100540	-668.151043	-668.148024
I _{2d}	-478.065610	0.230310	0.012895	443.081200	0.050316	-477.822405	-477.872721	-477.869702
Ize	-517.824085	0.274744	0.013757	455.257500	0.051699	-517.535584	-517.587283	-517.584264

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(MeCN)
I _{1b}	-528.899209	0.127896	0.010310	400.285200	0.045456	-528.761003	-528.806459	-528.803440
I _{1c}	-628.965202	0.130060	0.011218	417.213100	0.047378	-628.823924	-628.871303	-628.868284
I _{1d}	-438.759213	0.202659	0.011122	408.934000	0.046438	-438.545433	-438.591871	-438.588852
I _{1e}	-478.521944	0.246285	0.012214	427.090500	0.048500	-478.263445	-478.311945	-478.308926
I _{2b}	-568.215768	0.156044	0.011898	429.440600	0.048767	-568.047826	-568.096593	-568.093574
I _{2c}	-668.279124	0.158104	0.012815	446.076800	0.050656	-668.108205	-668.158861	-668.155842
I _{2d}	-478.065664	0.230384	0.012858	442.283600	0.050225	-477.822422	-477.872647	-477.869628
I _{2e}	-517.832256	0.274704	0.013787	456.493400	0.051839	-517.543765	-517.595604	-517.592585

Table S185. Energies of I_{1b-e} & I_{2b-e} in SMD MeCN. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S186. Energies of I_{1b-e} & I_{2b-e} in SMD Water. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Water)
I _{1b}	-528.884593	0.128038	0.010412	402.774300	0.045739	-528.746144	-528.791882	-528.788863
lıc	-628.950599	0.130138	0.011232	417.436800	0.047404	-628.809229	-628.856633	-628.853614
I _{1d}	-438.747269	0.203121	0.011058	407.483600	0.046274	-438.533090	-438.579364	-438.576345
I _{1e}	-478.504559	0.246417	0.012224	427.200900	0.048513	-478.245918	-478.294431	-478.291412
I _{2b}	-568.200543	0.156087	0.011921	429.722600	0.048799	-568.032535	-568.081334	-568.078315
I _{2c}	-668.264337	0.158084	0.012858	446.839500	0.050743	-668.093394	-668.144137	-668.141118
I _{2d}	-478.051722	0.230839	0.012882	444.384400	0.050464	-477.808001	-477.858465	-477.855446
I _{2e}	-517.814468	0.274759	0.013843	457.732200	0.051980	-517.525866	-517.577845	-517.574826

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Gas)
II _{1b} ^a	-607.427448	0.183541	0.013523	457.912300	0.052000	-607.230390	-607.282390	-607.282390
II1c	-707.411844	0.185021	0.014292	469.763400	0.053346	-707.212530	-707.265880	-707.265880
II _{1d}	-517.279212	0.257628	0.014575	472.549000	0.053662	-517.007010	-517.060670	-517.060670
II _{1e}	-556.979326	0.301031	0.015718	490.905000	0.055747	-556.662580	-556.718320	-556.718320
II _{2b}	-607.420875	0.182995	0.013587	458.560200	0.052074	-607.224290	-607.276370	-607.276370
II _{2c}	-707.431256	0.185576	0.014287	468.749600	0.053231	-707.231390	-707.284620	-707.284620
II _{2d}	-517.284313	0.257540	0.014411	467.144500	0.053049	-517.012360	-517.065410	-517.065410
II _{2e}	-556.948936	0.299967	0.015544	485.039200	0.055081	-556.633430	-556.688510	-556.688510

Table S187. Energies of II_{1b-e} & II_{2b-e} in Gas. Entropy given in J/mol.K. All other quantities given in Hartree.

^a Forms a weak C-B interaction

Table S188. Energies of II_{1b-e} & II_{2b-e} in SMD Toluene. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Toluene)
II _{1b}	-607.450576	0.183250	0.013797	465.670000	0.052881	-607.253530	-607.306410	-607.303391
II1c	-707.476167	0.185595	0.014317	470.850900	0.053469	-707.276260	-707.329730	-707.326711
II1d	-517.300343	0.257764	0.014637	475.238500	0.053968	-517.027940	-517.081910	-517.078891
ll1e	-557.039674	0.303767	0.014878	472.209100	0.053624	-556.721030	-556.774650	-556.771631
II _{2b}	-607.450576	0.183250	0.013797	465.670000	0.052881	-607.253530	-607.306410	-607.303391
II _{2c}	-707.476167	0.185595	0.014317	470.850900	0.053469	-707.276260	-707.329730	-707.326711
II _{2d}	-517.300343	0.257764	0.014637	475.238500	0.053968	-517.027940	-517.081910	-517.078891
ll _{2e}	-557.039674	0.303767	0.014878	472.209100	0.053624	-556.721030	-556.774650	-556.771631

Table S189. Energies of II_{1b-e} & II_{2b-e} in SMD DCM. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(DCM)
II _{1b}	-607.465249	0.183260	0.013777	466.199700	0.052941	-607.268210	-607.321150	-607.318131
II1c	-707.518839	0.185820	0.014387	473.876700	0.053813	-707.318630	-707.372450	-707.369431
II1d	-517.311329	0.258319	0.014320	467.388100	0.053076	-517.038690	-517.091770	-517.088751
II _{1e}	-557.075877	0.302843	0.015122	478.276800	0.054313	-556.757910	-556.812220	-556.809201
II _{2b}	-607.459488	0.183581	0.013353	452.428900	0.051377	-607.262550	-607.313930	-607.310911
II2c	-707.524518	0.185513	0.014435	473.631000	0.053785	-707.324570	-707.378360	-707.375341
II _{2d}	-517.320154	0.257607	0.014485	470.482700	0.053428	-517.048060	-517.101490	-517.098471
ll _{2e}	-557.067605	0.302484	0.014989	473.276500	0.053745	-556.750130	-556.803880	-556.800861

Species	DFT Energy	ZPVE	тс	S	тѕ	н	G	G(MeCN)
II _{1b}	-607.468917	0.183411	0.013697	464.326500	0.052729	-607.271810	-607.324540	-607.321521
II1c	-707.530979	0.185941	0.014347	472.953000	0.053708	-707.330690	-707.384400	-707.381381
II _{1d}	-517.311329	0.258319	0.014320	467.388100	0.053076	-517.038690	-517.091770	-517.088751
II _{1e}	-557.075877	0.302843	0.015122	478.276800	0.054313	-556.757910	-556.812220	-556.809201
II _{2b}	-607.464092	0.183682	0.013315	451.918500	0.051320	-607.267100	-607.318420	-607.315401
II _{2c}	-707.533590	0.185669	0.014346	470.972400	0.053483	-707.333570	-707.387060	-707.384041
II _{2d}	-517.320154	0.257607	0.014485	470.482700	0.053428	-517.048060	-517.101490	-517.098471
ll _{2e}	-557.067605	0.302484	0.014989	473.276500	0.053745	-556.750130	-556.803880	-556.800861

Table S190. Energies of II_{1b-e} & II_{2b-e} in SMD MeCN. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S191. Energies of II_{1b-e} & II_{2b-e} in SMD Water. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Water)
II _{1b}	-607.461221	0.183570	0.013718	464.880500	0.052791	-607.263930	-607.316720	-607.313701
II1c	-707.524377	0.185993	0.014409	474.614600	0.053897	-707.323970	-707.377870	-707.374851
II1d	-517.310975	0.258760	0.014343	468.516500	0.053204	-517.037870	-517.091080	-517.088061
II1e	-557.074399	0.302970	0.015158	478.648300	0.054355	-556.756270	-556.810630	-556.807611
II _{2b}	-607.455967	0.183758	0.013342	452.603700	0.051397	-607.258870	-607.310260	-607.307241
II _{2c}	-707.525738	0.185791	0.014362	471.381300	0.053530	-707.325590	-707.379110	-707.376091
ll _{2d}	-517.315352	0.258525	0.014298	466.585800	0.052985	-517.042530	-517.095510	-517.092491
ll _{2e}	-557.068061	0.302701	0.015002	473.260800	0.053743	-556.750360	-556.804100	-556.801081

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Gas)
III _{1b} a	-568.156499	0.155561	0.011957	429.548200	0.048779	-567.988980	-568.037760	-568.037760
III1c	-668.152429	0.157480	0.012959	448.113600	0.050887	-667.981990	-668.032880	-668.032880
III _{1d}	-478.016039	0.230041	0.012892	441.409700	0.050126	-477.773110	-477.823230	-477.823230
III _{1e}	-517.703314	0.273344	0.013851	454.592700	0.051623	-517.416120	-517.467740	-517.467740
III _{2b}	-607.471138	0.183880	0.013507	457.009000	0.051898	-607.273750	-607.325650	-607.325650
III2c	-707.477937	0.185899	0.014391	473.230800	0.053740	-707.277650	-707.331390	-707.331390
III _{2d}	-517.321881	0.258969	0.014131	461.573800	0.052416	-517.048780	-517.101200	-517.101200
III _{2e}	-556.995493	0.301446	0.015355	481.068300	0.054630	-556.678692	-556.733321	-556.733321
III _{3b}	-568.155082	0.155660	0.011933	429.091900	0.048727	-567.987490	-568.036220	-568.036220
III _{3c}	-668.163450	0.157789	0.012914	448.203600	0.050898	-667.992750	-668.043650	-668.043650
III _{3d}	-478.014071	0.229793	0.012954	443.520000	0.050366	-477.771330	-477.821690	-477.821690
III _{3e}	-517.681112	0.272883	0.013949	458.274300	0.052041	-517.394280	-517.446320	-517.446320
III _{4b}	-568.162980	0.156052	0.012085	435.193200	0.049420	-567.994840	-568.044260	-568.044260
III _{4c}	-668.140173	0.157726	0.012756	442.403000	0.050239	-667.969690	-668.019930	-668.019930
III _{4d}	-478.013434	0.230207	0.012960	444.447100	0.050471	-477.770270	-477.820740	-477.820740
III _{4e}	-517.710844	0.273835	0.014096	462.355500	0.052505	-517.422910	-517.475420	-517.475420

Table S192. Energies of $III_{[1-4][b-e]}$ in Gas. Entropy given in J/mol.K. All other quantities given in Hartree.

^a Forms a weak C-B interaction

Table S193. Energies of III _{[1-4][b-e]} in SMD Toluene.	. Entropy given in	J/mol.K. All	other quantities	given in
Hartree.				

Species	DFT Energy	ZPVE	тс	S	тs	Н	G	G(Toluene)
III _{1b} a	-568.176569	0.155949	0.011872	427.607800	0.048559	-568.008750	-568.057310	-568.054291
III1c	-668.215132	0.158013	0.012892	447.051800	0.050767	-668.044230	-668.094990	-668.091971
III1d	-478.038273	0.230222	0.012862	441.100300	0.050091	-477.795190	-477.845280	-477.842261
III _{1e}	-517.770911	0.274559	0.013725	453.653100	0.051517	-517.482630	-517.534140	-517.531121
III _{2b}	-607.491816	0.183549	0.012882	445.824800	0.050628	-607.295390	-607.346010	-607.342991
III2c	-707.536149	0.186229	0.014351	472.273900	0.053631	-707.335568	-707.389199	-707.386180
III _{2d}	-517.344015	0.258614	0.014415	470.436300	0.053422	-517.070990	-517.124410	-517.121391
III _{2e}	-557.070145	0.303862	0.014752	467.810400	0.053124	-556.751530	-556.804654	-556.801635
III _{3b}	-568.176186	0.155941	0.011876	428.156100	0.048621	-568.008370	-568.056990	-568.053971
III _{3c}	-668.222125	0.158321	0.012818	445.970200	0.050644	-668.050990	-668.101630	-668.098611
III _{3d}	-478.036541	0.230240	0.012861	441.076400	0.050088	-477.793440	-477.843530	-477.840511
III _{3e}	-517.757968	0.275395	0.013377	446.057600	0.050654	-517.469200	-517.519850	-517.516831
III _{4b}	-568.182687	0.156439	0.011935	430.790000	0.048920	-568.014310	-568.063230	-568.060211
III _{4c}	-668.205829	0.158636	0.012539	437.464800	0.049678	-668.034650	-668.084330	-668.081311
III4d	-478.034263	0.230425	0.012940	444.428300	0.050469	-477.790900	-477.841370	-477.838351
III _{4e}	-517.773268	0.275170	0.013701	452.928400	0.051434	-517.484400	-517.535830	-517.532811

^a Forms a weak C-B interaction

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(DCM)
III _{1b} ª	-568.190648	0.155981	0.011836	426.891000	0.048477	-568.022830	-568.071310	-568.068291
III1c	-668.250079	0.158113	0.012847	445.799500	0.050625	-668.079120	-668.129750	-668.126731
III _{1d}	-478.049074	0.230140	0.012848	440.987000	0.050078	-477.806090	-477.856160	-477.853141
III1e	-517.805618	0.273733	0.013824	455.653000	0.051744	-517.518060	-517.569800	-517.566781
III _{2b}	-607.505779	0.184067	0.013426	455.396900	0.051715	-607.308290	-607.360000	-607.356981
III _{2c}	-707.568621	0.186076	0.013667	460.402400	0.052283	-707.368880	-707.421160	-707.418141
III _{2d}	-517.355385	0.259317	0.014017	458.900800	0.052112	-517.082050	-517.134160	-517.131141
III _{2e}	-557.111049	0.303497	0.014852	469.734100	0.053343	-556.792701	-556.846043	-556.843024
III _{3b}	-568.189312	0.155926	0.011875	428.198600	0.048626	-568.021510	-568.070140	-568.067121
III _{3c}	-668.253567	0.158144	0.012831	446.582000	0.050714	-668.082590	-668.133310	-668.130291
III _{3d}	-478.048081	0.230296	0.012825	440.253100	0.049995	-477.804960	-477.854960	-477.851941
III _{3e}	-517.799033	0.274785	0.013550	450.056900	0.051108	-517.510700	-517.561810	-517.558791
III _{4b}	-568.194183	0.156316	0.011946	431.143300	0.048960	-568.025920	-568.074880	-568.071861
III _{4c}	-668.244133	0.158217	0.012759	443.420300	0.050354	-668.073160	-668.123510	-668.120491
III _{4d}	-478.044673	0.230423	0.012890	443.057400	0.050313	-477.801360	-477.851670	-477.848651
III _{4e}	-517.808200	0.274535	0.013860	458.438800	0.052060	-517.519810	-517.571870	-517.568851

Table S194. Energies of III_{[1-4][b-e]} in SMD DCM. Entropy given in J/mol.K. All other quantities given in Hartree.

^a Forms a weak C-B interaction

Table S195. Energies of III_{[1-4][b-e]} in SMD MeCN. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(MeCN)
III _{1b}	-568.193646	0.155932	0.011836	426.875100	0.048476	-568.025880	-568.074350	-568.071331
III1c	-668.258802	0.157953	0.012810	445.334500	0.050572	-668.088040	-668.138610	-668.135591
III _{1d}	-478.050849	0.230243	0.012781	439.147300	0.049869	-477.807820	-477.857690	-477.854671
III _{1e}	-517.814616	0.273896	0.013814	455.093700	0.051680	-517.526910	-517.578590	-517.575571
III _{2b}	-607.508919	0.183955	0.013533	459.731600	0.052207	-607.311430	-607.363640	-607.360621
III _{2c}	-707.577677	0.186175	0.014362	473.055000	0.053720	-707.377140	-707.430860	-707.427841
III _{2d}	-517.358331	0.258667	0.014348	468.844800	0.053242	-517.085320	-517.138560	-517.135541
III _{2e}	-557.121973	0.303645	0.014834	469.881000	0.053359	-556.803494	-556.856853	-556.853834
III _{3b}	-568.192761	0.155983	0.011845	427.594900	0.048557	-568.024930	-568.073490	-568.070471
III _{3c}	-668.261114	0.158000	0.012869	447.275600	0.050792	-668.090250	-668.141040	-668.138021
III _{3d}	-478.050348	0.230309	0.012817	440.212600	0.049990	-477.807220	-477.857210	-477.854191
III _{3e}	-517.810096	0.274648	0.013633	452.190800	0.051350	-517.521820	-517.573170	-517.570151
III _{4b}	-568.196919	0.156231	0.011981	432.272100	0.049088	-568.028710	-568.077800	-568.074781
III _{4c}	-668.254699	0.157946	0.012900	448.925600	0.050980	-668.083850	-668.134830	-668.131811
III _{4d}	-478.046542	0.230543	0.012821	441.074900	0.050088	-477.803180	-477.853270	-477.850251
III _{4e}	-517.816210	0.274746	0.013794	456.903300	0.051886	-517.527670	-517.579560	-517.576541

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Water)
III _{1b}	-568.181001	0.155967	0.011883	427.948900	0.048598	-568.013150	-568.061750	-568.058731
III1c	-668.247378	0.158079	0.012830	445.890100	0.050635	-668.076470	-668.127100	-668.124081
III1d	-478.041442	0.231045	0.012659	436.896000	0.049614	-477.797740	-477.847350	-477.844331
III _{1e}	-517.799810	0.274145	0.013836	455.596100	0.051737	-517.511830	-517.563570	-517.560551
III _{2b}	-607.498590	0.184191	0.013507	458.820300	0.052103	-607.300890	-607.353000	-607.349981
III _{2c}	-707.567435	0.186190	0.014432	474.992100	0.053940	-707.366810	-707.420750	-707.417731
III _{2d}	-517.349546	0.259089	0.014315	468.184100	0.053167	-517.076140	-517.129310	-517.126291
III _{2e}	-557.109015	0.303719	0.014876	470.665200	0.053448	-556.790420	-556.843869	-556.840850
III _{3b}	-568.179967	0.156073	0.011868	428.114200	0.048616	-568.012030	-568.060640	-568.057621
III3c	-668.249178	0.158059	0.012902	447.871500	0.050860	-668.078220	-668.129080	-668.126061
III _{3d}	-478.039606	0.230973	0.012744	439.673000	0.049929	-477.795890	-477.845820	-477.842801
III _{3e}	-517.795610	0.274876	0.013630	452.061100	0.051336	-517.507100	-517.558440	-517.555421
III _{4b}	-568.184595	0.156281	0.012041	433.715800	0.049252	-568.016270	-568.065530	-568.062511
III4c	-668.245190	0.158368	0.012829	446.193700	0.050669	-668.073990	-668.124660	-668.121641
III _{4d}	-478.035420	0.231166	0.012798	441.459300	0.050132	-477.791460	-477.841590	-477.838571
III4e	-517.800872	0.275013	0.013762	455.814700	0.051762	-517.512100	-517.563860	-517.560841

Table SX196. Energies of III_{[1-4][b-e]} in SMD Water. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Gas)
IV _{1b}	-509.425382	0.087288	0.008584	366.723100	0.041645	-509.329510	-509.371160	-509.371160
IV _{1c}	-609.423891	0.089154	0.009453	382.313000	0.043415	-609.325290	-609.368700	-609.368700
IV _{1d}	-419.284202	0.161543	0.009459	376.532100	0.042759	-419.113200	-419.155960	-419.155960
IV _{1e}	-458.953180	0.204277	0.010644	396.714300	0.045051	-458.738260	-458.783310	-458.783310
IV _{2b}	-548.739621	0.115363	0.010121	395.378100	0.044899	-548.614140	-548.659040	-548.659040
IV _{2c}	-648.738228	0.117343	0.010952	409.353100	0.046486	-648.609930	-648.656420	-648.656420
IV _{2d}	-458.592395	0.189583	0.011092	407.808600	0.046310	-458.391720	-458.438030	-458.438030
IV _{2e}	-498.259548	0.232672	0.012188	425.475500	0.048317	-498.014690	-498.063010	-498.063010
IV _{3b}	-548.742543	0.115066	0.010240	398.642000	0.045269	-548.617240	-548.662510	-548.662510
IV _{3c}	-648.736104	0.116742	0.011177	415.955200	0.047236	-648.608190	-648.655420	-648.655420
IV _{3d}	-458.591628	0.189306	0.011186	410.542800	0.046621	-458.391140	-458.437760	-458.437760
IV _{3e}	-498.271251	0.232516	0.012323	428.929100	0.048709	-498.026410	-498.075120	-498.075120

Table S197. Energies of IV_{[1-3][b-e]} in Gas. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S198. Energies of IV _{[1-3][b-e]} in SMD To	uene. Entropy given in J/mol.K. All other quantities given in
Hartree.	

