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I. EQUILIBRIUM PHASE BEHAVIOR OF AN IMMISCIBLE BINARY SYSTEM UNDERGOING
THERMAL REACTIONS

Consider a system consisting of two components A/B interacting with each other at a constant temperature T .
The free energy of this system can be written as follow,

F = ρ0kBT

∫
dr[ϕA lnϕA + ϕB lnϕB + χϕAϕB

+
b

2
|∇ϕA|2 + ϕAϵA + ϕBϵB], (S1)

where ρ0 is the total number density of A/B molecules, ϕA/B are the volume fractions of A and B, χ is the dimensionless
interaction parameter and b is the gradient energy coefficient. ϵA and ϵB are the inner energies of A and B in the
unit of kBT , respectively. The chemical potential can be, thus, derived as βµA = lnϕA + χϕ2

B − b∇2ϕA + ϵA and
βµB = lnϕB + χϕ2

A − b∇2ϕB + ϵB with β = 1/kBT .
If this binary system is undergoing a thermal reversible reaction A ⇀↽ B with the local incompressibility constraint

ϕA + ϕB = 1, its dynamical equation is described by Eq. 1 in the main text and its complete form, including noise
terms, is given as follow,

∂ϕA

∂t
= ∇[D∇ δF

δϕA
] + α(aB − aA) +∇ · η⃗ + σ (S2)

where ⟨ηi(r, t)ηj(r′, t′)⟩ = 2Dδijδ(r− r′)δ(t− t′), ⟨σ(r, t)σ(r′, t′)⟩ = 2αδ(r− r′)δ(t− t′), D is the diffusion constant,
α is the coefficient for the thermal reaction and aA/B ≡ exp(βµA/B) are the activities of A and B, respectively, with
µA/B their chemical potentials and β = 1/kBT . These noise terms were mainly introduced by Puri and Oono [1, 2].
σ is the noise term for non-conserved systems (model A), while ∇ · η⃗ is the noise term for conserved systems (model
B) [3].

By eq. S2, it is easy to find that the reaction coefficients k+ and k− of A ⇀↽ B now depend on the local concentrations
and can be related to the chemical potentials and α through the following equations,

k+ = αeβµB−lnϕB (S3)

k− = αeβµA−lnϕA (S4)

When there is no chemical reaction (α = 0), the equilibrium phase behavior of this system can be obtained by
analyzing the free energy density

fsep(ϕA) = kBT [ϕA lnϕA + ϕB lnϕB + χϕAϕB]. (S5)

The binodal line of the binary-blend phase diagram (BBPD) can be obtained by applying the common-tangent
construction on fsep(ϕA) while the spinodal line is given by solving ∂2fsep(ϕA)/∂ϕ

2
A = 0.

When there is a thermal reation, the corresponding free energy density is

ftherm(ϕA) = kBT [ϕA lnϕA + ϕB lnϕB + χϕAϕB + ϕAϵA + ϕBϵB]. (S6)

Simulations have shown that at the late stage of the dynamics, chemical reactions dominate and the final equilibrium
state is completely determined by the equation of aA = aB or ∂ftherm(ϕA)/∂ϕA = 0. When χ is relatively small
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and ϵA ̸= ϵA, there is only one solution to this equation which corresponds to the black solid curve in Fig. 1a in
the main text. When χ is relatively big and ϵA ̸= ϵA, there will be two solutions, one of which corresponds to the
metastable state and the black dotted curve in Fig. 1a in the main text. However, if the system is initially near this
metastable state, the thermal fluctuation will drive the system to escape from this metastable trap and to evolve to
the stable state normally through the nucleation and growth (NG) mechanism followed by spinodal decomposition
(SD) mechanism (see Fig. S1-b). Note that, when ϵA = ϵB, solutions of this equation will be coincident with the
binodal line of BBPD. The dynamical behavior of this case is relatively simple: only phase regions I, II and V in Fig.
1a still exist while others disappear.

II. MORE ON DYNAMICAL PHASE DIAGRAM AND LIGHT SCATTERING OF TPS PATTERNS

FIG. S1. Snapshots and statistical curves (⟨ϕA⟩ ∼ t and ⟨∆ϕA⟩ ∼ t) of different TPS processes at α = 0.002: (a) TPS-V at
ϕA,init = 0.2 and χ = 1.8, (b) TPS-III’ at ϕA,init = 0.2 and χ = 2.5, (c) TPS-IV at ϕA,init = 0.05 and χ = 2.3 and (d) TPS-IV’
at ϕA,init = 0.25 and χ = 2.3.