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Toluene)
IV _{1b}	-509.433208	0.087444	0.008578	367.037000	0.041680	-509.337190	-509.378870	-509.375851
IV _{1c}	-609.473649	0.089464	0.009372	380.701800	0.043232	-609.374810	-609.418050	-609.415031
IV _{1d}	-419.295649	0.161667	0.009438	375.924100	0.042690	-419.124550	-419.167230	-419.164211
IV _{1e}	-459.018466	0.205065	0.010453	391.760500	0.044488	-458.802950	-458.847440	-458.844421
IV _{2b}	-548.749877	0.115339	0.010163	396.538400	0.045031	-548.624380	-548.669410	-548.666391
IV _{2c}	-648.788733	0.117467	0.010974	410.660800	0.046634	-648.660290	-648.706930	-648.703911
IV _{2d}	-458.603142	0.189678	0.011093	408.059100	0.046339	-458.402370	-458.448710	-458.445691
IV _{2e}	-498.327323	0.234312	0.011784	416.648000	0.047314	-498.081230	-498.128540	-498.125521
IV _{3b}	-548.752857	0.115152	0.010247	399.162700	0.045329	-548.627460	-548.672790	-548.669771
IV _{3c}	-648.789839	0.117089	0.011147	415.668600	0.047203	-648.661600	-648.708810	-648.705791
IV _{3d}	-458.603478	0.189430	0.011193	410.950300	0.046667	-458.402860	-458.449520	-458.446501
IV _{3e}	-498.334698	0.233077	0.012265	426.613500	0.048446	-498.089360	-498.137800	-498.134781

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(DCM)
IV _{1b}	-509.440061	0.086963	0.008560	366.640600	0.041635	-509.344540	-509.386170	-509.383151
IV _{1c}	-609.502760	0.089278	0.009433	382.702600	0.043459	-609.404050	-609.447510	-609.444491
IV _{1d}	-419.302104	0.161592	0.009413	375.254300	0.042614	-419.131100	-419.173710	-419.170691
IV _{1e}	-459.052939	0.205290	0.010448	392.788100	0.044605	-458.837200	-458.881810	-458.878791
IV _{2b}	-548.757843	0.115226	0.010146	396.021400	0.044972	-548.632470	-548.677440	-548.674421
IV _{2c}	-648.818171	0.117121	0.011081	413.743100	0.046984	-648.689970	-648.736950	-648.733931
IV _{2d}	-458.609306	0.189484	0.011141	409.977500	0.046557	-458.408680	-458.455240	-458.452221
IV _{2e}	-498.364155	0.233657	0.012011	421.761200	0.047895	-498.118490	-498.166380	-498.163361
IV _{3b}	-548.760172	0.114963	0.010262	399.529800	0.045370	-548.634950	-548.680320	-548.677301
IV _{3c}	-648.820000	0.116883	0.011182	416.611900	0.047310	-648.691940	-648.739250	-648.736231
IV _{3d}	-458.610391	0.189449	0.011122	409.315600	0.046482	-458.409820	-458.456300	-458.453281
IV _{3e}	-498.369041	0.233178	0.012225	427.494700	0.048546	-498.123640	-498.172180	-498.169161

Table S199. Energies of IV_{[1-3][b-e]} in SMD DCM. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S200. Energies of IV_{[1-3][b-e]} in SMD MeCN. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(MeCN)
IV _{1b}	-509.442045	0.086979	0.008560	366.626800	0.041634	-509.346510	-509.388140	-509.385121
IV _{1c}	-609.510781	0.089275	0.009434	383.069500	0.043501	-609.412070	-609.455570	-609.452551
IV _{1d}	-419.303064	0.161600	0.009402	375.064600	0.042592	-419.132060	-419.174650	-419.171631
IV _{1e}	-459.062000	0.205310	0.010459	393.161500	0.044647	-458.846230	-458.890880	-458.887861
IV _{2b}	-548.759819	0.115333	0.010070	394.203600	0.044765	-548.634420	-548.679180	-548.676161
IV _{2c}	-648.825591	0.117112	0.011077	413.610400	0.046969	-648.697400	-648.744370	-648.741351
IV _{2d}	-458.609969	0.189509	0.011124	409.768500	0.046533	-458.409340	-458.455870	-458.452851
IV _{2e}	-498.373967	0.233579	0.012114	425.042400	0.048267	-498.128270	-498.176540	-498.173521
IV _{3b}	-548.761573	0.114894	0.010273	399.813600	0.045403	-548.636410	-548.681810	-548.678791
IV _{3c}	-648.827513	0.116863	0.011174	416.436600	0.047290	-648.699480	-648.746770	-648.743751
IV _{3d}	-458.611384	0.189427	0.011118	409.238900	0.046473	-458.410840	-458.457310	-458.454291
IV _{3e}	-498.377519	0.233267	0.012209	427.265200	0.048520	-498.132040	-498.180560	-498.177541

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(Water)
IV _{1b}	-509.434003	0.086659	0.008590	367.054000	0.041682	-509.338750	-509.380440	-509.377421
IV _{1c}	-609.503227	0.088869	0.009476	383.781800	0.043582	-609.404880	-609.448460	-609.445441
IV _{1d}	-419.297435	0.161825	0.009333	373.442400	0.042408	-419.126280	-419.168690	-419.165671
IV _{1e}	-459.050868	0.205202	0.010469	393.148700	0.044646	-458.835200	-458.879840	-458.876821
IV _{2b}	-548.751669	0.114973	0.010152	395.766100	0.044943	-548.626540	-548.671490	-548.668471
IV _{2c}	-648.817831	0.116834	0.011108	413.943100	0.047007	-648.689890	-648.736900	-648.733881
IV _{2d}	-458.602932	0.189787	0.011043	407.748500	0.046304	-458.402100	-458.448410	-458.445391
IV _{2e}	-498.363087	0.233485	0.012067	423.379100	0.048079	-498.117540	-498.165610	-498.162591
IV _{3b}	-548.753015	0.114659	0.010311	400.428600	0.045472	-548.628040	-548.673520	-548.670501
IV _{3c}	-648.819307	0.116696	0.011223	417.396800	0.047399	-648.691390	-648.738790	-648.735771
IV _{3d}	-458.605457	0.189682	0.011086	408.595500	0.046400	-458.404690	-458.451090	-458.448071
IV _{3e}	-498.365872	0.233007	0.012278	428.789500	0.048693	-498.120590	-498.169280	-498.166261

Table S201. Energies of IV_{[1-3][b-e]} in SMD Water. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(Gas)
V _{1b}	-832.411140	0.084120	0.008551	364.352400	0.041376	-832.318470	-832.359845	-832.359845
V1c	-932.399520	0.086039	0.009851	391.590200	0.044469	-932.303630	-932.348099	-932.348099
V _{1d}	-742.260949	0.158550	0.009780	384.730400	0.043690	-742.092619	-742.136309	-742.136309
V _{1e}	-781.927113	0.201158	0.010270	390.383400	0.044332	-781.715685	-781.760016	-781.760016
V _{2b}	-871.714466	0.112246	0.010423	402.258100	0.045680	-871.591797	-871.637477	-871.637477
V _{2c}	-971.713650	0.114381	0.011261	416.698500	0.047320	-971.588008	-971.635328	-971.635328
V _{2d}	-781.565118	0.186435	0.011420	415.335000	0.047165	-781.367264	-781.414429	-781.414429
V _{2e}	-821.236131	0.229695	0.012464	431.601600	0.049012	-820.993972	-821.042984	-821.042984
V _{3b}	-871.713560	0.112154	0.010677	409.049700	0.046451	-871.590729	-871.637180	-871.637180
V _{3c}	-971.708444	0.113868	0.011640	426.938400	0.048483	-971.582936	-971.631418	-971.631418
V _{3d}	-781.565593	0.186301	0.011594	419.999600	0.047695	-781.367698	-781.415393	-781.415393
V _{3e}	-821.243135	0.229495	0.012773	439.516900	0.049911	-821.000867	-821.050778	-821.050778

Table S202. Energies of $V_{[1-3][b-e]}$ in Gas. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S203. Energies of $V_{[1-3][b-e]}$ in SMD Toluene. Entropy given in J/mol.K. All other quantities given inHartree.

Species	DFT Energy	ZPVE	тс	S	тs	Н	G	G(Toluene)
V _{1b}	-832.422049	0.084196	0.008499	363.228300	0.041248	-832.329355	-832.370603	-832.367584
V1c	-932.449489	0.086168	0.009782	390.268800	0.044319	-932.353539	-932.397858	-932.394839
V _{1d}	-742.272669	0.158578	0.009769	384.390600	0.043651	-742.104321	-742.147972	-742.144953
V _{1e}	-781.995930	0.201901	0.010871	403.196300	0.045787	-781.783158	-781.828945	-781.825926
V _{2b}	-871.725060	0.112353	0.010394	401.996300	0.045650	-871.602313	-871.647964	-871.644945
V _{2c}	-971.763732	0.114090	0.011425	421.603200	0.047877	-971.638217	-971.686094	-971.683075
V _{2d}	-781.576968	0.186489	0.011412	415.168800	0.047146	-781.379068	-781.426214	-781.423195
V _{2e}	-821.302562	0.230993	0.012279	427.352300	0.048530	-821.059290	-821.107820	-821.104801
V _{3b}	-871.724215	0.112298	0.010637	408.011800	0.046334	-871.601280	-871.647614	-871.644595
V _{3c}	-971.761687	0.114074	0.011577	425.517000	0.048321	-971.636036	-971.684357	-971.681338
V _{3d}	-781.577892	0.186458	0.011579	419.862800	0.047679	-781.379855	-781.427534	-781.424515
V _{3e}	-821.307363	0.230570	0.012505	432.344000	0.049097	-821.064288	-821.113385	-821.110366

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(DCM)
V _{1b}	-832.429082	0.084096	0.008484	362.851700	0.041205	-832.336502	-832.377707	-832.374688
Vıc	-932.478871	0.086152	0.009794	391.377900	0.044445	-932.382925	-932.427370	-932.424351
V_{1d}	-742.278831	0.158598	0.009725	383.379200	0.043536	-742.110508	-742.154044	-742.151025
V _{1e}	-782.019420	0.202349	0.010127	388.192500	0.044083	-781.806943	-781.851026	-781.848007
V _{2b}	-871.733211	0.112274	0.010408	402.817500	0.045744	-871.610530	-871.656273	-871.653254
V _{2c}	-971.792975	0.113960	0.011435	421.796600	0.047899	-971.667581	-971.715480	-971.712461
V _{2d}	-781.583606	0.186435	0.011392	414.783300	0.047102	-781.385779	-781.432881	-781.429862
V _{2e}	-821.338462	0.230271	0.012473	432.335500	0.049096	-821.095718	-821.144813	-821.141794
V _{3b}	-871.731874	0.111942	0.010658	408.441600	0.046382	-871.609274	-871.655656	-871.652637
V _{3c}	-971.791173	0.113986	0.011619	426.908400	0.048479	-971.665567	-971.714047	-971.711028
V _{3d}	-781.584629	0.186426	0.011563	419.726700	0.047664	-781.386640	-781.434304	-781.431285
V _{3e}	-821.341350	0.230167	0.012654	437.822400	0.049719	-821.098529	-821.148248	-821.145229

Table S204. Energies of V_{[1-3][b-e]} in SMD DCM. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S205. Energies of V_{[1-3][b-e]} in SMD MeCN. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(MeCN)
V _{1b}	-832.429950	0.084061	0.008482	362.768100	0.041196	-832.337408	-832.378604	-832.375585
V1c	-932.486547	0.086070	0.009811	391.948700	0.044509	-932.390666	-932.435175	-932.432156
V _{1d}	-742.279134	0.158544	0.009729	383.531300	0.043554	-742.110861	-742.154414	-742.151395
V1e	-782.026725	0.201942	0.010245	390.560900	0.044352	-781.814538	-781.858889	-781.855870
V _{2b}	-871.734672	0.112346	0.010315	400.095400	0.045435	-871.612012	-871.657446	-871.654427
V _{2c}	-971.800168	0.114310	0.011294	417.961600	0.047463	-971.674564	-971.722028	-971.719009
V _{2d}	-781.583813	0.186384	0.011398	414.928500	0.047119	-781.386031	-781.433150	-781.430131
V _{2e}	-821.347518	0.230368	0.012431	431.396500	0.048989	-821.104720	-821.153709	-821.150690
V _{3b}	-871.733111	0.111892	0.010660	408.450200	0.046383	-871.610559	-871.656942	-871.653923
V _{3c}	-971.798797	0.114042	0.011544	424.679100	0.048226	-971.673210	-971.721437	-971.718418
V _{3d}	-781.584892	0.186390	0.011575	420.297900	0.047729	-781.386927	-781.434656	-781.431637
V _{3e}	-821.349720	0.230302	0.012635	437.585300	0.049692	-821.106782	-821.156474	-821.153455

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(Water)
V _{1b}	-832.422162	0.084080	0.008496	363.055200	0.041228	-832.329586	-832.370814	-832.367795
V1c	-932.478746	0.086122	0.009808	391.839800	0.044497	-932.382816	-932.427313	-932.424294
V _{1d}	-742.273250	0.159054	0.009658	382.043900	0.043385	-742.104538	-742.147923	-742.144904
V _{1e}	-782.016289	0.202022	0.010273	391.159200	0.044420	-781.803994	-781.848414	-781.845395
V _{2b}	-871.726385	0.112292	0.010367	401.115300	0.045550	-871.603726	-871.649277	-871.646258
V _{2c}	-971.792109	0.114359	0.011299	417.999600	0.047468	-971.666450	-971.713918	-971.710899
V _{2d}	-781.577177	0.186832	0.011384	414.905100	0.047116	-781.378961	-781.426077	-781.423058
V _{2e}	-821.336597	0.230715	0.012370	430.586600	0.048897	-821.093512	-821.142409	-821.139390
V _{3b}	-871.724044	0.111952	0.010670	408.579400	0.046398	-871.601422	-871.647820	-871.644801
V _{3c}	-971.789968	0.114099	0.011556	424.784000	0.048238	-971.664313	-971.712551	-971.709532
V _{3d}	-781.577897	0.186893	0.011526	419.883900	0.047682	-781.379477	-781.427159	-781.424140
V _{3e}	-821.337922	0.230511	0.012630	437.456400	0.049677	-821.094781	-821.144458	-821.141439

Table S206. Energies of $V_{[1-3][b-e]}$ in SMD Water.Entropy given in J/mol.K.All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Gas)
VI _{1b}	-530.070341	0.150733	0.011021	412.131300	0.046801	-529.908587	-529.955388	-529.955388
VI1c	-630.056583	0.152520	0.011866	426.548200	0.048438	-629.892197	-629.940636	-629.940636
VI _{1d}	-439.930684	0.225246	0.011930	423.576300	0.048101	-439.693508	-439.741609	-439.738590
VI _{1e}	-479.619242	0.268587	0.013084	442.420800	0.050241	-479.337571	-479.387812	-479.384793
VI _{2b}	-569.383205	0.178894	0.012511	442.191600	0.050215	-569.191800	-569.242015	-569.242015
VI _{2c}	-669.373398	0.180708	0.013310	454.741300	0.051640	-669.179381	-669.231021	-669.231021
VI _{2d}	-479.231997	0.253299	0.013374	451.438200	0.051265	-478.965323	-479.016588	-479.013569
VI _{2e}	-518.911985	0.297332	0.014093	456.217900	0.051808	-518.600560	-518.652368	-518.649349

Table S207. Energies of VI_{[1-2][b-e]} in Gas. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S208. Energies of VI_{[1-2][b-e]} in SMD Toluene. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Toluene)
VI _{1b}	-530.088139	0.150885	0.011183	417.869500	0.047453	-529.926072	-529.973525	-529.970506
VI1c	-630.118012	0.152956	0.011858	426.500800	0.048433	-629.953197	-630.001631	-629.998612
VI1d	-439.948545	0.225249	0.011991	425.693800	0.048341	-439.711306	-439.759647	-439.756628
VI _{1e}	-479.685442	0.270623	0.012592	432.247000	0.049086	-479.402228	-479.451314	-479.448295
VI _{2b}	-569.400765	0.178991	0.012440	440.059800	0.049973	-569.209334	-569.259307	-569.256288
VI _{2c}	-669.433564	0.181378	0.013163	451.255100	0.051244	-669.239023	-669.290267	-669.287248
VI _{2d}	-479.250302	0.253417	0.013355	450.762200	0.051188	-478.983530	-479.034718	-479.031699
VI _{2e}	-518.980970	0.298616	0.013827	452.071500	0.051337	-518.668526	-518.719863	-518.716844

Table S209. Energies of VI[1-2	յլ _{b-e]} in SMD DCM . Entropy	v given in J/mol.K. All othe	r quantities given in Hartree.
--------------------------------	--	------------------------------	--------------------------------

Species	DFT Energy	ZPVE	тс	S	тѕ	н	G	G(DCM)
VI _{1b}	-530.093562	0.150679	0.011191	417.783500	0.047443	-529.931692	-529.979135	-529.976116
VI1c	-630.149209	0.152603	0.011980	430.171400	0.048850	-629.984626	-630.033476	-630.030457
VI1d	-439.953806	0.225084	0.011966	424.795600	0.048239	-439.716756	-439.764995	-439.761976
VI _{1e}	-479.714783	0.269393	0.012811	436.351100	0.049552	-479.432578	-479.482130	-479.479111
VI _{2b}	-569.407412	0.178889	0.012508	442.378200	0.050236	-569.216015	-569.266251	-569.263232
VI _{2c}	-669.462983	0.180794	0.013322	455.351000	0.051709	-669.268867	-669.320576	-669.317557
VI _{2d}	-479.256436	0.253264	0.013360	450.863500	0.051200	-478.989812	-479.041012	-479.037993
VI _{2e}	-519.013080	0.298116	0.013990	456.057500	0.051790	-518.700975	-518.752764	-518.749745
Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(MeCN)
------------------	-------------	----------	----------	------------	----------	-------------	-------------	-------------
VI _{1b}	-530.094071	0.150648	0.011184	417.571400	0.047419	-529.932239	-529.979658	-529.976639
VI1c	-630.157052	0.152633	0.011981	430.426500	0.048879	-629.992439	-630.041318	-630.038299
VI_{1d}	-439.952770	0.225399	0.011783	419.862500	0.047679	-439.715588	-439.763268	-439.760249
VI _{1e}	-479.721486	0.269241	0.012869	437.826300	0.049719	-479.439376	-479.489095	-479.486076
VI _{2b}	-569.408264	0.178749	0.012539	443.096000	0.050318	-569.216976	-569.267293	-569.264274
VI _{2c}	-669.469821	0.180603	0.013357	456.207700	0.051807	-669.275862	-669.327669	-669.324650
VI _{2d}	-479.256423	0.253161	0.013387	451.826300	0.051309	-478.989875	-479.041184	-479.038165
VI _{2e}	-519.023978	0.297788	0.014349	466.867400	0.053017	-518.711840	-518.764857	-518.761838

Table S210. Energies of VI_{[1-2][b-e]} in SMD MeCN. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S211. Energies of VI_{[1-2][b-e]} in SMD Water. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(Water)
VI _{1b} ª	-530.096179	0.151495	0.010570	399.880700	0.045410	-529.934114	-529.979524	-529.976505
VI _{1c}	-630.144312	0.152833	0.011927	428.491100	0.048659	-629.979551	-630.028210	-630.025191
VI _{1d}	-439.941939	0.225943	0.011854	422.154500	0.047940	-439.704142	-439.752082	-439.749063
VI _{1e}	-479.705073	0.269234	0.012980	440.357600	0.050007	-479.422860	-479.472866	-479.469847
VI _{2b}	-569.394738	0.178874	0.012527	442.418000	0.050241	-569.203336	-569.253577	-569.250558
VI _{2c}	-669.456922	0.180901	0.013321	455.113300	0.051682	-669.262700	-669.314382	-669.311363
VI _{2d}	-479.245748	0.253860	0.013326	450.468800	0.051155	-478.978562	-479.029717	-479.026698
VI _{2e}	-519.007822	0.297931	0.014392	467.863900	0.053130	-518.695499	-518.748630	-518.745611

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(Gas)
VII _{1b} ^a	-569.407084	0.181259	0.011515	417.823500	0.047448	-569.214310	-569.261758	-569.261758
VII1c	-669.344882	0.181291	0.012872	446.783200	0.050736	-669.150718	-669.201455	-669.201455
VII _{1d}	-479.232991	0.255043	0.012516	432.806300	0.049149	-478.965432	-479.014582	-479.014582
VII _{1e}	-518.930405	0.298566	0.013721	452.078500	0.051338	-518.618118	-518.669455	-518.669455
VII _{2b}	-608.689063	0.208963	0.013089	449.264000	0.051018	-608.467011	-608.518029	-608.518029
VII _{2c}	-708.676864	0.210534	0.014025	465.654300	0.052879	-708.452305	-708.505184	-708.505184
VII _{2d}	-518.537382	0.283033	0.014026	459.427000	0.052172	-518.240324	-518.292496	-518.292496
VII _{2e}	-558.213713	0.327007	0.014954	471.412500	0.053533	-557.871752	-557.925285	-557.925285
VII _{3b}	-608.690618	0.208491	0.013357	455.853400	0.051766	-608.468770	-608.520536	-608.520536
VII _{3c}	-708.676873	0.210306	0.014224	469.916900	0.053363	-708.452343	-708.505706	-708.505706
VII _{3d}	-518.541624	0.282793	0.014289	467.579000	0.053098	-518.244542	-518.297640	-518.297640
VII _{3e}	-558.214197	0.326314	0.015409	484.233600	0.054989	-557.872474	-557.927463	-557.927463

Table S213. Energies of VII_{[1-3][b-e]} in Gas. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S214. Energies of VII _{[1-3][b-e]} in SMD Toluene.	Entropy given in J/mol.K.	All other quantities given in
Hartree.		

Species	DFT Energy	ZPVE	тс	S	тs	Н	G	G(Toluene)
VII 1b ^a	-569.424079	0.181340	0.011445	416.168100	0.047260	-569.231294	-569.278554	-569.275535
VII1c	-669.422459	0.182996	0.012434	436.101200	0.049523	-669.227028	-669.276551	-669.273532
VII1d	-479.252302	0.255151	0.012511	432.866100	0.049156	-478.984640	-479.033796	-479.030777
VII1e	-518.994821	0.299392	0.013523	448.018400	0.050877	-518.681905	-518.732782	-518.729763
VII _{2b}	-608.706050	0.208907	0.013109	449.951900	0.051096	-608.484034	-608.535130	-608.532111
VII2c	-708.732482	0.211093	0.013803	459.537100	0.052185	-708.507587	-708.559772	-708.556753
VII _{2d}	-518.553952	0.283231	0.014067	461.248100	0.052379	-518.256654	-518.309033	-518.306014
VII _{2e}	-558.282737	0.328525	0.014600	464.340300	0.052730	-557.939613	-557.992343	-557.989324
VII _{3b}	-608.707899	0.208440	0.013373	456.330200	0.051821	-608.486086	-608.537907	-608.534888
VII _{3c}	-708.738365	0.210457	0.014242	471.395700	0.053531	-708.513667	-708.567198	-708.564179
VII _{3d}	-518.559994	0.282848	0.014291	467.824900	0.053126	-518.262854	-518.315980	-518.312961
VII _{3e}	-558.287318	0.328149	0.015050	476.929500	0.054160	-557.944120	-557.998280	-557.995261

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(DCM)
VII _{1b} ^a	-569.432225	0.181032	0.011467	416.582700	0.047307	-569.239726	-569.287033	-569.284014
VII1c	-669.456543	0.182455	0.012677	441.891200	0.050181	-669.261410	-669.311591	-669.308572
VII _{1d}	-479.259627	0.255148	0.012493	432.539500	0.049119	-478.991986	-479.041105	-479.038086
VII _{1e}	-519.023614	0.299110	0.013550	448.971000	0.050985	-518.710955	-518.761939	-518.758920
VII _{2b}	-608.712970	0.208628	0.013140	450.557300	0.051165	-608.491202	-608.542367	-608.539348
VII _{2c}	-708.766640	0.210651	0.014021	465.469900	0.052858	-708.541967	-708.594826	-708.591807
VII _{2d}	-518.561602	0.282959	0.013996	458.843200	0.052106	-518.264647	-518.316753	-518.313734
VII _{2e}	-558.316532	0.327466	0.015049	475.354000	0.053981	-557.974017	-558.027998	-558.024979
VII _{3b}	-608.715068	0.208141	0.013414	457.385100	0.051940	-608.493514	-608.545454	-608.542435
VII _{3c}	-708.768369	0.210160	0.014305	472.889500	0.053701	-708.543903	-708.597604	-708.594585
VII _{3d}	-518.566076	0.282663	0.014292	467.863200	0.053130	-518.269121	-518.322252	-518.319233
VII _{3e}	-558.322430	0.327509	0.015182	479.879600	0.054495	-557.979739	-558.034234	-558.031215

Table S215. Energies of VII_{[1-3][b-e]} in SMD DCM. Entropy given in J/mol.K. All other quantities given in Hartree.

Γable S216. Energies of VII _{[1-3][b-e]} in SMD MeC	I. Entropy given in J/mol.K. All	other quantities given in Hartree.
--	----------------------------------	------------------------------------

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(MeCN)
VII _{1b} ^a	-569.433008	0.180901	0.011482	416.881500	0.047341	-569.240625	-569.287966	-569.284947
VII _{1c}	-669.460437	0.182094	0.012826	445.834600	0.050629	-669.265518	-669.316147	-669.313128
VII1d	-479.260401	0.255106	0.012499	432.687600	0.049136	-478.992796	-479.041932	-479.038913
VII1e	-519.030046	0.299211	0.013495	448.045500	0.050880	-518.717340	-518.768220	-518.765201
VII _{2b}	-608.713694	0.208560	0.013140	450.533100	0.051162	-608.491993	-608.543156	-608.540137
VII _{2c}	-708.773626	0.210507	0.014055	466.478800	0.052973	-708.549064	-708.602037	-708.599018
VII _{2d}	-518.561576	0.282943	0.013975	458.425400	0.052058	-518.264658	-518.316716	-518.313697
VII _{2e}	-558.323058	0.327720	0.014904	471.127900	0.053501	-557.980434	-558.033935	-558.030916
VII _{3b}	-608.715912	0.208056	0.013423	457.634000	0.051969	-608.494433	-608.546402	-608.543383
VII _{3c}	-708.772724	0.210135	0.014311	472.316100	0.053636	-708.548277	-708.601913	-708.598894
VII _{3d}	-518.565967	0.282623	0.014283	467.595700	0.053100	-518.269061	-518.322161	-518.319142
VII _{3e}	-558.325663	0.327918	0.015095	478.336700	0.054320	-557.982651	-558.036970	-558.033951

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(Water)
VII _{1b} ^a	-569.423142	0.180999	0.011560	418.752400	0.047553	-569.230582	-569.278135	-569.275116
VII1c	-669.449587	0.182195	0.012875	446.691100	0.050726	-669.254517	-669.305243	-669.302224
VII _{1d}	-479.249931	0.255766	0.012447	431.770700	0.049032	-478.981717	-479.030748	-479.027729
VII _{1e}	-519.014436	0.299358	0.013553	449.147100	0.051005	-518.701524	-518.752529	-518.749510
VII _{2b}	-608.700350	0.208655	0.013213	452.174500	0.051349	-608.478483	-608.529831	-608.526812
VII _{2c}	-708.760608	0.210607	0.014126	468.175700	0.053166	-708.535875	-708.589041	-708.586022
VII _{2d}	-518.550828	0.283557	0.014001	459.626500	0.052195	-518.253270	-518.305465	-518.302446
VII _{2e}	-558.306529	0.327961	0.014944	472.111600	0.053613	-557.963624	-558.017236	-558.014217
VII _{3b}	-608.702365	0.208167	0.013501	459.456100	0.052175	-608.480697	-608.532873	-608.529854
VII _{3c}	-708.762103	0.210118	0.014415	475.560100	0.054004	-708.537570	-708.591574	-708.588555
VII _{3d}	-518.553925	0.283219	0.014291	468.046300	0.053151	-518.256415	-518.309566	-518.306547
VII _{3e}	-558.309646	0.328112	0.015162	479.905700	0.054498	-557.966371	-558.020869	-558.017850

Table S217. Energies of VII_{[1-3][b-e]} in SMD Water. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Gas)
VIII _{1b} ^a	-552.110754	0.166580	0.011490	413.904400	0.047003	-551.932683	-551.979686	-551.979686
VIII1c	-652.072855	0.167091	0.012150	429.845700	0.048813	-651.893614	-651.942427	-651.942427
VIII _{1d}	-461.948324	0.240426	0.012711	434.600500	0.049353	-461.695187	-461.744540	-461.744540
VIII1e	-501.630443	0.283380	0.013931	454.330900	0.051593	-501.333133	-501.384726	-501.384726
VIII _{2b}	-591.410093	0.194369	0.013360	451.949200	0.051323	-591.202364	-591.253687	-591.253687
VIII _{2c}	-691.404218	0.196316	0.014177	465.749100	0.052890	-691.193724	-691.246614	-691.246614
VIII _{2d}	-501.262418	0.268657	0.014331	464.512300	0.052750	-500.979430	-501.032180	-501.032180
VIII _{2e}	-540.936232	0.311809	0.015418	480.880900	0.054608	-540.609005	-540.663614	-540.663614
VIII _{3b}	-591.410812	0.194535	0.013390	452.516200	0.051387	-591.202886	-591.254274	-591.254274
VIII _{3c}	-691.397864	0.196169	0.014281	467.058100	0.053039	-691.187414	-691.240453	-691.240453
VIII _{3d}	-501.261022	0.268716	0.014319	463.451300	0.052629	-500.977987	-501.030617	-501.030617
VIII _{3e}	-540.940021	0.312042	0.015483	482.836800	0.054831	-540.612495	-540.667326	-540.667326
VIII _{4b}	-552.097777	0.166203	0.011912	424.986200	0.048261	-551.919661	-551.967922	-551.967922
VIII _{4c}	-652.066269	0.167392	0.012880	443.161800	0.050325	-651.885996	-651.936321	-651.936321
VIII _{4d}	-461.945292	0.240418	0.012922	438.868100	0.049838	-461.691951	-461.741789	-461.741789
VIII _{4e}	-501.636373	0.284475	0.013780	449.789600	0.051078	-501.338118	-501.389196	-501.389196

Table S218. Energies of VIII_{[1-4][b-e]} in Gas. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S219. Energies of V	III _{[1-4][b-e]} in SMD Toluene	. Entropy given in	J/mol.K. All othe	r quantities given in
Hartree.				

Species	DFT Energy	ZPVE	тс	S	тs	Н	G	G(Toluene)
VIII _{1b} a	-552.124212	0.166717	0.011415	412.411100	0.046833	-551.946081	-551.992914	-551.989895
VIII1c	-652.143586	0.168514	0.012625	437.853300	0.049722	-651.962447	-652.012169	-652.009150
VIII1d	-461.959114	0.240115	0.012843	437.531300	0.049686	-461.706155	-461.755841	-461.752822
VIII _{1e}	-501.695562	0.284497	0.013614	448.280200	0.050906	-501.397452	-501.448358	-501.445339
VIII _{2b}	-591.423369	0.194311	0.013375	452.724900	0.051411	-591.215682	-591.267093	-591.264074
VIII _{2c}	-691.458196	0.196861	0.014048	463.060700	0.052585	-691.247287	-691.299872	-691.296853
VIII _{2d}	-501.276274	0.268672	0.014325	464.736000	0.052775	-500.993276	-501.046052	-501.043033
VIII _{2e}	-540.998524	0.313264	0.015297	479.440200	0.054445	-540.669964	-540.724408	-540.721389
VIII _{3b}	-591.423907	0.194710	0.013287	450.461900	0.051154	-591.215910	-591.267064	-591.264045
VIII _{3c}	-691.455424	0.196280	0.014281	468.131000	0.053161	-691.244862	-691.298023	-691.295004
VIII _{3d}	-501.275046	0.268764	0.014316	463.573600	0.052643	-500.991966	-501.044609	-501.041590
VIII _{3e}	-541.005702	0.315237	0.014591	463.597100	0.052646	-540.675873	-540.728519	-540.725500
VIII _{4b}	-552.109772	0.166115	0.011941	426.543900	0.048438	-551.931716	-551.980154	-551.977135
VIII _{4c}	-652.135584	0.168482	0.012671	438.259700	0.049768	-651.954431	-652.004199	-652.001180
VIII _{4d}	-461.958991	0.240560	0.012872	437.931500	0.049731	-461.705560	-461.755291	-461.752272
VIII _{4e}	-501.693100	0.285247	0.013708	449.794000	0.051078	-501.394146	-501.445224	-501.442205

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(DCM)
VIII _{1b} ^a	-552.131603	0.166392	0.011413	412.240600	0.046814	-551.953798	-552.000612	-551.997593
VIII1c	-652.174601	0.168086	0.012679	439.329400	0.049890	-651.993837	-652.043727	-652.040708
VIII _{1d}	-461.970836	0.240225	0.012705	434.452700	0.049336	-461.717906	-461.767242	-461.764223
VIII1e	-501.727883	0.284258	0.013706	450.131200	0.051117	-501.429919	-501.481036	-501.478017
VIII _{2b}	-591.431557	0.194479	0.013174	447.960200	0.050870	-591.223904	-591.274774	-591.271755
VIII _{2c}	-691.487974	0.196353	0.014157	465.494100	0.052861	-691.277463	-691.330324	-691.327305
VIII _{2d}	-501.280940	0.268299	0.014350	465.471000	0.052859	-500.998291	-501.051149	-501.048130
VIII _{2e}	-541.038419	0.312891	0.015192	477.400600	0.054213	-540.710336	-540.764549	-540.761530
VIII _{3b}	-591.431826	0.194619	0.013232	449.325600	0.051025	-591.223975	-591.275000	-591.271981
VIII _{3c}	-691.486845	0.196158	0.014318	469.446300	0.053310	-691.276370	-691.329680	-691.326661
VIII _{3d}	-501.281429	0.268461	0.014337	464.030600	0.052695	-500.998631	-501.051326	-501.048307
VIII _{3e}	-541.039454	0.313757	0.014969	471.798200	0.053577	-540.710727	-540.764304	-540.761285
VIII _{4b}	-552.116818	0.165959	0.011938	426.501700	0.048433	-551.938921	-551.987354	-551.984335
VIII _{4c}	-652.168594	0.167887	0.012847	442.696800	0.050272	-651.987860	-652.038132	-652.035113
VIII _{4d}	-461.965448	0.240339	0.012865	437.083000	0.049635	-461.712244	-461.761879	-461.758860
VIII _{4e}	-501.727790	0.284676	0.013742	449.762000	0.051075	-501.429372	-501.480446	-501.477427

Table S220. Energies of VIII_{[1-4][b-e]} in SMD DCM. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S221. Energies of VIII[1-4][b-e] in SMD MeCN. Entropy given in J/mol.K. All other qua	ntities given in
Hartree.	

Species	DFT Energy	ZPVE	тс	S	тѕ	н	G	G(MeCN)
VIII _{1b} ^a	-552.132048	0.166273	0.011415	412.217100	0.046811	-551.954360	-552.001171	-551.998152
VIII1c	-652.178357	0.167620	0.012022	426.951800	0.048484	-651.998715	-652.047199	-652.044180
VIII1d	-461.971298	0.240247	0.012686	434.062200	0.049292	-461.718366	-461.767657	-461.764638
VIII _{1e}	-501.735282	0.284240	0.013708	450.367400	0.051143	-501.437335	-501.488479	-501.485460
VIII _{2b}	-591.432468	0.194341	0.013183	448.136400	0.050890	-591.224943	-591.275833	-591.272814
VIII _{2c}	-691.496618	0.196175	0.014152	465.266800	0.052835	-691.286291	-691.339126	-691.336107
VIII _{2d}	-501.282125	0.268311	0.014292	463.759400	0.052664	-500.999522	-501.052186	-501.049167
VIII _{2e}	-541.046635	0.312838	0.015207	477.529600	0.054228	-540.718591	-540.772819	-540.769800
VIII _{3b}	-591.432715	0.194487	0.013251	449.653900	0.051062	-591.224977	-591.276039	-591.273020
VIII _{3c}	-691.494156	0.196152	0.014300	469.177100	0.053279	-691.283704	-691.336983	-691.333964
VIII _{3d}	-501.281261	0.268386	0.014324	463.676900	0.052655	-500.998551	-501.051206	-501.048187
VIII _{3e}	-541.042964	0.313273	0.015150	474.867400	0.053926	-540.714541	-540.768467	-540.765448
VIII _{4b}	-552.118030	0.165854	0.011904	424.897800	0.048251	-551.940273	-551.988524	-551.985505
VIII _{4c}	-652.176581	0.167943	0.012801	441.588200	0.050146	-651.995837	-652.045983	-652.042964
VIII _{4d}	-461.965789	0.240334	0.012839	436.421600	0.049560	-461.712616	-461.762176	-461.759157
VIII _{4e}	-501.729851	0.285387	0.013565	447.019700	0.050763	-501.430899	-501.481662	-501.478643

Species	DFT Energy	ZPVE	тс	S	тѕ	н	G	G(Water)
VIII _{1b} a	-552.122280	0.166318	0.011433	412.536400	0.046847	-551.944529	-551.991376	-551.988357
VIII1c	-652.172421	0.168165	0.012664	438.985600	0.049851	-651.991591	-652.041442	-652.038423
VIII1d	-461.963742	0.240897	0.012611	432.710300	0.049138	-461.710235	-461.759373	-461.756354
VIII _{1e}	-501.721968	0.284459	0.013686	449.879400	0.051088	-501.423824	-501.474912	-501.471893
VIII _{2b}	-591.422020	0.194433	0.013191	448.210800	0.050898	-591.214397	-591.265295	-591.262276
VIII _{2c}	-691.484569	0.196343	0.014154	465.181100	0.052826	-691.274072	-691.326897	-691.323878
VIII _{2d}	-501.272476	0.268905	0.014271	463.948000	0.052686	-500.989300	-501.041986	-501.038967
VIII _{2e}	-541.033427	0.313027	0.015189	477.068200	0.054176	-540.705211	-540.759387	-540.756368
VIII _{3b}	-591.421884	0.194503	0.013289	450.354100	0.051142	-591.214092	-591.265234	-591.262215
VIII _{3c}	-691.482528	0.196296	0.014284	467.647900	0.053106	-691.271948	-691.325054	-691.322035
VIII _{3d}	-501.270395	0.269132	0.014257	463.695700	0.052657	-500.987006	-501.039663	-501.036644
VIII _{3e}	-541.029666	0.313420	0.015167	475.104000	0.053952	-540.701079	-540.755031	-540.752012
VIII _{4b}	-552.107330	0.165977	0.011958	426.928500	0.048482	-551.929395	-551.977877	-551.974858
VIII _{4c}	-652.167048	0.168016	0.012813	441.719500	0.050161	-651.986219	-652.036380	-652.033361
VIII _{4d}	-461.957173	0.241073	0.012681	433.075900	0.049180	-461.703420	-461.752599	-461.749580
VIII _{4e}	-501.721528	0.284974	0.013700	448.756900	0.050960	-501.422854	-501.473815	-501.470796

Table S222. Energies of VIII_{[1-4][b-e]} in SMD Water. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(Gas)
IX _{1b}	-544.916142	0.116756	0.010145	398.144100	0.045213	-544.789241	-544.834454	-544.834454
IX _{1c}	-644.913916	0.118645	0.011022	412.739300	0.046870	-644.784250	-644.831120	-644.831120
IX _{1d}	-454.769821	0.190799	0.011029	408.302800	0.046367	-454.567992	-454.614359	-454.614359
IX _{1e}	-494.447174	0.233723	0.012207	427.351700	0.048530	-494.201244	-494.249773	-494.249773
IX _{2b}	-584.233074	0.144822	0.011793	429.569000	0.048782	-584.076460	-584.125241	-584.125241
IX _{2c}	-684.228394	0.146682	0.012516	438.611800	0.049808	-684.069195	-684.119004	-684.119004
IX _{2d}	-494.084483	0.218913	0.012739	440.449300	0.050017	-493.852831	-493.902848	-493.902848
IX _{2e}	-533.757736	0.261961	0.013956	459.852800	0.052221	-533.481819	-533.534039	-533.534039
IX _{4b}	-544.915717	0.116754	0.010187	399.999300	0.045424	-544.788776	-544.834200	-544.834200
IX _{4c}	-644.895527	0.118117	0.011121	416.614800	0.047310	-644.766288	-644.813599	-644.813599
IX _{4d}	-454.770402	0.190715	0.011139	411.378200	0.046716	-454.568548	-454.615264	-454.615264
IX _{4e}	-494.455551	0.233905	0.012242	428.663200	0.048679	-494.209404	-494.258083	-494.258083

Table S223. Energies of IX_{[1-2,4][b-e]} in Gas. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S224. Energies of IX_{[1-2,4][b-e]} in SMD Toluene. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(Toluene)
IX _{1b}	-544.932365	0.116674	0.010149	398.768800	0.045284	-544.805543	-544.850826	-544.847807
IX _{1c}	-644.973554	0.118721	0.010972	411.392000	0.046717	-644.843861	-644.890579	-644.887560
IX _{1d}	-454.790825	0.190686	0.011042	408.461200	0.046385	-454.589097	-454.635482	-454.632463
IX _{1e}	-494.519048	0.234353	0.012054	424.735400	0.048233	-494.272640	-494.320873	-494.317854
IX _{2b}	-584.250808	0.144668	0.011825	430.880400	0.048930	-584.094316	-584.143246	-584.140227
IX _{2c}	-684.287912	0.147496	0.012321	435.380100	0.049441	-684.128095	-684.177537	-684.174518
IX _{2d}	-494.102826	0.218978	0.012721	440.033700	0.049970	-493.871126	-493.921096	-493.918077
IX _{2e}	-533.828356	0.262824	0.013767	456.609100	0.051852	-533.551765	-533.603617	-533.600598
IX _{4b}	-544.933788	0.116457	0.010133	397.832700	0.045178	-544.807198	-544.852376	-544.849357
IX _{4c}	-644.963519	0.118621	0.010249	399.653300	0.045384	-644.834650	-644.880034	-644.877015
IX _{4d}	-454.791063	0.190727	0.011093	410.037100	0.046564	-454.589242	-454.635806	-454.632787
IX _{4e}	-494.512556	0.234371	0.011581	415.645700	0.047200	-494.266604	-494.313805	-494.310786

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(DCM)
IX _{1b}	-544.939520	0.116305	0.010117	397.249800	0.045111	-544.813098	-544.858210	-544.855191
IX _{1c}	-645.001452	0.118624	0.010989	412.849800	0.046883	-644.871839	-644.918722	-644.915703
IX _{1d}	-454.797947	0.190689	0.011018	407.910600	0.046322	-454.596240	-454.642562	-454.639543
IX _{1e}	-494.552483	0.234417	0.012065	424.836700	0.048244	-494.306000	-494.354245	-494.351226
IX _{2b}	-584.258190	0.144602	0.011658	424.795200	0.048239	-584.101929	-584.150169	-584.147150
IX _{2c}	-684.318658	0.146753	0.012569	441.545800	0.050142	-684.159336	-684.209478	-684.206459
IX _{2d}	-494.108622	0.218793	0.012720	440.501300	0.050023	-493.877109	-493.927132	-493.924113
IX _{2e}	-533.862894	0.263071	0.013490	449.580400	0.051054	-533.586333	-533.637387	-533.634368
IX _{4b}	-544.940307	0.116264	0.010152	398.139100	0.045212	-544.813892	-544.859104	-544.856085
IX _{4c}	-644.998180	0.118412	0.011073	415.647400	0.047201	-644.868695	-644.915896	-644.912877
IX _{4d}	-454.797718	0.190673	0.011076	409.889800	0.046547	-454.595969	-454.642516	-454.639497
IX _{4e}	-494.555151	0.234341	0.012152	426.933100	0.048482	-494.308658	-494.357140	-494.354121

Table S225. Energies of IX_{[1-2,4][b-e]} in SMD DCM. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S226. Energies of IX_{[1-2,4][b-e]} in SMD MeCN. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	тs	Н	G	G(MeCN)
IX _{1b}	-544.940971	0.116268	0.010121	397.420600	0.045131	-544.814582	-544.859713	-544.856694
IX _{1c}	-645.008861	0.118500	0.011023	413.986500	0.047012	-644.879339	-644.926351	-644.923332
IX _{1d}	-454.798912	0.190766	0.010998	407.541700	0.046280	-454.597149	-454.643429	-454.640410
IX _{1e}	-494.560869	0.234602	0.012031	424.175100	0.048169	-494.314236	-494.362405	-494.359386
IX _{2b}	-584.259491	0.144542	0.011665	424.941500	0.048256	-584.103284	-584.151540	-584.148521
IX _{2c}	-684.326168	0.146646	0.012595	442.292600	0.050226	-684.166927	-684.217154	-684.214135
IX _{2d}	-494.108651	0.218819	0.012677	439.243700	0.049880	-493.877156	-493.927036	-493.924017
IX _{2e}	-533.871205	0.263237	0.013499	450.365800	0.051143	-533.594470	-533.645613	-533.642594
IX _{4b}	-544.941473	0.116258	0.010153	398.205400	0.045220	-544.815062	-544.860282	-544.857263
IX _{4c}	-645.007365	0.118182	0.010330	400.972800	0.045534	-644.878853	-644.924388	-644.921369
IX _{4d}	-454.798438	0.190630	0.011068	409.801700	0.046537	-454.596741	-454.643277	-454.640258
IX _{4e}	-494.562154	0.234431	0.012110	426.171800	0.048396	-494.315613	-494.364009	-494.360990

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(Water)
IX _{1b}	-544.926678	0.116383	0.010134	397.134200	0.045098	-544.800161	-544.845259	-544.842240
IX _{1c}	-644.995529	0.118641	0.011010	413.462800	0.046953	-644.865878	-644.912831	-644.909812
IX _{1d}	-454.787900	0.191478	0.010913	405.949600	0.046099	-454.585509	-454.631608	-454.628589
IX _{1e}	-494.545289	0.235006	0.011958	422.284700	0.047954	-494.298325	-494.346279	-494.343260
IX _{2b}	-584.246910	0.144552	0.011687	425.239700	0.048290	-584.090671	-584.138961	-584.135942
IX _{2c}	-684.313866	0.146651	0.012634	443.159400	0.050325	-684.154581	-684.204906	-684.201887
IX _{2d}	-494.096968	0.219451	0.012581	437.308400	0.049660	-493.864936	-493.914596	-493.911577
IX _{2e}	-533.855564	0.263333	0.013522	450.792800	0.051192	-533.578709	-533.629900	-533.626881
IX _{4b}	-544.926239	0.116058	0.009455	384.499900	0.043664	-544.800727	-544.844390	-544.841371
IX _{4c}	-644.993313	0.118311	0.010346	401.287000	0.045570	-644.864656	-644.910226	-644.907207
IX _{4d}	-454.787540	0.191046	0.010283	394.255800	0.044771	-454.586211	-454.630982	-454.627963
IX _{4e}	-494.529775	0.234316	0.011653	417.300000	0.047388	-494.283806	-494.331194	-494.328175

Table S227. Energies of IX_{[1-2,4][b-e]} in SMD Water. Entropy given in J/mol.K. All other quantities given in Hartree.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
l _{1b} a	-8.740843	-0.448716	4.594779	8.292127	1.273015	2.182626		
lic	-4.004972	1.854728	1.075122	5.859701	0.098630	6.918496	-1.174384 (-0.8946) ^ь	4.735870 (3.4354) ^b
I _{1d}	-7.426533	-0.216603	3.821568	7.209930	1.012796	3.496936		
I _{1e}	-11.395586	-3.444418	7.420002	7.951168	3.462160	-0.472118	2.449363	-3.969053
I _{2b}	-7.462179	-0.371708	3.916944	7.090472	1.081906	3.461289		
I _{2c}	-3.474895	1.978268	0.748313	5.453163	0.051344	7.448574	-1.030562	3.987285
Izd	-7.300544	-0.255515	3.778029	7.045029	1.013020	3.622924		
I _{2e}	-10.707138	-3.591903	7.149521	7.115234	3.591986	0.216331	2.578966	-3.406594

Table S228. Orbital Energies and Philicity Parameters of $I_{[1-2][b-e]}$ in Gas. All quantities given in eV.

 $\label{eq:constraint} \mbox{Table S229. Orbital Energies and Philicity Parameters of I_{[1-2][b-e]} in SMD Toluene. \mbox{ All quantities given in eV}.$

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔN
l _{1b} ^a	-7.781097	-0.140139	3.960618	7.640958	1.026474	2.858829		
l _{1c}	-6.214537	0.800015	2.707261	7.014552	0.522433	4.425388	-0.504041 (-0.4507) ^b	1.566560 (1.1549) ^b
I _{1d}	-7.556059	-0.088165	3.822112	7.467894	0.978090	3.083867		
l _{1e}	-9.361262	-1.363019	5.362140	7.998244	1.797429	1.278663	0.819339	-1.805204
I _{2b}	-7.602046	-0.220684	3.911365	7.381362	1.036311	3.037880		
l _{2c}	-5.618336	0.875390	2.371473	6.493726	0.433024	5.021590	-0.603287	1.983710
I _{2d}	-7.516602	-0.111839	3.814221	7.404763	0.982359	3.123323		
l _{2e}	-8.932139	-1.430775	5.181457	7.501364	1.789508	1.707787	0.807148	-1.415537

^a Forms a weak C-B interaction; ^b A corrected switch, calculated relative to the unsubstituted molecule, see S10.

Table S230. Orbital Energies and Philicity Parameters of I[1-2][b-e] in SMD DCM. All quantities given in eV.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
I _{1b}	-7.866813	-0.081090	3.973951	7.785723	1.014183	2.540183		
I _{1c}	-7.278230	0.250889	3.513671	7.529119	0.819876	3.128766	-0.194307	0.588582
I _{1d}	-7.660278	-0.019320	3.839799	7.640958	0.964804	2.746718		
I _{1e}	-8.468185	-0.360551	4.414368	8.107634	1.201747	1.938812	0.236942	-0.807906
I _{2b}	-7.556875	-0.119186	3.838031	7.437689	0.990259	2.850121		
I _{2c}	-6.740533	0.242998	3.248768	6.983531	0.755670	3.666463	-0.234589	0.816342
I _{2d}	-7.629530	-0.030205	3.829867	7.599325	0.965078	2.777467		
l _{2e}	-8.276344	-0.392116	4.334230	7.884228	1.191337	2.130652	0.226259	-0.646815

......

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
I _{1b}	-7.879058	-0.069661	3.974360	7.809397	1.011316	2.441678		
lıc	-7.567760	0.052790	3.757485	7.620550	0.926357	2.752976	-0.084959	0.311298
I _{1d}	-7.689122	-0.004082	3.846602	7.685041	0.962672	2.631614		
l _{1e}	-8.210493	-0.105580	4.158036	8.104913	1.066592	2.110243	0.103920	-0.521370
I _{2b}	-7.567488	-0.098777	3.833132	7.468710	0.983631	2.753248		
l _{2c}	-7.054553	0.032654	3.510950	7.087207	0.869649	3.266183	-0.113981	0.512935
I _{2d}	-7.658374	-0.010885	3.834629	7.647489	0.961386	2.662362		
I _{2e}	-8.045864	-0.122995	4.084430	7.922868	1.052811	2.274872	0.091425	-0.387490

Table S231. Orbital Energies and Philicity Parameters of I[1-2][b-e] in SMD MeCN. All quantities given in eV.

Table S232. Orbital Energies and Philicity Parameters of I[1-2][b-e] in SMD Water. All quantities given in eV.

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔN
I _{1b}	-7.972937	-0.037007	4.004972	7.935930	1.010581	2.320587		
I _{1c}	-7.604495	0.010612	3.796941	7.615107	0.946590	2.689030	-0.063992	0.368442
I _{1d}	-7.745994	-0.000272	3.873133	7.745722	0.968351	2.547530		
l _{1e}	-8.160696	-0.060954	4.110825	8.099742	1.043174	2.132829	0.074823	-0.414702
I _{2b}	-7.567488	-0.095240	3.831364	7.472248	0.982258	2.726037		
I _{2c}	-7.108159	-0.008980	3.558570	7.099180	0.891893	3.185365	-0.090365	0.459328
I _{2d}	-7.642047	-0.001088	3.821568	7.640958	0.955664	2.651478		
I _{2e}	-7.995251	-0.075648	4.035449	7.919603	1.028135	2.298274	0.072471	-0.353204

Figure S140. I Nucleophilicity and Electrophilicity Switches Induced by Incorporation of D-LEFs.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
II _{1b} a	-6.102426	-0.585861	3.344144	5.516565	1.013611	4.821042		
II1c	-2.647124	1.712413	0.467356	4.359537	0.025051	8.276344	-0.988560 (-0.9406) ^ь	3.455302 (3.2281) ^b
II _{1d}	-5.936981	-0.494975	3.215978	5.442006	0.950248	4.986487		
II _{1e}	-9.852428	-3.288496	6.570462	6.563931	3.288500	1.071040	2.338251	-3.915447
II _{2b}	-6.001472	-0.627767	3.314619	5.373705	1.022265	4.921996		
ll _{2c}	-2.723044	1.946703	0.388170	4.669747	0.016133	8.200425	-1.006132	3.278428
ll _{2d}	-5.893443	-0.470213	3.181828	5.423230	0.933395	5.030025		
ll _{2e}	-9.539769	-3.870276	6.705023	5.669493	3.964845	1.383699	3.031451	-3.646326

Table S233. Orbital Energies and Philicity Parameters of II[1-2][b-e] in Gas. All quantities given in eV.

Table S234. Orbital Energies and Philicity Parameters of II[1-2][b-e] in SMD Toluene. All quantities given in eV.

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔN
II _{1b}	-6.751146	-0.332795	3.541971	6.418351	0.977319	3.888780		
II1c	-4.900771	0.627223	2.136774	5.527994	0.412971	5.739154	-0.564348	1.850375
II1d	-6.330730	-0.248440	3.289585	6.082290	0.889580	4.309196		
II1e	-7.910351	-1.374992	4.642671	6.535360	1.649060	2.729575	0.759480	-1.579621
II _{2b}	-6.355220	-0.360007	3.357613	5.995213	0.940214	4.284705		
II _{2c}	-5.028393	0.800015	2.114189	5.828408	0.383449	5.611533	-0.556765	1.326827
ll _{2d}	-6.298620	-0.230208	3.264414	6.068412	0.878022	4.341305		
II2e	-7.764226	-1.509960	4.637093	6.254266	1.719037	2.875700	0.841015	-1.465605

Table S235. Orbital Energies and Philicity Parameters of II_{[1-2][b-e]} in SMD DCM. All quantities given in eV.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
II _{1b}	-7.021627	-0.132519	3.577073	6.889108	0.928673	3.385369		
II1c	-6.308417	0.145853	3.081282	6.454270	0.735505	4.098580	-0.193168	0.713211
II1d	-6.785976	-0.091974	3.438975	6.694002	0.883369	3.621020		
II1e	-7.323674	-0.404089	3.863881	6.919584	1.078792	3.083323	0.195422	-0.537697
II _{2b}	-6.808290	-0.183405	3.495847	6.624885	0.922352	3.598706		
II2c	-6.400391	0.195106	3.102643	6.595497	0.729770	4.006605	-0.192582	0.407899
ll _{2d}	-6.789242	-0.075103	3.432173	6.714138	0.877239	3.617754		
II _{2e}	-7.279319	-0.432933	3.856126	6.846386	1.085953	3.127677	0.208714	-0.490077

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
II _{1b}	-7.177276	-0.092519	3.634897	7.084758	0.932458	3.143460		
II1c	-6.779446	-0.003265	3.391356	6.776180	0.848656	3.541290	-0.083802	0.397831
II _{1d}	-7.010743	-0.053062	3.531902	6.957680	0.896443	3.309993		
ll _{1e}	-7.245305	-0.147758	3.696531	7.097547	0.962610	3.075431	0.066167	-0.234562
II _{2b}	-7.003395	-0.133336	3.568366	6.870060	0.926719	3.317341		
II _{2c}	-6.832508	0.006531	3.412989	6.839039	0.851618	3.488228	-0.075102	0.170888
II _{2d}	-6.994416	-0.035103	3.514759	6.959313	0.887554	3.326320		
ll _{2e}	-7.229794	-0.147758	3.688776	7.082036	0.960675	3.090942	0.073121	-0.235379

Table S236. Orbital Energies and Philicity Parameters of II[1-2][b-e] in SMD MeCN. All quantities given in eV.

Table S237. Orbital Energies and Philicity Parameters of II[1-2][b-e] in SMD Water. All quantities given in eV.

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
II _{1b}	-7.212107	-0.087893	3.650000	7.124214	0.935015	3.081418		
II1c	-6.872237	-0.036463	3.454350	6.835773	0.872801	3.421288	-0.062215	0.339870
II1d	-7.046389	-0.044627	3.545508	7.001763	0.897676	3.247135		
ll _{1e}	-7.236869	-0.103948	3.670408	7.132922	0.944346	3.056655	0.046670	-0.190480
II _{2b}	-7.045845	-0.124628	3.585237	6.921217	0.928588	3.247679		
II _{2c}	-6.915503	-0.031021	3.473262	6.884482	0.876141	3.378022	-0.052448	0.130343
II _{2d}	-7.045301	-0.028300	3.536800	7.017001	0.891332	3.248224		
ll _{2e}	-7.224080	-0.097145	3.660612	7.126935	0.940101	3.069445	0.048769	-0.178779

Figure S141. II Nucleophilicity and Electrophilicity Switches Induced by Incorporation of D-LEFs.

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
III _{1b} a	-8.271174	-0.692258	4.481716	7.578916	1.325109	2.652294		
III1c	-3.083595	1.741801	0.670897	4.825396	0.046639	7.839874	-1.278470 (-0.9223) ^b	5.187579 (3.3656) ^b
III _{1d}	-6.462433	-0.367082	3.414757	6.095351	0.956513	4.461035		
III _{1e}	-10.429854	-3.413397	6.921625	7.016457	3.414038	0.493615	2.457524	-3.967421
III _{2b}	-6.448283	-0.571711	3.509997	5.876572	1.048237	4.475185		
III _{2c}	-3.103459	1.985343	0.559058	5.088802	0.030709	7.820009	-1.017528	3.344824
III _{2d}	-6.383792	-0.409804	3.396798	5.973989	0.965706	4.539676		
III _{2e}	-9.789842	-3.745920	6.767881	6.043922	3.789279	1.133627	2.823573	-3.406050
III _{3b}	-6.607742	-0.525996	3.566869	6.081746	1.045962	4.315726		
III _{3c}	-3.307000	2.107250	0.599875	5.414250	0.033232	7.616468	-1.012731	3.300742
III3d	-6.417534	-0.404905	3.411220	6.012629	0.967665	4.505934		
III _{3e}	-9.861136	-3.760342	6.810739	6.100794	3.801650	1.062333	2.833985	-3.443601
III _{4b}	-6.954415	-0.519738	3.737076	6.434677	1.085193	3.969053		
III _{4c}	-3.114071	1.758944	0.677564	4.873016	0.047106	7.809397	-1.038088	3.840343
III4d	-6.550054	-0.355381	3.452717	6.194673	0.962218	4.373415		
III _{4e}	-10.446725	-3.293939	6.870332	7.152786	3.299516	0.476744	2.337297	-3.896671
^a Forms a weak C	-B interaction; ^b A	corrected swit	ch, calculated	relative to the	unsubstituted	molecule, see	S10.	

Table S238. Orbital Energies and Philicity Parameters of III[1-4][b-e] in Gas. All quantities given in eV.

Table S239. Orbital Energies and	Philicity Parameters o	f III _{[1-4][b-e]} in SMD [•]	Toluene . All quantities given in eV.
U			

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔN
III _{1b} a	-8.091579	-0.317285	4.204432	7.774294	1.136904	2.548347		
III1c	-5.408536	0.698244	2.355146	6.106780	0.454144	5.231390	-0.682760 (-0.4630) ^b	2.683043 (1.1034) ^b
III _{1d}	-6.800671	-0.169799	3.485235	6.630872	0.915933	3.839255		
III _{1e}	-8.454035	-1.385604	4.919819	7.068431	1.712164	2.185891	0.796231	-1.653364
III _{2b}	-6.755500	-0.332251	3.543875	6.423249	0.977625	3.884426		
III _{2c}	-5.229213	0.827770	2.200721	6.056983	0.399801	5.410713	-0.577824	1.526287
III _{2d}	-6.686927	-0.209800	3.448363	6.477127	0.917939	3.952999		
III _{2e}	-8.104913	-1.505334	4.805123	6.599578	1.749294	2.535013	0.831356	-1.417986
III _{3b}	-6.876318	-0.287897	3.582107	6.588422	0.973791	3.763607		
III _{3c}	-5.551124	0.927636	2.311744	6.478760	0.412437	5.088802	-0.561354	1.325195
III _{3d}	-6.772915	-0.183949	3.478432	6.588966	0.918163	3.867011		
III _{3e}	-8.189540	-1.515130	4.852335	6.674410	1.763838	2.450386	0.845675	-1.416625
III _{4b}	-7.121221	-0.242726	3.681973	6.878495	0.985457	3.518705		
III _{4c}	-5.292071	0.720013	2.286029	6.012085	0.434619	5.347854	-0.550839	1.829150
III4d	-6.859175	-0.155377	3.507276	6.703798	0.917464	3.780751		
III _{4e}	-8.463559	-1.339617	4.901588	7.123942	1.686255	2.176367	0.768791	-1.604384
^a Forms a weak C-	B interaction; ^b	A corrected swi	tch, calculated	relative to the	unsubstituted	l molecule, see	S10.	

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
III _{1b} a	-7.999332	-0.113744	4.056538	7.885589	1.043391	2.407664		
III1c	-6.764752	0.188575	3.288088	6.953326	0.777435	3.642245	-0.265955	1.234581
III _{1d}	-7.166664	-0.050885	3.608775	7.115778	0.915097	3.240332		
III _{1e}	-7.738375	-0.386946	4.062661	7.351429	1.122585	2.668621	0.207488	-0.571711
III _{2b}	-7.011831	-0.179867	3.595849	6.831964	0.946297	3.395165		
III _{2c}	-6.399030	0.198371	3.100330	6.597402	0.728472	4.007966	-0.217825	0.612801
III _{2d}	-7.061084	-0.069389	3.565236	6.991695	0.909001	3.345913		
III _{2e}	-7.594699	-0.427219	4.010959	7.167480	1.122277	2.812297	0.213276	-0.533615
III _{3b}	-7.239318	-0.140955	3.690137	7.098363	0.959172	3.167678		
III _{3c}	-6.792779	0.228031	3.282374	7.020811	0.767289	3.614217	-0.191884	0.446539
III _{3d}	-7.186800	-0.042178	3.614489	7.144623	0.914291	3.220196		
III _{3e}	-7.665721	-0.414974	4.040347	7.250747	1.125705	2.741275	0.211414	-0.478920
III _{4b}	-7.397688	-0.092247	3.744968	7.305442	0.959886	3.009308		
III _{4c}	-6.501617	0.215786	3.142916	6.717404	0.735248	3.905379	-0.224638	0.896071
III _{4d}	-7.243672	-0.037824	3.640748	7.205848	0.919742	3.163324		
III _{4e}	-7.791165	-0.369803	4.080484	7.421362	1.121785	2.615831	0.202043	-0.547493
^a Forms a weak C-	B interaction							

Table S240. Orbital Energies and Philicity Parameters of III[1-4][b-e] in SMD DCM. All quantities given in eV.

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
III _{1b}	-7.328027	-0.077552	3.702790	7.250475	0.945500	2.992709		
III1c	-7.071152	0.018504	3.526324	7.089656	0.876979	3.249584	-0.068521	0.256876
III1d	-7.246393	-0.022858	3.634625	7.223536	0.914407	3.074343		
III _{1e}	-7.557964	-0.128438	3.843201	7.429526	0.994020	2.762772	0.079613	-0.311570
III _{2b}	-7.062172	-0.136057	3.599114	6.926115	0.935129	3.258564		
III2c	-6.702437	0.004082	3.349178	6.706519	0.836275	3.618299	-0.098854	0.359735
III _{2d}	-7.154147	-0.037007	3.595577	7.117139	0.908242	3.166589		
III _{2e}	-7.490207	-0.146397	3.818302	7.343810	0.992634	2.830529	0.084392	-0.336061
III _{3b}	-7.335919	-0.104492	3.720205	7.231427	0.956929	2.984817		
III _{3c}	-7.111697	0.016599	3.547549	7.128296	0.882757	3.209039	-0.074172	0.224222
III _{3d}	-7.313605	-0.009524	3.661565	7.304081	0.917778	3.007131		
III _{3e}	-7.587080	-0.130343	3.858711	7.456737	0.998403	2.733656	0.080624	-0.273474
III _{4b}	-7.442043	-0.069661	3.755852	7.372382	0.956707	2.878693		
III _{4c}	-7.034416	0.021225	3.506596	7.055641	0.871375	3.286320	-0.085333	0.407627
III _{4d}	-7.403403	-0.013061	3.708232	7.390341	0.930335	2.917333		
III4e	-7.671163	-0.116465	3.893814	7.554698	1.003467	2.649573	0.073132	-0.267760

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
III _{1b}	-7.342449	-0.074831	3.708640	7.267618	0.946253	2.951075		
III1c	-7.134282	-0.016599	3.575441	7.117683	0.898029	3.159242	-0.048224	0.208167
III _{1d}	-7.309796	-0.014422	3.662109	7.295374	0.919147	2.983729		
III _{1e}	-7.531841	-0.084355	3.808098	7.447485	0.973591	2.761684	0.054444	-0.222045
III _{2b}	-7.090744	-0.130615	3.610679	6.960129	0.936549	3.202781		
III2c	-6.768017	-0.033742	3.400880	6.734275	0.858740	3.525508	-0.077809	0.322727
III _{2d}	-7.202311	-0.030477	3.616394	7.171834	0.911782	3.091214		
III _{2e}	-7.461635	-0.100682	3.781159	7.360953	0.971149	2.831889	0.059366	-0.259325
III _{3b}	-7.350341	-0.099866	3.725103	7.250475	0.956930	2.943184		
III _{3c}	-7.172378	-0.022313	3.597346	7.150065	0.904950	3.121146	-0.051980	0.177962
III _{3d}	-7.340545	-0.004354	3.672449	7.336191	0.919202	2.952980		
III _{3e}	-7.577012	-0.080274	3.828643	7.496738	0.977659	2.716513	0.058457	-0.236467
III _{4b}	-7.457281	-0.068028	3.762655	7.389253	0.957984	2.836243		
III _{4c}	-6.857270	-0.001361	3.429315	6.855910	0.857669	3.436254	-0.100315	0.600011
III _{4d}	-7.437417	-0.005170	3.721294	7.432247	0.931618	2.856107		
III _{4e}	-7.654836	-0.071838	3.863337	7.582998	0.984134	2.638688	0.052516	-0.217419

Table S242. Orbital Energies and Philicity Parameters of III_{[1-4][b-e]} in SMD Water. All quantities given in eV.

GEI Switches Across Solvents; III

Figure S142. III Nucleophilicity and Electrophilicity Switches Induced by Incorporation of D-LEFs.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
IV _{1b}	-8.769959	-0.371163	4.570561	8.398796	1.243632	2.153509		
IV _{1c}	-4.447430	2.223443	1.111993	6.670872	0.092681	6.476039	-1.150951	4.322529
IV _{1d}	-7.999877	-0.307761	4.153819	7.692116	1.121552	2.923592		
IV _{1e}	-12.108524	-3.697484	7.903004	8.411041	3.712827	-1.185056	2.591275	-4.108648
IV _{2b}	-8.048585	-0.526268	4.287427	7.522317	1.221833	2.874883		
IV _{2c}	-3.960890	2.329567	0.815661	6.290457	0.052882	6.962578	-1.168951	4.087695
IV _{2d}	-7.863547	-0.355925	4.109736	7.507623	1.124852	3.059921		
IV _{2e}	-11.418716	-3.835990	7.627353	7.582726	3.836121	-0.495247	2.711269	-3.555168
IV _{3b}	-8.053483	-0.366265	4.209874	7.687218	1.152760	2.869985		
IV _{3c}	-4.297767	1.963846	1.166960	6.261613	0.108742	6.625701	-1.044019	3.755716
IV _{3d}	-7.844227	-0.283815	4.064021	7.560413	1.092286	3.079241		
IV _{3e}	-11.416267	-3.663742	7.540004	7.752525	3.666654	-0.492798	2.574368	-3.572039

Table S243. Orbital Energies and Philicity Parameters of IV_{[1-3][b-e]} in Gas. All quantities given in eV.

Table S244. Orbital Energies and Philicity Parameters of IV_{[1-3][b-e]} in SMD Toluene. All quantities given in eV.

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
IV _{1b}	-8.688597	-0.162452	4.425524	8.526145	1.148542	1.951329		
IV _{1c}	-6.705975	0.980426	2.862774	7.686401	0.533115	3.933951	-0.615426	1.982622
IV _{1d}	-7.924773	-0.127621	4.026197	7.797152	1.039499	2.715152		
IV _{1e}	-10.001819	-1.464517	5.733168	8.537301	1.925035	0.638107	0.885536	-2.077045
IV _{2b}	-8.172941	-0.293611	4.233276	7.879330	1.137192	2.466985		
IV _{2c}	-6.449372	0.905323	2.772024	7.354694	0.522396	4.190554	-0.614797	1.723569
IV _{2d}	-7.918787	-0.151840	4.035313	7.766947	1.048272	2.721139		
IV _{2e}	-9.552831	-1.517307	5.535069	8.035523	1.906347	1.087095	0.858074	-1.634044
IV _{3b}	-8.182465	-0.221229	4.201847	7.961236	1.108843	2.457461		
IV _{3c}	-6.409371	0.863145	2.773113	7.272516	0.528713	4.230555	-0.580129	1.773094
IV _{3d}	-7.867629	-0.125445	3.996537	7.742185	1.031512	2.772296		
IV _{3e}	-9.588205	-1.458803	5.523504	8.129403	1.876466	1.051720	0.844954	-1.720576

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
IV _{1b}	-8.466552	-0.100682	4.283617	8.365870	1.096681	1.940444		
IV _{1c}	-7.772934	0.282182	3.745376	8.055116	0.870741	2.634063	-0.225940	0.693618
IV _{1d}	-7.902188	-0.020953	3.961570	7.881235	0.995659	2.504808		
IV _{1e}	-9.099761	-0.380415	4.740088	8.719346	1.288424	1.307235	0.292766	-1.197573
IV _{2b}	-8.202329	-0.148574	4.175452	8.053755	1.082377	2.204667		
IV _{2c}	-7.540004	0.243542	3.648231	7.783546	0.854982	2.866992	-0.227395	0.662325
IV _{2d}	-7.831710	-0.029388	3.930549	7.802322	0.990040	2.575286		
IV _{2e}	-8.838532	-0.407355	4.622943	8.431177	1.267415	1.568465	0.277375	-1.006821
IV _{3b}	-8.166138	-0.131703	4.148921	8.034435	1.071235	2.240858		
IV _{3c}	-7.495377	0.243814	3.625782	7.739191	0.849332	2.911619	-0.221903	0.670761
IV _{3d}	-7.777287	-0.030205	3.903746	7.747083	0.983547	2.629709		
IV _{3e}	-8.854042	-0.400824	4.627433	8.453218	1.266567	1.552954	0.283021	-1.076755

Table S245. Orbital Energies and Philicity Parameters of IV_{[1-3][b-e]} in SMD DCM. All quantities given in eV.

Table S246. Orbital Energies and Philicity Parameters of IV_{[1-3][b-e]} in SMD MeCN. All quantities given in eV.

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
IV _{1b}	-8.450497	-0.072654	4.261576	8.377843	1.083873	1.870239		
IV _{1c}	-8.045864	0.063675	3.991095	8.109538	0.982105	2.274872	-0.101768	0.404633
IV _{1d}	-7.894841	0.002993	3.945924	7.897834	0.985733	2.425895		
IV _{1e}	-8.820572	-0.103131	4.461852	8.717441	1.141856	1.500164	0.156123	-0.925731
IV _{2b}	-8.120695	-0.100138	4.110417	8.020557	1.053264	2.200041		
IV _{2c}	-7.828989	0.029388	3.899800	7.858377	0.967658	2.491747	-0.085606	0.291706
IV _{2d}	-7.799329	0.000544	3.899392	7.799873	0.974712	2.521407		
IV _{2e}	-8.634446	-0.120002	4.377224	8.514444	1.125152	1.686290	0.150440	-0.835118
IV _{3b}	-8.149811	-0.106941	4.128376	8.042871	1.059540	2.170925		
IV _{3c}	-7.778376	0.028300	3.875038	7.806676	0.961736	2.542360	-0.097804	0.371435
IV _{3d}	-7.785451	-0.005170	3.895310	7.780281	0.975122	2.535285		
IV _{3e}	-8.642610	-0.127349	4.384979	8.515260	1.129034	1.678126	0.153913	-0.857159

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
IV _{1b}	-8.489409	-0.059321	4.274365	8.430089	1.083630	1.804115		
IV _{1c}	-8.132396	0.033198	4.049599	8.165594	1.004168	2.161129	-0.079462	0.357013
IV _{1d}	-8.010217	0.023402	3.993408	8.033619	0.992536	2.283308		
IV _{1e}	-8.791728	-0.042178	4.416953	8.749550	1.114884	1.501797	0.122349	-0.781511
IV _{2b}	-8.228180	-0.091974	4.160077	8.136206	1.063533	2.065345		
IV _{2c}	-7.936746	-0.000272	3.968509	7.936474	0.992195	2.356778	-0.071337	0.291434
IV _{2d}	-7.926134	0.023402	3.951366	7.949535	0.982025	2.367391		
IV _{2e}	-8.611316	-0.058504	4.334910	8.552812	1.098554	1.682208	0.116528	-0.685183
IV _{3b}	-8.188451	-0.088709	4.138580	8.099742	1.057308	2.105073		
IV _{3c}	-7.886949	0.000272	3.943339	7.887221	0.985767	2.406575	-0.071542	0.301502
IV _{3d}	-7.934569	0.013334	3.960618	7.947903	0.986832	2.358955		
IV _{3e}	-8.611861	-0.067484	4.339672	8.544376	1.102056	1.681664	0.115223	-0.677291

Table S247. Orbital Energies and Philicity Parameters of IV_{[1-3][b-e]} in SMD Water. All quantities given in eV.

Figure S143. IV Nucleophilicity and Electrophilicity Switches Induced by Incorporation of D-LEFs.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
V _{1b} ^a	-9.320990	-0.706680	5.013835	8.614310	1.459115	1.602479		
Vıc	-4.236813	2.183442	1.026686	6.420255	0.082090	6.686655	-1.377025 (-0.9949) ^b	5.084176 (3.5386) ^b
V _{1d}	-7.640142	-0.294971	3.967557	7.345171	1.071555	3.283326		
V _{1e}	-11.707701	-3.596802	7.652251	8.110899	3.609769	-0.784232	2.538214	-4.067559
V _{2b}	-7.772389	-0.460689	4.116539	7.311700	1.158820	3.151079		
V _{2c}	-3.961162	2.330656	0.815253	6.291818	0.052818	6.962306	-1.106003	3.811227
V _{2d}	-7.571025	-0.373612	3.972319	7.197413	1.096180	3.352443		
V _{2e}	-10.999932	-3.818574	7.409253	7.181358	3.822190	-0.076464	2.726011	-3.428907
V _{3b}	-7.772389	-0.375245	4.073817	7.397144	1.121783	3.151079		
V _{3c}	-4.333958	2.016092	1.158933	6.350050	0.105757	6.589510	-1.016026	3.438431
V _{3d}	-7.586808	-0.320006	3.953407	7.266802	1.075399	3.336661		
V _{3e}	-11.036396	-3.759254	7.397825	7.277142	3.760254	-0.112927	2.684855	-3.449588
^a Forms a weak C-B interaction; ^b A corrected switch, calculated relative to the unsubstituted molecule, see S10.								

 $\label{eq:constraint} \mbox{Table S248. Orbital Energies and Philicity Parameters of $V_{[1-3][b-e]}$ in Gas. All quantities given in eV}.$

Table S249. Orbital Energies and Philicity Parameters of V_{[1-3][b-e]} in SMD Toluene. All quantities given in eV.

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ	
V _{1b} ^a	-9.196633	-0.543684	4.870159	8.652950	1.370541	1.443292			
Vıc	-6.391139	0.941786	2.724676	7.332925	0.506201	4.248786	-0.864340 (-0.5003) ^b	2.805494 (1.2251) ^b	
V _{1d}	-7.667898	-0.134696	3.901297	7.533201	1.010203	2.972028			
V _{1e}	-9.628206	-1.460163	5.544185	8.168043	1.881600	1.011719	0.871398	-1.960309	
V _{2b}	-7.862731	-0.259052	4.060892	7.603679	1.084399	2.777194			
V _{2c}	-6.456447	0.924099	2.766174	7.380545	0.518371	4.183479	-0.566028	1.406285	
V _{2d}	-7.705994	-0.174697	3.940345	7.531296	1.030787	2.933932			
V _{2e}	-9.162891	-1.523021	5.342956	7.639870	1.868303	1.477034	0.837516	-1.456898	
V _{3b}	-7.868718	-0.233202	4.050960	7.635516	1.074601	2.771208			
V _{3c}	-6.420255	0.890629	2.764813	7.310884	0.522795	4.219670	-0.551806	1.448462	
V _{3d}	-7.724497	-0.148302	3.936400	7.576195	1.022627	2.915428			
V _{3e}	-9.213232	-1.523294	5.368263	7.689939	1.873763	1.426693	0.851136	-1.488735	
а Г анна аа.).									

^a Forms a weak C-B interaction; ^b A corrected switch, calculated relative to the unsubstituted molecule, see S10.

1

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
V _{1b} ^a	-9.034454	-0.446267	4.740360	8.588187	1.308251	1.372543		
Vıc	-7.555787	0.263950	3.645918	7.819737	0.849947	2.851209	-0.458305	1.478667
V_{1d}	-7.724225	-0.040001	3.882113	7.684224	0.980633	2.682771		
V _{1e}	-8.559071	-0.398919	4.478995	8.160152	1.229229	1.847925	0.248597	-0.834845
V _{2b}	-8.026272	-0.138234	4.082253	7.888038	1.056333	2.380725		
V _{2c}	-7.519596	0.236467	3.641564	7.756062	0.854879	2.887401	-0.201454	0.506676
V _{2d}	-7.796880	-0.059049	3.927964	7.737831	0.996979	2.610117		
V _{2e}	-8.437436	-0.422321	4.429878	8.015115	1.224176	1.969560	0.227197	-0.640556
V _{3b}	-8.032258	-0.126261	4.079259	7.905997	1.052388	2.374738		
V _{3c}	-7.515786	0.235651	3.640068	7.751437	0.854686	2.891210	-0.197702	0.516472
V _{3d}	-7.780281	-0.045715	3.912998	7.734565	0.989813	2.626715		
V _{3e}	-8.485328	-0.455247	4.470287	8.030081	1.244288	1.921668	0.254475	-0.705047
^a Forms a weak C	-B interaction							

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ	
$V_{1b}{}^{a}$	-8.977038	-0.418783	4.697910	8.558254	1.289420	1.343698			
V _{1c}	-7.903004	0.050613	3.926195	7.953617	0.969057	2.417732	-0.320363	1.074034	
V _{1d}	-7.743817	-0.017415	3.880616	7.726402	0.974528	2.576919			
Vie	-8.316345	-0.130070	4.223208	8.186275	1.089353	2.004391	0.114825	-0.572528	
V _{2b}	-8.082871	-0.108029	4.095450	7.974842	1.051602	2.237865			
V _{2c}	-7.496738	0.037007	3.729865	7.533745	0.923305	2.823998	-0.128296	0.586133	
V _{2d}	-7.792254	-0.029388	3.910821	7.762865	0.985108	2.528482			
V _{2e}	-8.279610	-0.136057	4.207833	8.143553	1.087109	2.041126	0.102001	-0.487356	
V _{3b}	-8.101103	-0.099322	4.100212	8.001781	1.050500	2.219633			
V _{3c}	-7.631979	0.032926	3.799526	7.664904	0.941721	2.688757	-0.108779	0.469124	
V _{3d}	-7.782458	-0.021225	3.901841	7.761233	0.980796	2.538278			
V _{3e}	-8.326141	-0.173609	4.249875	8.152532	1.107719	1.994595	0.126924	-0.543684	
^a Forms a weak (^a Forms a weak C-B interaction								

V1b ^a -8.971595 -0.414429 4.693012 8.557166 1.286896 1.321929 V1c -7.968856 0.008980 3.979938 7.977835 0.992745 2.324669 -0.294151 1.002740 V1d -7.825452 -0.011973 3.918712 7.813479 0.982680 2.468073	Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔN
V1c -7.968856 0.008980 3.979938 7.977835 0.992745 2.324669 -0.294151 1.002740 V1d -7.825452 -0.011973 3.918712 7.813479 0.982680 2.468073 -	$V_{1b}{}^{a}$	-8.971595	-0.414429	4.693012	8.557166	1.286896	1.321929		
V _{1d} -7.825452 -0.011973 3.918712 7.813479 0.982680 2.468073	V _{1c}	-7.968856	0.008980	3.979938	7.977835	0.992745	2.324669	-0.294151	1.002740
	V _{1d}	-7.825452	-0.011973	3.918712	7.813479	0.982680	2.468073		
V _{1e} -8.273623 -0.083267 4.178445 8.190356 1.065851 2.019901 0.083171 -0.448172	V _{1e}	-8.273623	-0.083267	4.178445	8.190356	1.065851	2.019901	0.083171	-0.448172
V _{2b} -8.086409 -0.102587 4.094498 7.983822 1.049930 2.207116	V _{2b}	-8.086409	-0.102587	4.094498	7.983822	1.049930	2.207116		
V _{2c} -7.552249 -0.004898 3.778574 7.547351 0.945870 2.741275 -0.104061 0.534160	V _{2c}	-7.552249	-0.004898	3.778574	7.547351	0.945870	2.741275	-0.104061	0.534160
Vzd -7.922868 -0.023130 3.972999 7.899739 0.999066 2.370656	V _{2d}	-7.922868	-0.023130	3.972999	7.899739	0.999066	2.370656		
V _{2e} -8.253759 -0.086260 4.170009 8.167499 1.064523 2.039766 0.065457 -0.330891	V _{2e}	-8.253759	-0.086260	4.170009	8.167499	1.064523	2.039766	0.065457	-0.330891
V _{3b} -8.116341 -0.094424 4.105382 8.021918 1.050507 2.177183	V _{3b}	-8.116341	-0.094424	4.105382	8.021918	1.050507	2.177183		
V _{3c} -7.684497 -0.006531 3.845514 7.677966 0.963014 2.609028 -0.087493 0.431845	V _{3c}	-7.684497	-0.006531	3.845514	7.677966	0.963014	2.609028	-0.087493	0.431845
V _{3d} -7.878242 -0.011973 3.945107 7.866269 0.989279 2.415283	V _{3d}	-7.878242	-0.011973	3.945107	7.866269	0.989279	2.415283		
V _{3e} -8.299746 -0.119186 4.209466 8.180560 1.083031 1.993779 0.093752 -0.421504	V _{3e}	-8.299746	-0.119186	4.209466	8.180560	1.083031	1.993779	0.093752	-0.421504

Table S252. Orbital Energies and Philicity Parameters of V[1-3][b-e] in SMD Water. All quantities given in eV.

Figure S144. V Nucleophilicity and Electrophilicity Switches Induced by Incorporation of D-LEFs.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
VI _{1b}	-7.446669	-0.309666	3.878167	7.137003	1.053676	3.476799		
VI1c	-3.741022	1.914593	0.913214	5.655615	0.073729	7.182446	-0.979948	3.705647
VI_{1d}	-7.270339	-0.223950	3.747144	7.046389	0.996332	3.653129		
VI _{1e}	-11.141704	-3.381015	7.261359	7.760688	3.397079	-0.218235	2.400746	-3.871364
VI _{2b}	-7.326123	-0.360823	3.843473	6.965299	1.060420	3.597346		
VI _{2c}	-3.967965	2.055548	0.956208	6.023513	0.075897	6.955503	-0.984523	3.358158
VI _{2d}	-7.170473	-0.264223	3.717348	6.906251	1.000447	3.752995		
VI _{2e}	-10.748499	-3.538569	7.143534	7.209930	3.538875	0.174969	2.538428	-3.578026

Table S253. Orbital Energies and Philicity Parameters of VI_{[1-2][b-e]} in Gas. All quantities given in eV.

Table S254. Orbital Energies and Philicity Parameters of VI_{[1-2][b-e]} in SMD Toluene. All quantities given in eV.

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔN
VI _{1b}	-7.547351	-0.162996	3.855174	7.384355	1.006341	3.092574		
VI _{1c}	-5.719290	0.805457	2.456916	6.524747	0.462580	4.920636	-0.543761	1.828061
VI1d	-7.379185	-0.093607	3.736396	7.285578	0.958102	3.260741		
VI _{1e}	-9.118537	-1.341794	5.230165	7.776743	1.758746	1.521389	0.800644	-1.739352
VI _{2b}	-7.394695	-0.202997	3.798846	7.191698	1.003326	3.245230		
VI _{2c}	-5.961199	0.901241	2.529979	6.862440	0.466364	4.678726	-0.536961	1.433496
VI _{2d}	-7.247754	-0.108573	3.678164	7.139180	0.947510	3.392172		
VI _{2e}	-8.728870	-1.408189	5.068530	7.320680	1.754618	1.911056	0.807108	-1.481116

Table S255. Orbital Energies and Philicity Parame	ters of VI _{[1-2][b-e]} in SMD D	CM . All quantities given in eV.
---	---	---

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
VI1b	-7.466261	-0.068028	3.767145	7.398233	0.959106	2.940735		
VI1c	-6.711145	0.235379	3.237883	6.946524	0.754614	3.695851	-0.204492	0.755116
VI_{1d}	-7.409934	-0.026939	3.718436	7.382994	0.936393	2.997062		
VI _{1e}	-8.242330	-0.367082	4.304706	7.875248	1.176502	2.164666	0.240109	-0.832396
VI _{2b}	-7.298095	-0.124900	3.711498	7.173195	0.960187	3.108901		
VI _{2c}	-6.918496	0.247624	3.335436	7.166120	0.776231	3.488500	-0.183955	0.379599
VI _{2d}	-7.313061	-0.034014	3.673538	7.279047	0.926967	3.093935		
VI _{2e}	-7.786539	-0.386130	4.086334	7.400410	1.128190	2.620457	0.201222	-0.473478

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
VI _{1b}	-7.451295	-0.056055	3.753675	7.395239	0.952645	2.869441		
VI1c	-6.970470	0.042994	3.463738	7.013464	0.855318	3.350266	-0.097327	0.480825
VI _{1d}	-7.363130	-0.012517	3.687824	7.350613	0.925096	2.957606		
VI _{1e}	-7.963141	-0.115921	4.039531	7.847221	1.039719	2.357595	0.114623	-0.600011
VI _{2b}	-7.284761	-0.099049	3.691905	7.185712	0.948421	3.035975		
VI _{2c}	-7.171018	0.039457	3.565781	7.210474	0.881689	3.149718	-0.066732	0.113744
VI _{2d}	-7.331565	-0.011973	3.671769	7.319592	0.920945	2.989171		
VI _{2e}	-7.554970	-0.133608	3.844289	7.421362	0.995677	2.765766	0.074732	-0.223406

Table S256. Orbital Energies and Philicity Parameters of VI[1-2][b-e] in SMD MeCN. All quantities given in eV.

Table S257. Orbital Energies and Philicity Parameters of VI_{[1-2][b-e]} in SMD Water. All quantities given in eV.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔN
VI _{1b} ^a	-7.989536	-0.050613	4.020075	7.938923	1.017833	2.303988		
VI _{1c}	-7.148704	0.007891	3.570406	7.156596	0.890633	3.144820	-0.127200	0.840832
VI _{1d}	-7.270611	-0.020136	3.645374	7.250475	0.916406	3.022913		
VI1e	-7.891575	-0.072927	3.982251	7.818649	1.014134	2.401949	0.097729	-0.620964
VI _{2b}	-7.401770	-0.093879	3.747825	7.307891	0.961029	2.891754		
VI _{2c}	-7.310612	0.003537	3.653537	7.314150	0.912501	2.982913	-0.048528	0.091158
VI _{2d}	-7.383811	0.005714	3.689048	7.389525	0.920836	2.909714		
VI _{2e}	-7.605856	-0.080001	3.842929	7.525854	0.981158	2.687669	0.060322	-0.222045

Figure S145. VI Nucleophilicity and Electrophilicity Switches Induced by Incorporation of D-LEFs.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
VII _{1b} ^a	-8.332400	-0.546677	4.439538	7.785723	1.265746	2.591069		
VII1c	-3.034070	1.726835	0.653618	4.760905	0.044867	7.889398	-1.220879 (-0.8954) ^b	5.298330 (3.6912) ^b
VII1d	-6.708152	-0.266400	3.487276	6.441752	0.943927	4.215316		
VII1e	-10.624415	-3.318701	6.971558	7.305714	3.326343	0.299053	2.382416	-3.916263
VII _{2b}	-6.819174	-0.315108	3.567141	6.504066	0.978195	4.104294		
VII _{2c}	-3.650408	1.871872	0.889268	5.522279	0.071601	7.273060	-0.906595	3.168766
VII _{2d}	-6.594136	-0.289529	3.441833	6.304607	0.939489	4.329332		
VII _{2e}	-9.907939	-3.449316	6.678628	6.458623	3.453063	1.015529	2.513574	-3.313803
VII _{3b}	-6.869788	-0.386130	3.627959	6.483658	1.015020	4.053681		
VII _{3c}	-3.796533	2.004391	0.896071	5.800924	0.069208	7.126935	-0.945812	3.073254
VII _{3d}	-6.700533	-0.284631	3.492582	6.415902	0.950617	4.222936		
VII _{3e}	-9.649975	-3.641700	6.645838	6.008275	3.675528	1.273493	2.724911	-2.949443
^a Forms a weak C-I	¹ Forms a weak C-B interaction; ^b A corrected switch, calculated relative to the unsubstituted molecule, see S10.							

Table S258. Orbital Energies and Philicity Parameters of VII_{[1-3][b-e]} in Gas. All quantities given in eV.

Table S259. Orbital Energies and Philicity Parameters of VII[1-3][b-e] in SMD Toluene. All quantities given in eV.

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔN
VII _{1b} ^a	-8.090218	-0.250617	4.170418	7.839601	1.109265	2.549707		
VII1c	-5.400645	0.752395	2.324125	6.153040	0.438934	5.239281	-0.670331 (-0.4611) ^b	2.689574 (1.2057) ^b
VII1d	-6.868971	-0.112111	3.490541	6.756860	0.901593	3.770954		
VII1e	-8.599888	-1.315126	4.957507	7.284761	1.686869	2.040038	0.785276	-1.730917
VII _{2b}	-6.911965	-0.178235	3.545100	6.733731	0.933192	3.727960		
VII _{2c}	-5.632758	0.801648	2.415555	6.434405	0.453415	5.007168	-0.479778	1.279207
VII _{2d}	-6.814821	-0.099049	3.456935	6.715771	0.889727	3.825105		
VII _{2e}	-8.077429	-1.377441	4.727435	6.699988	1.667812	2.562497	0.778085	-1.262608
VII _{3b}	-6.978089	-0.214970	3.596529	6.763119	0.956291	3.661837		
VII _{3c}	-5.815346	0.817430	2.498958	6.632776	0.470752	4.824579	-0.485539	1.162743
VII _{3d}	-6.888563	-0.124900	3.506732	6.763663	0.909061	3.751362		
VII _{3e}	-8.046680	-1.456081	4.751381	6.590599	1.712714	2.593245	0.803653	-1.158117
^a Forms a weak C-	Forms a weak C-B interaction; ^b A corrected switch, calculated relative to the unsubstituted molecule, see S10.							

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔN
VII _{1b} ^a	-7.946542	-0.093607	4.020075	7.852935	1.028978	2.460454		
VII1c	-6.628422	0.212521	3.207951	6.840943	0.752159	3.778574	-0.276820	1.318120
VII _{1d}	-7.122037	-0.024490	3.573264	7.097547	0.899481	3.284959		
VII1e	-7.748171	-0.360823	4.054497	7.387348	1.112642	2.658825	0.213161	-0.626134
VII _{2b}	-7.099996	-0.104764	3.602380	6.995232	0.927570	3.307000		
VII _{2c}	-6.685294	0.222317	3.231489	6.907611	0.755870	3.721702	-0.171700	0.414702
VII _{2d}	-7.048022	-0.035103	3.541562	7.012919	0.894254	3.358974		
VII _{2e}	-7.387076	-0.399463	3.893270	6.987613	1.084601	3.019920	0.190347	-0.339054
VII _{3b}	-7.183535	-0.121363	3.652449	7.062172	0.944496	3.223461		
VII _{3c}	-6.839855	0.219052	3.310402	7.058907	0.776236	3.567141	-0.168259	0.343680
VII _{3d}	-7.144623	-0.041906	3.593264	7.102717	0.908916	3.262374		
VII _{3e}	-7.493745	-0.410076	3.951910	7.083669	1.102366	2.913251	0.193450	-0.349122
^a Forms a weak C-B interaction								

Table S260. Orbital Energies and Philicity Parameters of VII_{[1-3][b-e]} in SMD DCM. All quantities given in eV.

Table S261. Orbital Energies and Philicity Parameters of VII_{[1-3][b-e]} in SMD MeCN. All quantities given in eV.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔN
VII _{1b} ^a	-7.902188	-0.069117	3.985652	7.833071	1.013997	2.418548		
VII _{1c}	-6.953326	0.030477	3.461425	6.983803	0.857804	3.367410	-0.156194	0.948861
VII _{1d}	-7.236869	-0.004626	3.620748	7.232243	0.906345	3.083867		
VII1e	-7.547351	-0.117009	3.832180	7.430342	0.988219	2.773385	0.081874	-0.310482
VII _{2b}	-7.186256	-0.083539	3.634897	7.102717	0.930100	3.134480		
VII _{2c}	-6.987613	0.029933	3.478840	7.017545	0.862291	3.333123	-0.067810	0.198643
VII _{2d}	-7.157412	-0.013878	3.585645	7.143534	0.899894	3.163324		
VII _{2e}	-7.258366	-0.125445	3.691905	7.132922	0.955441	3.062370	0.055546	-0.100954
VII _{3b}	-7.276598	-0.096600	3.686599	7.179997	0.946450	3.044138		
VII _{3c}	-7.126663	0.018232	3.554216	7.144895	0.884019	3.194073	-0.062430	0.149935
VII _{3d}	-7.250203	-0.022858	3.636530	7.227345	0.914883	3.070533		
VII _{3e}	-7.379457	-0.144765	3.762111	7.234692	0.978167	2.941279	0.063284	-0.129254
^a Forms a weak C-	Forms a weak C-B interaction							

VII1b ^a -7.899194 -0.066940 3.983067 7.832254 1.012788 2.394330	718
	718
VII_{1c} -6.96/4/6 -0.015238 3.49135/ 6.952238 0.8/6666 3.326048 -0.136122 0.931/13	
VII _{1d} -7.262992 0.000816 3.631088 7.263808 0.907568 3.030533	
VII _{1e} -7.505446 -0.074287 3.789866 7.431158 0.966410 2.788079 0.058842 -0.24245	2453
VII _{2b} -7.213739 -0.079729 3.646734 7.134010 0.932061 3.079785	
VII _{2c} -7.052104 -0.008436 3.530270 7.043668 0.884681 3.241421 -0.047380 0.16163	636
VII _{2d} -7.206120 -0.017143 3.611632 7.188977 0.907214 3.087404	
VII _{2e} -7.227073 -0.081634 3.654354 7.145439 0.934463 3.066452 0.027249 -0.02095)953
VII _{3b} -7.297823 -0.091974 3.694899 7.205848 0.947305 2.995702	
VII _{3c} -7.196596 -0.014422 3.605509 7.182174 0.904997 3.096928 -0.042308 0.10122	226
VII₃d -7.276870 -0.019048 3.647959 7.257822 0.916777 3.016655	
VII _{3e} -7.363946 -0.098777 3.731362 7.265169 0.958206 2.929578 0.041430 -0.08707	/076

Table S262. Orbital Energies and Philicity Parameters of VII_{[1-3][b-e]} in SMD Water. All quantities given in eV.

Figure S146. VII Nucleophilicity and Electrophilicity Switches Induced by Incorporation of D-LEFs.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
VIII _{1b} ^a	-8.925064	-0.950494	4.937779	7.974570	1.528713	1.998404		
VIII1c	-3.402512	1.826428	0.788042	5.228941	0.059382	7.520956	-1.469331 (-0.9135)⁵	5.522552 (3.7065) [⊳]
VIII1d	-7.108431	-0.242453	3.675442	6.865978	0.983755	3.815037		
VIII _{1e}	-11.053811	-3.681701	7.367756	7.372110	3.681702	-0.130343	2.697948	-3.945379
VIII _{2b}	-7.139452	-0.394021	3.766737	6.745431	1.051697	3.784016		
VIII _{2c}	-3.782655	1.991057	0.895799	5.773713	0.069492	7.140813	-0.982205	3.356797
VIII _{2d}	-6.939449	-0.293067	3.616258	6.646382	0.983792	3.984020		
VIII _{2e}	-10.257606	-3.763879	7.010743	6.493726	3.784461	0.665863	2.800669	-3.318157
VIII _{3b}	-7.166936	-0.334700	3.750818	6.832236	1.029578	3.756532		
VIII _{3c}	-3.827010	1.846293	0.990359	5.673303	0.086441	7.096458	-0.943137	3.339926
VIII _{3d}	-6.973463	-0.272114	3.622788	6.701349	0.979250	3.950005		
VIII _{3e}	-10.275293	-3.828643	7.051968	6.446650	3.857061	0.648175	2.877811	-3.301830
VIII _{4b}	-7.312517	-0.273202	3.792860	7.039314	1.021817	3.610951		
VIII _{4c}	-3.668095	1.728467	0.969814	5.396563	0.087142	7.255373	-0.934675	3.644421
VIII _{4d}	-7.055097	-0.223406	3.639251	6.831692	0.969317	3.868371		
VIII _{4e}	-10.847004	-3.600611	7.223808	7.246393	3.600646	0.076464	2.631329	-3.791907
^a Forms a weak C-E	: Forms a weak C-B interaction; ^b A corrected switch, calculated relative to the unsubstituted molecule, see S10.							

 $\label{eq:constraint} \mbox{Table S263. Orbital Energies and Philicity Parameters of $VIII_{[1-4][b-e]}$ in Gas. All quantities given in eV.}$

Table S264. Orbital Energies and Philicity	/ Parameters of VIII _{[1-4][b-e]} in SM	D Toluene . All quantities given in eV.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔN	
VIII _{1b} ^a	-8.852409	-0.754028	4.803219	8.098382	1.424415	1.787516			
VIII1c	-5.763372	0.823417	2.469978	6.586789	0.463108	4.876553	-0.961307 (-0.4716) ^b	3.089037 (1.2117) ^b	
VIII _{1d}	-7.049111	-0.102859	3.575985	6.946252	0.920473	3.590815			
VIII _{1e}	-9.016222	-1.538532	5.277377	7.477690	1.862253	1.623704	0.941781	-1.967111	
VIII _{2b}	-7.248570	-0.218235	3.733403	7.030335	0.991297	3.391356			
VIII _{2c}	-5.864871	0.853893	2.505489	6.718764	0.467160	4.775055	-0.524137	1.383699	
VIII _{2d}	-7.123398	-0.127077	3.625237	6.996320	0.939233	3.516528			
VIII _{2e}	-8.452674	-1.495266	4.973970	6.957408	1.777988	2.187252	0.838755	-1.329276	
VIII _{3b}	-7.246121	-0.183949	3.715035	7.062172	0.977142	3.393805			
VIII _{3c}	-5.856707	0.842193	2.507257	6.698900	0.469207	4.783218	-0.507935	1.389414	
VIII _{3d}	-7.132922	-0.118370	3.625646	7.014552	0.937003	3.507004			
VIII _{3e}	-8.484784	-1.563022	5.023903	6.921761	1.823206	2.155142	0.886204	-1.351862	
VIII _{4b}	-7.384355	-0.144220	3.764288	7.240135	0.978563	3.255571			
VIII _{4c}	-5.898341	0.740966	2.578687	6.639307	0.500777	4.741585	-0.477786	1.486014	
VIII _{4d}	-7.183263	-0.083267	3.633265	7.099996	0.929621	3.456663			
VIII _{4e}	-8.750095	-1.408189	5.079142	7.341905	1.756879	1.889831	0.827258	-1.566832	
^a Forms a weak C-B	^a Forms a weak C-B interaction								

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔN	
VIII _{1b} ^a	-8.685331	-0.644910	4.665121	8.040422	1.353371	1.721665			
VIII1c	-6.942170	0.241909	3.350130	7.184079	0.781128	3.464826	-0.572243	1.743162	
VIII1d	-7.508983	-0.070750	3.789866	7.438233	0.965490	2.898013			
VIII1e	-8.152260	-0.593480	4.372870	7.558780	1.264886	2.254736	0.299396	-0.643277	
VIII _{2b}	-7.425444	-0.129798	3.777621	7.295646	0.978010	2.981552			
VIII _{2c}	-6.984892	0.229936	3.377478	7.214828	0.790549	3.422104	-0.187460	0.440552	
VIII _{2d}	-7.374287	-0.056055	3.715171	7.318231	0.943021	3.032709			
VIII _{2e}	-7.808853	-0.564908	4.186881	7.243944	1.209974	2.598144	0.266953	-0.434566	
VIII _{3b}	-7.424900	-0.108846	3.766873	7.316054	0.969739	2.982096			
VIII _{3c}	-6.958225	0.227487	3.365369	7.185712	0.788071	3.448772	-0.181668	0.466675	
VIII _{3d}	-7.346531	-0.030749	3.688640	7.315782	0.929912	3.060465			
VIII _{3e}	-7.829261	-0.541507	4.185384	7.287754	1.201841	2.577735	0.271929	-0.482730	
VIII _{4b}	-7.532929	-0.084900	3.808914	7.448030	0.973937	2.874067			
VIII _{4c}	-7.030879	0.225855	3.402512	7.256733	0.797679	3.376117	-0.176258	0.502050	
VIII _{4d}	-7.342177	-0.026123	3.684150	7.316054	0.927615	3.064819			
VIII _{4e}	-8.012394	-0.439464	4.225929	7.572930	1.179099	2.394602	0.251485	-0.670217	
^a Forms a weak C-B	^a Forms a weak C-B interaction								

Table S265. Orbital Energies and Philicity Parameters of VIII_{[1-4][b-e]} in SMD DCM. All quantities given in eV.

$\label{eq:constraint} \textbf{Table S266. Orbital Energies and Philicity Parameters of VIII_{[1-4][b-e]} in SMD MeCN. All quantities given in eV. \\$

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ	
VIII _{1b} ^a	-8.630092	-0.612801	4.621446	8.017292	1.331981	1.690644			
VIII1c	-7.230883	0.040273	3.595305	7.271156	0.888870	3.089853	-0.443112	1.399210	
VIII1d	-7.614291	-0.111839	3.863065	7.502452	0.994560	2.706445			
VIII1e	-7.950896	-0.357013	4.153955	7.593883	1.136134	2.369840	0.141575	-0.336605	
VIII _{2b}	-7.510616	-0.112111	3.811363	7.398505	0.981718	2.810120			
VIII _{2c}	-7.319864	0.023130	3.648367	7.342994	0.906346	3.000872	-0.075372	0.190752	
VIII _{2d}	-7.456465	-0.043538	3.750002	7.412927	0.948513	2.864271			
VIII _{2e}	-7.671707	-0.324632	3.998170	7.347075	1.087872	2.649029	0.139359	-0.215242	
VIII _{3b}	-7.507895	-0.091702	3.799798	7.416192	0.973442	2.812841			
VIII _{3c}	-7.274693	0.023130	3.625782	7.297823	0.900700	3.046043	-0.072743	0.233202	
VIII _{3d}	-7.426805	-0.008163	3.717484	7.418641	0.931416	2.893931			
VIII _{3e}	-7.674973	-0.243542	3.959257	7.431431	1.054690	2.645763	0.123274	-0.248168	
VIII _{4b}	-7.602862	-0.122451	3.862657	7.480411	0.997279	2.717874			
VIII _{4c}	-7.358504	0.045171	3.656667	7.403675	0.903012	2.962232	-0.094268	0.244358	
VIII _{4d}	-7.421362	-0.024490	3.722926	7.396872	0.936895	2.899374			
VIII _{4e}	-7.844772	-0.247896	4.046334	7.596876	1.077602	2.475964	0.140707	-0.423409	
^a Forms a weak C-E	^a Forms a weak C-B interaction								

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ	
VIII _{1b} ^a	-8.622201	-0.602732	4.612467	8.019469	1.326450	1.671324			
VIII1c	-7.375919	0.003810	3.686055	7.379729	0.920562	2.917605	-0.405888	1.246282	
VIII _{1d}	-7.646673	-0.109934	3.878303	7.536739	0.997861	2.646852			
VIII1e	-7.916065	-0.310210	4.113138	7.605856	1.112163	2.377459	0.114302	-0.269393	
VIII _{2b}	-7.530208	-0.110478	3.820343	7.419730	0.983528	2.763317			
VIII _{2c}	-7.379457	-0.011429	3.695443	7.368028	0.926727	2.914068	-0.056801	0.150751	
VIII _{2d}	-7.510888	-0.035375	3.773131	7.475513	0.952210	2.782637			
VIII _{2e}	-7.651299	-0.281366	3.966332	7.369933	1.067295	2.642226	0.115085	-0.140411	
VIII _{3b}	-7.526398	-0.088437	3.807418	7.437961	0.974489	2.767126			
VIII _{3c}	-7.347620	-0.005442	3.676531	7.342177	0.920495	2.945905	-0.053994	0.178779	
VIII _{3d}	-7.485037	-0.029933	3.757485	7.455105	0.946914	2.808488			
VIII _{3e}	-7.653203	-0.200004	3.926604	7.453200	1.034335	2.640321	0.087421	-0.168166	
VIII _{4b}	-7.619189	-0.075376	3.847282	7.543814	0.981041	2.674335			
VIII _{4c}	-7.420818	0.007347	3.706736	7.428165	0.924851	2.872706	-0.056190	0.198371	
VIII _{4d}	-7.518507	-0.031565	3.775036	7.486942	0.951717	2.775018			
VIII _{4e}	-7.791437	-0.162452	3.976945	7.628985	1.036579	2.502087	0.084862	-0.272930	
^a Forms a weak C-B	^a Forms a weak C-B interaction								

Table S267. Orbital Energies and Philicity Parameters of VIII[1-4][b-e] in SMD Water. All quantities given in eV.

Figure S147. VIII Nucleophilicity and Electrophilicity Switches Induced by Incorporation of D-LEFs.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
IX _{1b}	-8.559615	-0.269937	4.414776	8.289678	1.175573	2.363853		
IX _{1c}	-4.397905	2.000854	1.198526	6.398758	0.112246	6.525563	-1.063328	4.161710
IX _{1d}	-7.815655	-0.240821	4.028238	7.574835	1.071093	3.107813		
IX _{1e}	-11.806478	-3.616394	7.711436	8.190084	3.630380	-0.883010	2.559288	-3.990822
IX _{2b}	-7.956066	-0.383681	4.169873	7.572386	1.148109	2.967402		
IX _{2c}	-4.405796	2.052555	1.176621	6.458351	0.107182	6.517672	-1.040927	3.550270
IX _{2d}	-7.667898	-0.268304	3.968101	7.399593	1.063966	3.255571		
IX _{2e}	-11.040477	-3.656394	7.348436	7.384083	3.656481	-0.117009	2.592515	-3.372580
IX _{4b}	-8.464919	-0.316741	4.390830	8.148179	1.183049	2.458549		
IX _{4c}	-4.266202	1.777448	1.244377	6.043650	0.128108	6.657267	-1.054941	4.198717
IX _{4d}	-7.786539	-0.202453	3.994496	7.584087	1.051939	3.136929		
IX _{4e}	-11.816546	-3.387002	7.601774	8.429544	3.427645	-0.893078	2.375705	-4.030007

Table S268. Orbital Energies and Philicity Parameters of IX_{[1-2,4][b-e]} in Gas. All quantities given in eV.

Table S269. Orbital Energies and Philicity Parameters of IX_{[1-2,4][b-e]} in SMD Toluene. All quantities given in eV.

Species	номо	LUMO	СНІ	ΕΤΑ	GEI	Ν	ΔGEI	ΔΝ
IX _{1b}	-8.463559	-0.126805	4.295182	8.336754	1.106461	2.176367		
IX _{1c}	-6.611279	0.900153	2.855563	7.511432	0.542789	4.028646	-0.563672	1.852279
IX _{1d}	-7.881779	-0.081362	3.981571	7.800417	1.016157	2.758146		
IX _{1e}	-9.738956	-1.433768	5.586362	8.305188	1.878792	0.900969	0.862635	-1.857177
IX _{2b}	-8.057020	-0.205446	4.131233	7.851574	1.086858	2.582905		
IX _{2c}	-6.571006	0.922466	2.824270	7.493473	0.532230	4.068919	-0.554628	1.486014
IX _{2d}	-7.825996	-0.111839	3.968917	7.714157	1.021000	2.813930		
IX _{2e}	-9.286975	-1.486558	5.386767	7.800417	1.859981	1.352950	0.838981	-1.460980
IX _{4b}	-8.180560	-0.108301	4.144431	8.072259	1.063910	2.459365		
IX _{4c}	-6.515223	0.764640	2.875292	7.279863	0.567820	4.124702	-0.496090	1.665337
IX _{4d}	-7.766403	-0.058777	3.912590	7.707626	0.993066	2.873523		
IX _{4e}	-9.659227	-1.351046	5.505136	8.308182	1.823896	0.980698	0.830831	-1.892824

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
IX _{1b}	-8.326957	-0.090342	4.208650	8.236616	1.075243	2.080039		
IX _{1c}	-7.781369	0.264767	3.758301	8.046136	0.877740	2.625627	-0.197504	0.545588
IX _{1d}	-7.892664	-0.003810	3.948237	7.888854	0.988012	2.514332		
IX _{1e}	-8.875811	-0.378238	4.627025	8.497573	1.259734	1.531185	0.271721	-0.983148
IX _{2b}	-8.187907	-0.123812	4.155860	8.064095	1.070868	2.219089		
IX _{2c}	-7.689122	0.249801	3.719661	7.938923	0.871395	2.717874	-0.199473	0.498785
IX _{2d}	-7.838785	-0.034014	3.936400	7.804771	0.992678	2.568211		
IX _{2e}	-8.624650	-0.400007	4.512329	8.224643	1.237811	1.782346	0.245134	-0.785865
IX _{4b}	-8.326413	-0.066940	4.196677	8.259473	1.066175	2.080583		
IX _{4c}	-7.742729	0.245719	3.748505	7.988448	0.879476	2.664267	-0.186700	0.583684
IX _{4d}	-7.852935	0.004354	3.924291	7.857289	0.979985	2.554061		
IX _{4e}	-8.902750	-0.353476	4.628113	8.549275	1.252705	1.504246	0.272719	-1.049815

Table S270. Orbital Energies and Philicity Parameters of IX_{[1-2,4][b-e]} in SMD DCM. All quantities given in eV.

Table S271. Orbital Energies and Philicity Parameters of IX_{[1-2,4][b-e]} in SMD MeCN. All quantities given in eV.

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
IX _{1b}	-8.391721	-0.072927	4.232324	8.318794	1.076632	1.929015		
IX _{1c}	-8.120967	0.049797	4.035585	8.170764	0.996599	2.199769	-0.080033	0.270753
IX _{1d}	-7.897834	0.009524	3.944155	7.907358	0.983663	2.422902		
IX _{1e}	-8.671726	-0.112655	4.392190	8.559071	1.126953	1.649010	0.143289	-0.773892
IX _{2b}	-8.270358	-0.105308	4.187833	8.165050	1.073964	2.050378		
IX _{2c}	-8.010217	0.031837	3.989190	8.042054	0.989401	2.310519	-0.084563	0.260141
IX _{2d}	-7.828173	-0.018504	3.923338	7.809669	0.985482	2.492563		
IX _{2e}	-8.476892	-0.131703	4.304298	8.345189	1.110039	1.843844	0.124557	-0.648720
IX _{4b}	-8.392265	-0.065035	4.228650	8.327230	1.073675	1.928471		
IX _{4c}	-8.095389	0.053879	4.020755	8.149267	0.991897	2.225347	-0.081778	0.296876
IX _{4d}	-7.891575	0.014422	3.938577	7.905997	0.981052	2.429161		
IX _{4e}	-8.693223	-0.107485	4.400354	8.585738	1.127633	1.627513	0.146581	-0.801648

Species	номо	LUMO	СНІ	ETA	GEI	Ν	ΔGEI	ΔΝ
IX _{1b}	-8.397163	-0.077008	4.237086	8.320155	1.078880	1.896362		
IX _{1c}	-8.181104	0.007891	4.086607	8.188996	1.019683	2.112420	-0.059197	0.216058
IX _{1d}	-8.064368	0.016055	4.024156	8.080422	1.002041	2.229157		
IX _{1e}	-8.632813	-0.066668	4.349741	8.566146	1.104362	1.660711	0.102320	-0.568446
IX _{2b}	-8.287773	-0.102043	4.194908	8.185730	1.074874	2.005752		
IX _{2c}	-8.063551	-0.010612	4.037082	8.052939	1.011931	2.229973	-0.062943	0.224222
IX _{2d}	-7.957699	-0.013334	3.985516	7.944365	0.999724	2.335826		
IX _{2e}	-8.452402	-0.085988	4.269195	8.366414	1.089238	1.841123	0.089514	-0.494703
IX _{4b}	-8.400428	-0.066124	4.233276	8.334305	1.075112	1.893096		
IX _{4c}	-8.153621	0.010885	4.071368	8.164505	1.015128	2.139904	-0.059984	0.246807
IX _{4d}	-8.031442	0.013334	4.009054	8.044775	0.998941	2.262083		
IX _{4e}	-8.609140	-0.068028	4.338584	8.541111	1.101924	1.684385	0.102983	-0.577698

Table S272. Orbital Energies and Philicity Parameters of IX_{[1-2,4][b-e]} in SMD Water. All quantities given in eV.

Figure S148. IX Nucleophilicity and Electrophilicity Switches Induced by Incorporation of D-LEFs.

S13. Gibbs Free Energy Surfaces & Components for D-LEF-Substituted and Unsubstituted Benzoin Condensations Across Different Solvents

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(TOL)
l _{1a}	-304.705053	0.127653	0.007850	340.587200	0.038677	-304.569550	-304.608226	-304.605207
Α	-345.469638	0.110744	0.007230	332.524600	0.037761	-345.351665	-345.389426	-345.386407
TS1	-650.167389	0.240537	0.014164	471.935500	0.053593	-649.912688	-649.966281	-649.963262
В	-650.179357	0.242247	0.014102	468.448900	0.053197	-649.923008	-649.976205	-649.973186
TS2	-765.849026	0.292365	0.017626	534.862700	0.060739	-765.539035	-765.599774	-765.596755
С	-650.189680	0.242021	0.014518	473.107400	0.053726	-649.933141	-649.986867	-649.983848
TS3	-995.669486	0.355755	0.019878	571.439900	0.064892	-995.293852	-995.358744	-995.355725
D	-995.678515	0.357885	0.020229	579.647100	0.065824	-995.300401	-995.366225	-995.363206
TS4	-995.667608	0.356312	0.020460	585.981600	0.066544	-995.290836	-995.357380	-995.354361
Ε	-690.965686	0.226323	0.013641	463.532600	0.052638	-690.725722	-690.778360	-690.775341
Methanol	-115.670411	0.051294	0.004281	238.059600	0.027034	-115.614836	-115.641870	-115.638851

 Table S273. Energies of Model Benzoin Reaction in SMD Toluene, Uncharged. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S274. Model Benzoin Reaction Gibbs Free Energy Surface in SMD Toluene. Energies given in Hartree,Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	С	TS3	D	TS4	E
	-	-	-	-	-	-	-	-	-
Energy	1111.016	1110.9885	1110.9984	1110.9831	1111.0091	1110.9945	1111.0020	1110.9932	1111.019
	8737	212	452	628	072	768	578	128	4002
Rel.	0.00	74.44	10 20	00 E 1	20.20		28.00	62 12	6 62
Energy	0.00	/4.44	40.38	00.51	20.39	50.54	56.90	02.12	-0.03

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(TOL)
I _{1c}	-628.706663	0.130244	0.011205	415.973200	0.047238	-628.565215	-628.612452	-628.609433
TS1	-974.172100	0.242677	0.017642	539.267900	0.061239	-973.911781	-973.973019	-973.970000
В	-974.198396	0.246054	0.017087	524.661700	0.059580	-973.935255	-973.994835	-973.991816
TS2	-1089.866859	0.294538	0.021097	602.190200	0.068384	-1089.551223	-1089.619608	- 1089.616589
с	-974.197461	0.244172	0.017979	541.487500	0.061491	-973.935310	-973.996801	-973.993782
TS3	-1319.685272	0.358774	0.022215	611.246800	0.069413	-1319.304283	-1319.373695	- 1319.370676
D	-1319.695822	0.360404	0.023697	646.436100	0.073409	-1319.311721	-1319.385129	- 1319.382110
TS4	-1319.676363	0.358937	0.023868	649.858800	0.073797	-1319.293558	-1319.367356	- 1319.364337

Table S275. Energies of Model Benzoin Reaction in SMD Toluene, I_{1c} (Anionic Charge, Position 1). Entropy given in J/mol.K. All other quantities given in Hartree.

Table S276. Model Benzoin Reaction Gibbs Free Energy Surface in SMD Toluene, I_{1c} (Anionic Charge, Position 1). Energies given in Hartree, Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	С	TS3	D	TS4	E
Energy	- 1435.021 100	- 1434.9952 59	- 1435.0170 75	- 1435.0029 97	- 1435.0190 41	- 1435.0095 28	- 1435.0209 62	- 1435.0031 89	- 1435.023 626
Rel. Energy	0.00	67.84	10.57	47.53	5.40	30.38	0.36	47.02	-6.63
Table S277. Energies of Model Benzoin Reaction in SMD Toluene, I_{2c} (Anionic Charge, Position 2). Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	н	G	G(TOL)
l _{2c}	-668.008859	0.158104	0.012740	442.979600	0.050304	-667.838014	-667.888318	-667.885299
TS1	-1013.475881	0.270908	0.019086	564.796100	0.064138	-1013.185887	-1013.250025	- 1013.247006
В	-1013.496304	0.273236	0.018865	557.199800	0.063275	-1013.204204	-1013.267479	- 1013.264460
TS2	-1129.166345	0.322744	0.022610	627.403300	0.071247	-1128.820991	-1128.892239	- 1128.889220
С	-1013.497918	0.272367	0.019433	566.227500	0.064300	-1013.206117	-1013.270418	- 1013.267399
TS3	-1358.983601	0.386203	0.024977	663.040900	0.075294	-1358.572421	-1358.647716	- 1358.644697
D	-1358.995128	0.388756	0.025042	667.386300	0.075788	-1358.581330	-1358.657118	- 1358.654099
TS4	-1358.975687	0.386528	0.025543	679.526600	0.077167	-1358.563616	-1358.640783	- 1358.637764

Table S278. Model Benzoin Reaction Gibbs Free Energy Surface in SMD Toluene, I2c (Anionic Charge, Position2). Energies given in Hartree, Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	С	TS3	D	TS4	E
	-	-	-	-	-	-	-	-	-
Energy	1474.296	1474.2722	1474.2897	1474.2756	1474.2926	1474.2835	1474.2929	1474.2766	1474.299
	966	65	19	28	58	49	51	16	492
Rel.	0.00	64.95	10.02	56.02	11 21	25.22	10 54	52 /2	6.62
Energy	0.00	04.05	19.05	50.02	11.51	33.25	10.54	55.45	-0.05

Species	DFT Energy	ZPVE	тс	S	тs	Н	G	G(TOL)
I _{1e}	-478.341450	0.244814	0.012518	433.277900	0.049203	-478.084118	-478.133321	-478.130302
TS1	-823.808147	0.359217	0.018215	541.302000	0.061470	-823.430715	-823.492185	-823.489166
В	-823.820830	0.361872	0.018007	533.448200	0.060578	-823.440951	-823.491529	-823.488510
TS2	-939.478948	0.411056	0.021680	604.993400	0.068703	-939.046212	-939.114915	-939.111896
с	-823.828108	0.359499	0.018979	550.241300	0.062485	-823.449630	-823.512115	-823.509096
TS3	-1169.291588	0.475120	0.024073	640.733600	0.072761	-1168.792395	-1168.865156	- 1168.862137
D	-1169.312809	0.477266	0.024470	648.946300	0.073694	-1168.811073	-1168.884767	- 1168.881748
TS4	-1169.307998	0.474643	0.024702	655.719400	0.074463	-1168.808653	-1168.883116	- 1168.880097

Table S279. Energies of Model Benzoin Reaction in SMD Toluene, I_{1e} (Cationic Charge, Position 1). Entropy given in J/mol.K. All other quantities given in Hartree.

Table S280. Model Benzoin Reaction Gibbs Free Energy Surface in SMD Toluene, I_{1e} (Cationic Charge, Position 1). Energies given in Hartree, Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	с	TS3	D	TS4	E
	-	-	-	-	-	-	-	-	-
Energy	1284.541	1284.5144	1284.5137	1284.4983	1284.5343	1284.5009	1284.5206	1284.5189	1284.544
	969	25	69	04	55	89	00	49	495
Rel.	0.00	72 22	74.04	114 64	10.00	107 50	F6 10	60.44	6 62
Energy	0.00	72.52	74.04	114.04	19.99	107.59	50.10	60.44	-0.05

Table S281. Energies of Model Benzoin Reaction in SMD Toluene, I_{2e} (Cationic Charge, Position 2). Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(TOL)
l _{2e}	-517.635458	0.273552	0.013697	451.407300	0.051261	-517.348210	-517.399471	-517.396452
TS1	-863.097740	0.388747	0.019379	559.913000	0.063583	-862.689613	-862.753196	-862.750177
В	-863.099465	0.389779	0.019612	563.358400	0.063975	-862.690075	-862.754049	-862.751030
TS2	-978.769316	0.440511	0.022789	619.807500	0.070385	-978.306015	-978.376400	-978.373381
с	-863.123535	0.389644	0.020193	573.111700	0.065082	-862.713698	-862.778780	-862.775761
TS3	-1208.587316	0.507535	0.024664	651.768900	0.074014	-1208.055117	-1208.129131	- 1208.126112
D	-1208.601090	0.506810	0.025561	668.472800	0.075911	-1208.068720	-1208.144631	- 1208.141612
TS4	-1208.591226	0.503773	0.025815	673.735700	0.076509	-1208.061638	-1208.138147	- 1208.135128

Table S282. Model Benzoin Reaction Gibbs Free Energy Surface in SMD Toluene, I2e (Cationic Charge, Position2). Energies given in Hartree, Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	С	TS3	D	TS4	E
Energy	- 1323.808 119	- 1323.7754 36	- 1323.7762 89	- 1323.7597 89	- 1323.8010 20	- 1323.7649 64	- 1323.7804 64	- 1323.7739 80	- 1323.810 645
Rel. Energy	0.00	85.81	83.57	126.89	18.64	113.30	72.61	89.63	-6.63

Figure S149. Gibbs Free Energy (kJ/mol) at 298.15 K of the benzoin condensation catalysed by I1a (black), I1b (dark blue), I1c (light blue), I1d (yellow), and I1e (orange) at the SMD//M06-2X/cc-pVDZ level of theory in SMD Toluene.

Species	DFT Energy	ZPVE	тс	S	тѕ	н	G	G(DCM)
l _{1a}	-304.709700	0.127492	0.007901	342.529900	0.038897	-304.574307	-304.613204	-304.610185
Α	-345.471814	0.110671	0.007232	332.557500	0.037765	-345.353911	-345.391676	-345.388657
TS1	-650.174361	0.240323	0.014207	472.721700	0.053682	-649.919831	-649.973513	-649.970494
В	-650.191020	0.242238	0.014098	468.158400	0.053164	-649.934684	-649.987847	-649.984828
TS2	-765.859645	0.291767	0.017762	537.609500	0.061051	-765.550117	-765.611167	-765.608148
С	-650.195757	0.241736	0.014516	473.108700	0.053726	-649.939505	-649.993230	-649.990211
TS3	-995.678824	0.355139	0.020057	574.278600	0.065215	-995.303628	-995.368843	-995.365824
D	-995.690525	0.357785	0.020195	579.178900	0.065771	-995.312546	-995.378317	-995.375298
TS4	-995.675293	0.356019	0.020539	587.949800	0.066767	-995.298736	-995.365503	-995.362484
E	-690.969987	0.225935	0.013713	464.819100	0.052785	-690.730338	-690.783123	-690.780104
Methanol	-115.672326	0.051276	0.004262	237.773600	0.027001	-115.616788	-115.643790	-115.640771

 Table S283. Energies of Model Benzoin Reaction in SMD DCM, Uncharged. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S284. Model Benzoin Reaction Gibbs Free Energy Surface in SMD DCM.Energies given in Hartree,Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	с	TS3	D	TS4	E
	-	-	-	-	-	-	-	-	-
Energy	1111.028	1110.9999	1111.0142	1110.9968	1111.0196	1111.0065	1111.0160	1111.0032	1111.031
	272	23	57	06	40	96	70	56	061
Rel.	0.00	74 43	36 79	82.61	22.66	56 91	32.04	65 68	-7 32
Energy	0.00	74.45	50.75	02.01	22.00	50.51	52.04	05.00	7.52

Species	DFT Energy	ZPVE	тс	S	тs	Н	G	G(DCM)
l _{1c}	-628.737890	0.130142	0.011207	415.956000	0.047236	-628.596541	-628.643777	-628.640758
TS1	-974.203696	0.242551	0.017649	539.273700	0.061240	-973.943497	-974.004736	-974.001717
В	-974.228192	0.244811	0.017461	533.708200	0.060607	-973.965919	-974.026527	-974.023508
TS2	-1089.896519	0.294074	0.021220	604.600800	0.068658	-1089.581225	-1089.649883	- 1089.646864
с	-974.226373	0.243825	0.018027	542.821000	0.061642	-973.964521	-974.026163	-974.023144
TS3	-1319.712659	0.357479	0.023706	641.997100	0.072905	-1319.331474	-1319.404378	- 1319.401359
D	-1319.725935	0.359975	0.023747	647.297200	0.073507	-1319.342213	-1319.415720	- 1319.412701
TS4	-1319.706314	0.358387	0.024005	653.569100	0.074219	-1319.323922	-1319.398141	- 1319.395122

Table S285. Energies of Model Benzoin Reaction in SMD DCM, I_{1c} (Anionic Charge, Position 1). Entropy given in J/mol.K. All other quantities given in Hartree.

Table S286. Model Benzoin Reaction Gibbs Free Energy Surface in SMD DCM, I1c (Anionic Charge, Position 1).Energies given in Hartree, Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	с	TS3	D	TS4	E
Energy	- 1435.058 845	- 1435.0311 46	- 1435.0529 37	- 1435.0355 22	- 1435.0525 73	- 1435.0421 31	- 1435.0534 73	- 1435.0358 94	- 1435.061 634
Rel. Energy	0.00	72.72	15.51	61.23	16.47	43.88	14.10	60.26	-7.32

Table S287. Energies of Model Benzoin Reaction in SMD DCM, I_{2c} (Anionic Charge, Position 2). Entropy givenin J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	тs	Н	G	G(DCM)
l _{2c}	-668.039313	0.157687	0.012923	448.684900	0.050952	-667.868703	-667.919655	-667.916636
TS1	-1013.506483	0.270622	0.019161	566.426300	0.064323	-1013.216700	-1013.281023	- 1013.278004
В	-1013.527051	0.272838	0.019013	560.798000	0.063684	-1013.235200	-1013.298884	- 1013.295865
TS2	-1129.195948	0.321886	0.022820	632.455700	0.071821	-1128.851242	-1128.923063	- 1128.920044
С	-1013.527436	0.272049	0.019477	567.017000	0.064390	-1013.235910	-1013.300300	- 1013.297281
TS3	-1359.012708	0.385655	0.025047	664.046500	0.075409	-1358.602007	-1358.677415	- 1358.674396
D	-1359.026050	0.388241	0.025114	669.044700	0.075976	-1358.612694	-1358.688670	- 1358.685651
TS4	-1359.006284	0.385928	0.025651	682.016600	0.077449	-1358.594705	-1358.672155	- 1358.669136

Table S288. Model Benzoin Reaction Gibbs Free Energy Surface in SMD DCM, I2c (Anionic Charge, Position 2).Energies given in Hartree, Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	С	TS3	D	TS4	E
	-	-	-	-	-	-	-	-	-
Energy	1474.334 723	1474.3074 33	1474.3252 94	1474.3087 02	1474.3267 10	1474.3151 68	1474.3264 23	1474.3099 08	1474.337 512
Rel. Energy	0.00	71.65	24.75	68.32	21.04	51.34	21.79	65.15	-7.32

Species	DFT Energy	ZPVE	тс	S	тs	Н	G	G(DCM)
I _{1e}	-478.371792	0.244849	0.012396	430.461100	0.048883	-478.114547	-478.163429	-478.160410
TS1	-823.837684	0.358602	0.018395	545.246100	0.061918	-823.460687	-823.522605	-823.519586
В	-823.854003	0.361392	0.018050	535.117200	0.060768	-823.474561	-823.535328	-823.532309
TS2	-939.512758	0.409670	0.022101	614.356200	0.069766	-939.080987	-939.150753	-939.147734
с	-823.858456	0.359321	0.018942	549.771600	0.062432	-823.480193	-823.542625	-823.539606
TS3	-1169.324543	0.473260	0.024581	651.951800	0.074035	-1168.826702	-1168.900737	- 1168.897718
D	-1169.347359	0.475511	0.024905	658.200500	0.074745	-1168.846943	-1168.921688	- 1168.918669
TS4	-1169.340006	0.473468	0.025018	662.918600	0.075281	-1168.841521	-1168.916801	- 1168.913782

Table S289. Energies of Model Benzoin Reaction in SMD DCM, I_{1e} (Cationic Charge, Position 1). Entropy given in J/mol.K. All other quantities given in Hartree.

Table S290. Model Benzoin Reaction Gibbs Free Energy Surface in SMD DCM, I1e (Cationic Charge, Position 1).Energies given in Hartree, Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	С	TS3	D	TS4	E
Energy	- 1284.578 497	- 1284.5490 15	- 1284.5617 38	- 1284.5363 92	- 1284.5690 35	- 1284.5384 90	- 1284.5594 41	- 1284.5545 54	- 1284.581 286
Rel. Energy	0.00	77.40	44.00	110.55	24.84	105.04	50.03	62.86	-7.32

Table S291. Energies of Model Benzoin Reaction in SMD DCM, I_{2e} (Cationic Charge, Position 2). Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	тs	н	G	G(DCM)
l _{2e}	-517.668136	0.273361	0.013885	457.146700	0.051913	-517.380891	-517.432804	-517.429785
TS1	-863.131513	0.386710	0.020051	575.392900	0.065341	-862.724752	-862.790094	-862.787075
В	-863.144328	0.388996	0.019778	567.237600	0.064415	-862.735554	-862.799969	-862.796950
TS2	-978.813110	0.438392	0.023494	635.111400	0.072123	-978.351224	-978.423347	-978.420328
с	-863.156114	0.387546	0.020491	577.632700	0.065596	-862.748077	-862.813673	-862.810654
TS3	-1208.630372	0.500674	0.026097	678.477000	0.077047	-1208.103600	-1208.180648	- 1208.177629
D	-1208.643397	0.503970	0.026079	678.140300	0.077009	-1208.113348	-1208.190357	- 1208.187338
TS4	-1208.630307	0.502055	0.026512	689.778300	0.078331	-1208.101740	-1208.180070	- 1208.177051

Table S292. Model Benzoin Reaction Gibbs Free Energy Surface in SMD DCM, I2e (Cationic Charge, Position 2).Energies given in Hartree, Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	С	TS3	D	TS4	E
Energy	- 1323.847 872	- 1323.8165 04	- 1323.8263 79	- 1323.8089 86	- 1323.8400 83	- 1323.8184 01	- 1323.8281 10	- 1323.8178 23	- 1323.850 661
Rel. Energy	0.00	82.36	56.43	102.09	20.45	77.38	51.88	78.89	-7.32

Figure S150. Gibbs Free Energy (kJ/mol) at 298.15 K of the benzoin condensation catalysed by I1a (black), I1b (dark blue), I1c (light blue), I1d (yellow), and I1e (orange) at the SMD//M06-2X/cc-pVDZ level of theory in SMD DCM.

Species	DFT Energy	ZPVE	тс	S	тs	н	G	G(MeCN)
l _{1a}	-304.709991	0.127447	0.007916	343.203200	0.038974	-304.574628	-304.613602	-304.610583
Α	-345.471303	0.110620	0.007243	332.845100	0.037798	-345.353439	-345.391237	-345.388218
TS1	-650.174102	0.240211	0.014216	472.801500	0.053691	-649.919675	-649.973366	-649.970347
В	-650.191700	0.242146	0.014113	468.501800	0.053203	-649.935441	-649.988643	-649.985624
TS2	-765.859695	0.291427	0.017887	541.735700	0.061519	-765.550381	-765.611900	-765.608881
с	-650.195019	0.241553	0.014541	473.576800	0.053779	-649.938925	-649.992704	-649.989685
TS3	-995.678986	0.354996	0.020141	576.410300	0.065457	-995.303849	-995.369306	-995.366287
D	-995.691075	0.357616	0.020202	579.564100	0.065815	-995.313257	-995.379071	-995.376052
TS4	-995.674404	0.355911	0.020529	587.572000	0.066724	-995.297964	-995.364689	-995.361670
E	-690.969336	0.226358	0.013607	462.369800	0.052506	-690.729371	-690.781877	-690.778858
Methanol	-115.672411	0.051266	0.004290	238.267300	0.027057	-115.616855	-115.643912	-115.640893

 Table S293. Energies of Model Benzoin Reaction in SMD MeCN, Uncharged. Entropy given in J/mol.K. All other quantities given in Hartree.

Table S294. Model Benzoin Reaction Gibbs Free Energy Surface in SMD MeCN. Energies given in Hartree,Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	с	TS3	D	TS4	E
	-	-	-	-	-	-	-	-	-
Energy	1111.027	1110.9994	1111.0147	1110.9971	1111.0187	1111.0071	1111.0169	1111.0025	1111.030
	914	59	36	00	97	81	46	64	335
Rel.	0.00	74 71	24.60	80.00	22 04	51 12	20 00	66 56	6.26
Energy	0.00	/4./1	54.00	60.90	23.94	54.45	20.00	00.50	-0.50

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(MeCN)
l _{1c}	-628.745741	0.129964	0.011216	416.245200	0.047268	-628.604561	-628.651829	-628.648810
TS1	-974.210957	0.242539	0.017684	540.372400	0.061364	-973.950735	-974.012099	-974.009080
В	-974.233789	0.244722	0.017458	533.624600	0.060598	-973.971608	-974.032206	-974.029187
TS2	-1089.902520	0.293981	0.021210	604.259400	0.068619	-1089.587329	-1089.655948	- 1089.652929
с	-974.232030	0.243694	0.018042	543.201700	0.061686	-973.970294	-974.031979	-974.028960
TS3	-1319.718485	0.357483	0.023686	642.067300	0.072913	-1319.337316	-1319.410229	- 1319.407210
D	-1319.732238	0.359954	0.023737	646.138000	0.073375	-1319.348547	-1319.421922	- 1319.418903
TS4	-1319.711732	0.357958	0.024120	656.434000	0.074544	-1319.329654	-1319.404198	- 1319.401179

Table S295. Energies of Model Benzoin Reaction in SMD MeCN, I_{1c} (Anionic Charge, Position 1). Entropy given in J/mol.K. All other quantities given in Hartree.

Table S296. Model Benzoin Reaction Gibbs Free Energy Surface in SMD MeCN, I_{1c} (Anionic Charge, Position 1). Energies given in Hartree, Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	С	TS3	D	TS4	E
	-	-	-	-	-	-	-	-	-
Energy	1435.066	1435.0381	1435.0582	1435.0411	1435.0580	1435.0481	1435.0597	1435.0420	1435.068
	141	92	99	48	72	04	97	73	562
Rel.	0.00	72 20	20 50	65 62	21 10	17 26	16.66	62 10	6.26
Energy	0.00	73.30	20.39	05.02	21.10	47.50	10.00	03.19	-0.30

Table S297. Energies of Model Benzoin Reaction in SMD MeCN, I_{2c} (Anionic Charge, Position 2). Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	тs	Н	G	G(MeCN)
Izc	-668.046662	0.157565	0.012951	449.445400	0.051039	-667.876147	-667.927186	-667.924167
TS1	-1013.512964	0.270566	0.019166	566.489900	0.064330	-1013.223232	-1013.287562	- 1013.284543
В	-1013.532725	0.272674	0.019075	562.726800	0.063903	-1013.240976	-1013.304879	- 1013.301860
TS2	-1129.201632	0.321693	0.022880	634.236400	0.072023	-1128.857059	-1128.929083	- 1128.926064
с	-1013.533134	0.271878	0.019505	567.722700	0.064470	-1013.241751	-1013.306221	- 1013.303202
TS3	-1359.018502	0.385260	0.025199	668.201800	0.075880	-1358.608043	-1358.683923	- 1358.680904
D	-1359.031621	0.388099	0.025125	669.462800	0.076024	-1358.618396	-1358.694420	- 1358.691401
TS4	-1359.011755	0.385804	0.025637	681.615800	0.077404	-1358.600314	-1358.677717	- 1358.674698

Table S298. Model Benzoin Reaction Gibbs Free Energy Surface in SMD MeCN, I2c (Anionic Charge, Position2). Energies given in Hartree, Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	С	TS3	D	TS4	E
	-	-	-	-	-	-	-	-	-
Energy	1474.341	1474.3136	1474.3309	1474.3142	1474.3323	1474.3217	1474.3322	1474.3155	1474.343
	498	55	72	83	14	98	95	92	919
Rel.	0.00	73.10	27.63	71.45	24.11	51.72	24.16	68.02	-6.36
Energy							0		

Species	DFT Energy	ZPVE	тс	S	TS	Н	G	G(MeCN)
I _{1e}	-478.378885	0.244989	0.012362	429.669200	0.048793	-478.121535	-478.170328	-478.167309
TS1	-823.843390	0.358326	0.018475	547.146800	0.062134	-823.466589	-823.528722	-823.525703
В	-823.860594	0.360667	0.018327	542.415100	0.061596	-823.481600	-823.543197	-823.540178
TS2	-939.519627	0.408718	0.022327	619.405800	0.070339	-939.088582	-939.158922	-939.155903
С	-823.864363	0.359180	0.018921	549.682000	0.062421	-823.486261	-823.548683	-823.545664
TS3	-1169.331428	0.472764	0.024742	655.642400	0.074454	-1168.833921	-1168.908376	- 1168.905357
D	-1169.354885	0.475060	0.025014	661.573500	0.075128	-1168.854811	-1168.929939	- 1168.926920
TS4	-1169.345705	0.473313	0.025091	664.221600	0.075429	-1168.847302	-1168.922730	- 1168.919711

Table S299. Energies of Model Benzoin Reaction in SMD MeCN, I_{1e} (Cationic Charge, Position 1). Entropy given in J/mol.K. All other quantities given in Hartree.

Table S300. Model Benzoin Reaction Gibbs Free Energy Surface in SMD MeCN, I_{1e} (Cationic Charge, Position 1). Energies given in Hartree, Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	С	TS3	D	TS4	E
	-	-	-	-	-	-	-	-	-
Energy	1284.584	1284.5548	1284.5692	1284.5441	1284.5747	1284.5462	1284.5678	1284.5606	1284.587
	640	15	90	22	76	51	14	05	061
Rel.	0.00	70 20	40.20	106 29	25.00	100 70	11 10	62 10	6.26
Energy	0.00	78.50	40.50	100.58	25.90	100.79	44.10	05.10	-0.50

Table S301. Energies of Model Benzoin Reaction in SMD MeCN, I_{2e} (Cationic Charge, Position 2). Entropy given in J/mol.K. All other quantities given in Hartree.

Species	DFT Energy	ZPVE	тс	S	тs	н	G	G(MeCN)
l _{2e}	-517.675981	0.273321	0.013923	458.624300	0.052081	-517.388737	-517.440818	-517.437799
TS1	-863.138760	0.386288	0.020190	578.576800	0.065703	-862.732283	-862.797985	-862.794966
В	-863.154478	0.388568	0.019928	569.976000	0.064726	-862.745983	-862.810709	-862.807690
TS2	-978.823167	0.438024	0.023613	638.039500	0.072455	-978.361530	-978.433985	-978.430966
с	-863.162805	0.387357	0.020517	578.161400	0.065656	-862.754931	-862.820587	-862.817568
TS3	-1208.640059	0.501181	0.026038	677.162800	0.076898	-1208.112840	-1208.189738	- 1208.186719
D	-1208.652644	0.503836	0.026148	679.964500	0.077216	-1208.122661	-1208.199877	- 1208.196858
TS4	-1208.637955	0.501775	0.026644	693.061500	0.078704	-1208.109536	-1208.188240	- 1208.185221

Table S302. Model Benzoin Reaction Gibbs Free Energy Surface in SMD MeCN, I2e (Cationic Charge, Position2). Energies given in Hartree, Relative energies given in kJ/mol.

	Starting Materials	TS1	В	TS2	С	TS3	D	TS4	E
	-	-	-	-	-	-	-	-	-
Energy	1323.855	1323.8240	1323.8368	1323.8191	1323.8466	1323.8276	1323.8377	1323.8261	1323.857
	130	78	02	85	80	13	52	15	551
Rel.	0.00	01 E 2	10 10	04.27	22.10	72.25	15 62	76 19	6.26
Energy	0.00	61.55	40.12	94.57	22.10	12.25	45.05	70.10	-0.50

Figure S151. Gibbs Free Energy (kJ/mol) at 298.15 K of the benzoin condensation catalysed by I1a (black), I1b (dark blue), I1c (light blue), I1d (yellow), and I1e (orange) at the SMD//M06-2X/cc-pVDZ level of theory in SMD MeCN.

S14. PhotoNHC Switching Results

We investigated whether the wavelength of light required to activate photochemically active NHC-adducts could be substantially shifted via the incorporation of D-LEFs, in line with previous work by some of us [Blyth, Noble, Russell, and Coote, 2019; Hill and Coote 2018].

We found that for the system below, taken from 10.1002/angie.201914456, we could lower the absorption energy of the photoactive I1a adduct by 0.1644 eV with an anionic D-LEF, and raise it by 0.057 eV in MeCN. We note that these results are smaller than reported in our previous works, above, but consistent with the understanding that these effects are electrostatic, and now operating further from the reactive centre (being now attached to the NHC, rather than directly attached to the reacting substrate). Future work in this area is likely warranted.

Figure S152. The PhotoNHC Used. To investigate the possible role of D-LEF-substituted NHCs in photoreactivity.

State Name	Energy (eV)	Wavelength (nm)	f-value	Character	Notes
T1	3.176	390.440	0.000	nπ*	
T2	3.572	347.090	0.000	ππ*	ISC
S1	3.654	339.310	0.002	nπ*	
Т3	3.982	311.340	0.000	ππ*	
T4	4.125	300.590	0.000	ππ*	
S2	4.534	273.440	0.113	ππ*	Absorption
T5	4.702	263.710	0.000	ππ*	
S3	4.893	253.390	0.307	ππ*	
S4	5.144	241.030	0.099	ππ*	
Т6	5.220	237.530	0.000	ππ*	

Table S303. TD-DFT Results. For PhotoNHC with $I_{1a.}$

Table S304. TD-DFT Results. For PhotoNHC with I_{1b.}

State Name	ime Energy Wavelength (nm) f- (eV)		f-value	Character	Notes
T1	3.170	391.100	0.000	nπ*	
T2	3.567	347.560	0.000	ππ*	ISC
S1	3.653	339.400	0.003	nπ*	
Т3	3.923	316.060	0.000	ππ*	
Τ4	4.030	307.670	0.000	ππ*	
S2	4.543	272.920	0.158	ππ*	Absorption
Т5	4.703	263.610	0.000	ππ*	
S3	4.800	258.320	0.292	ππ*	
S4	5.046	245.720	0.105	ππ*	
Т6	5.183	239.220	0.000	ππ*	

Table S305. TD-DFT Results. For PhotoNHC with $I_{\rm 1c.}$

State Name	Energy (eV)	Wavelength (nm)	avelength (nm) f-value		Notes
T1	3.098	400.240	0.000	nπ*	
Т2	3.456	358.720	0.000	nπ*	
S1	3.658	338.920	0.002	nπ*	
Т3	3.799	326.330	0.000	ππ*	ISC
Т4	4.180	296.640	0.000	ππ*	
S2	4.379	283.170	0.290	ππ*	Absorption
S 3	4.635	267.490	0.055	ππ*	
Т5	4.672	265.410	0.000	ππ*	
S4	4.956	250.160	0.110	ππ*	
Т6	4.962	249.860	0.000	π*	

Table S306.	TD-DFT R	lesults. Fo	r PhotoNHC with I1d	
-------------	----------	--------------------	---------------------	--

T1 3.165 391.690 0.000 nπ* T2 3.576 346.720 0.000 ππ* ISC S1 3.646 340.080 0.003 nπ* ISC T3 3.942 314.490 0.000 ππ* Application T4 4.045 306.480 0.000 ππ* Application S2 4.536 273.320 0.142 ππ* Absorption T5 4.700 263.830 0.000 ππ* S3 4.744 261.340 0.018 ππ* S4 4.829 256.750 0.286 ππ*	State Name	Energy (eV)	Wavelength (nm)	f-value	Character	Notes
T2 3.576 346.720 0.000 ππ* ISC S1 3.646 340.080 0.003 nπ* JSC T3 3.942 314.490 0.000 ππ* JSC T4 4.045 306.480 0.000 ππ* Absorption S2 4.536 273.320 0.142 ππ* Absorption T5 4.700 263.830 0.000 ππ* S3 4.744 261.340 0.018 ππ* S4 4.829 256.750 0.286 ππ*	T1	3.165	391.690	0.000	nπ*	
S1 3.646 340.080 0.003 nπ* T3 3.942 314.490 0.000 ππ* T4 4.045 306.480 0.000 ππ* S2 4.536 273.320 0.142 ππ* Absorption T5 4.700 263.830 0.000 ππ* S3 4.744 261.340 0.018 ππ* S4 4.829 256.750 0.286 ππ*	Т2	3.576	346.720	0.000	ππ*	ISC
T33.942314.4900.000ππ*T44.045306.4800.000ππ*S24.536273.3200.142ππ*T54.700263.8300.000ππ*T64.735261.8400.000ππ*S34.744261.3400.018ππ*S44.829256.7500.286ππ*	S1	3.646	340.080	0.003	nπ*	
T44.045306.4800.000ππ*S24.536273.3200.142ππ*AbsorptionT54.700263.8300.000ππ*T64.735261.8400.000ππ*S34.744261.3400.018ππ*S44.829256.7500.286ππ*	Т3	3.942	314.490	0.000	ππ*	
S2 4.536 273.320 0.142 ππ* Absorption T5 4.700 263.830 0.000 ππ* T6 4.735 261.840 0.000 ππ* S3 4.744 261.340 0.018 ππ* S4 4.829 256.750 0.286 ππ*	Т4	4.045	306.480	0.000	ππ*	
T54.700263.8300.000ππ*T64.735261.8400.000ππ*S34.744261.3400.018ππ*S44.829256.7500.286ππ*	S2	4.536	273.320	0.142	ππ*	Absorption
T64.735261.8400.000ππ*S34.744261.3400.018ππ*S44.829256.7500.286ππ*	Т5	4.700	263.830	0.000	ππ*	
S34.744261.3400.018ππ*S44.829256.7500.286ππ*	Т6	4.735	261.840	0.000	ππ*	
S4 4.829 256.750 0.286 ππ*	\$3	4.744	261.340	0.018	ππ*	
	S4	4.829	256.750	0.286	ππ*	

Table S307. TD-DFT Results. For PhotoNHC with $I_{1\mathrm{e}}$

State Name	Energy (eV)	Wavelength (nm)	f-value	Character	Notes
T1	3.173	390.740	0.000	nπ*	
T2	3.518	352.430	0.000	ππ*	ISC
S1	3.647	339.930	0.002	nπ*	
Т3	3.931	315.430	0.000	ππ*	
T4	4.258	291.170	0.000	ππ*	
S2	4.479	276.820	0.112	ππ*	Absorption
Т5	4.698	263.890	0.000	ππ*	
S3	4.880	254.090	0.340	ππ*	
Т6	5.206	238.160	0.000	ππ*	
S4	5.219	237.560	0.125	ππ*	

S15. Additional Analysis of Benzoin Condensation

Atom	TS1	В	TS2
Carbene-C	-0.0118	0.1954	0.2305
Carbene-N1	-0.2036	-0.2230	-0.1963
Carbene-N2	-0.1993	-0.2098	-0.2222
Backbone1	0.0801	0.1010	0.1175
Backbone2	0.0918	0.1134	0.1106
Adduct-C	0.2034	0.1771	0.1387
Adduct-O	-0.3669	-0.5291	-0.1342

Table S308. Changes in Mulliken Charges. Condensed Mulliken charges of relevant atoms in B, TS1, and TS2.

From the above, we observe that the carbene carbon goes from being effectively neutral to partially cationic. It is this change in electronic population that is stabilised by anionic D-LEFs or destabilised by cationic D-LEFs.

Chart S1. The frontier molecular orbitals (HOMO-1, HOMO, LUMO, and LUMO+1) of B in the benzoin condensation catalysed by each of I2a, I2c, and I2e.

S16. Investigation of Quadrupoles

Component	I _{2a}	Methylated	I _{2b}	I _{2c}	∆ Anionic Charge	I _{2d}	I _{2e}	Δ Cationic Charge
Q _{xx}	-32.0786	-41.5178	-77.3187	-108.9982	-31.6795	-66.5061	-43.272	23.2341
YY	-45.2261	-50.6733	-57.1005	-76.8657	-19.7652	-67.3374	-58.6727	8.6647
ZZ	-44.8778	-51.2832	-63.446	-78.101	-14.655	-69.7324	-68.1082	1.6242
ХҮ	0	5.4524	8.5209	13.2137	4.6928	-8.4003	6.1876	14.5879
XZ	0	0	0.0007	1.0867	1.086	-1.5725	2.0433	3.6158
ΥZ	0	0	0.0031	0.6016	0.5985	-1.5257	-0.7705	0.7552
Magnitude \widehat{Q}_l^2	2072.70	2663.76	4141.93	6389.28		4912.96	4706.97	

Table S309. Field-Independent Quadrupole Moments of Various Species.

Relative to I_{2a} , the magnitude of the field-independent quadrupole moment of I_{2b} and I_{2d} is significantly increased (from 2072.70 Debye-Angstrom to 4141.93 Debye-Angstrom and 4912.96 Debye-Angstrom, respectively). In each case, the effect manifests predominately in the XX component (where the D-LEF is predominately aligned along the X-coordinate), which is in line with the uncharged D-LEF enhancing the quadrupole moment. Upon introducing charges, the magnitude increases for I_{2c} to 6389.28 Debye-Angstrom, and decreases only slightly for I_{2e} to 4706.97 Debye-Angstrom. However, the differences once again manifest themselves predominately along the XX component, while their opposite sign and approximately-equal magnitude lend credence to the suggestion that these changes have an electrostatic origin. As an aside, it is possible that the small change in quadrupole magnitude from the cationic D-LEF arises because the cationic charge opposes the increased quadrupole caused by the remainder of the substituent in the non-XX components. Placing a methyl group at the 2-position, we also observe only a small increase in the magnitude of the quadrupole moment, to 2663.76 Debye-Angstrom, which also manifests along the XX-component.

The magnitude of the quadrupole moment is calculated according to the following equation from "Theory of Molecular Fluids Volume 1: Fundamentals" C. G. Gray and K. E. Gubbins, Oxford University Press, New York, 1984.

$$\hat{Q}_l^2 = \frac{4\pi}{2l+l} \sum_m |Q_{lm}|^2$$

Where, in the case of the quadrupole, I = 2, m = 0, 1, 2, and

$$Q_{20} = \sqrt{\frac{5}{4\pi}} (Q_{zz})$$
$$Q_{21} = -\sqrt{\frac{5}{4\pi}} \sqrt{\frac{2}{3}} (Q_{xz} + iQ_{yz})$$

$$Q_{22} = -\sqrt{\frac{5}{4\pi}} \sqrt{\frac{1}{6}} (Q_{xx} - Q_{yy} + 2iQ_{xy})$$

S17. Gaussian Log Files for Every Species

Gaussian log files for every species reported in this article are stored at https://github.com/Ecaloota/CarbenesElectricFields

If you encounter any issues accessing these files, please contact the corresponding author via the provided email, or the first author via <u>mitchell.blyth@anu.edu.au</u>