In Fig. 1 of the main text, typical evolutionary snapshots and statistical curves of TPS-I (α = 0.002), II (α = 0.002),
III (α = 0.002) and IV (α = 0.005) have been shown. Here, those of TPS-V, III’, IV and IV’ are shown in Fig. S1 for
α = 0.002.

As mentioned in the main text, increasing the reaction rate a little bit (α ∼ 0.005) will render the system difficult to
have sufficient time to form nuclei, which will make NG disappear and become UE in some phase regions (II:NG→UE,
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FIG. S2. Light scattering (LS) intensities vs q of patterns at different t. (a) corresponds to Fig. 1b (TPS-I), (b) to Fig. 1c
(TPS-II), (c) to Fig. 1d (TPS-III), (d) to Fig. S1-b (TPS-III’), (e) to Fig. S1-c (TPS-IV), (f) to Fig. S1-d (TPS-IV’), (g)
to Fig. 1e (TPS-IV at α = 0.005) and (h) to Fig. S1-a (TPS-V), respectively. In order to make LS be able to discriminate
between uniform evolution (UE), spinodal decomposition (SD), and nucleation and growth (NG), the influence of the mean-
concentration has been removed during the calculation of LS. During UE (h), LS curves remain almost the same for different
t. During NG (b), LS curves will change with time but remain as a monotonically decreasing function of q. During SD (a), LS
curves will have maximums for q ̸= 0. Note that q is in the unit of 1/a with a the lattice size of the simulation.

III’: NG-SD→UE-NG-SD, IV:UE-NG-SD→UE-SD and IV’:NG-SD→UE-SD). For example, IV:UE-NG-SD→UE-SD
means for TPS-IV, UE-NG-SD becomes UE-SD for a bigger α. The transition can be understood as follow. When the
reaction rate is extremely small (α ∼ 0.002), the state started from phase region IV will have sufficient time to form
nuclei before its mean concentration crosses the spinodal line and, therefore, TPS under this condition will witness
UE, NG and SD successively. On the contrary, when the reaction rate is a little bigger (α ∼ 0.005), then the system
started from phase region IV will not have sufficient time to form nuclei and, therefore, TPS under this condition will
only witness UE and SD. However, the phase boundary of this transition is difficult to determine because even for a
given α around 0.003, one simulation will probably witness UE-NG-SD while the other might witness UE-SD since
the incubation time can be different for two simulations under the same model setting.

Their corresponding light scattering (LS) intensity curves I(q) at different t are shown in Fig. S2. These LS curves
are used to further identify, among uniform evolution (UE), spinodal decomposition (SD), and nucleation and growth
(NG), which mechanism (process) have been involved for a given temporary phase separation (TPS) process.
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FIG. S3. (a) The ln I ∼ t curve at the fixed q (= 0.15a−1) corresponding to Fig. S2-g and Fig. 1e. The black line is a guide
to the eyes showing that when spinodal decomposition (SD) is predominant (t ∼ 800), I(q) does exponentially increase with
time [4]. (b) The ln I ∼ ln t curve at the fixed q (= 0.15a−1) corresponding to Fig. S2-c and Fig. 1d. The black line is a guide
to the eyes showing that when nucleation and growth is predominant (ln t ∼ 7.2), I(q) does increase with time following by a
power law [4].

LS functions for UE, SD and NG have the following features [4], respectively. (i) Since ∆ϕA(r, t) ≡ ϕA(r, t) −
⟨ϕA(r, t)⟩ is just the thermal fluctuation of the concentration for a uniform state, LS function of ∆ϕA(r, t) for UE will
basically remain the same for different t. (ii) According to Nunes et al.’s work [4], LS curves of NG are monotonically
decreasing functions of q and have no maximum for q ̸= 0. For a given q, I will increase with time following a power
law (see Fig. S3-b). (iii) LS curves of SD have maximums for q ̸= 0 and for a given q, I exponentially increase with
time [4] (see Fig. S3-a).

Based on the above three criteria and the LS curves of Fig. S2, we are able to identify what mechanism (process)
is predominant at different stages of a given TPS and we present the analysis for the dynamics in the seven phase
regions of Fig. 1a, one by one, as follow.

(1) Fig. S2-a and Fig. 1b correspond to TPS-I. Obviously, LS curves of this TPS have maximums at q > 0 at the
very early stage of the dynamics. Therefore, SD is predominant in TPS-I.

(2) Fig. S2-b and Fig. 1c correspond to TPS-II. LS curves of this TPS have no maximums at q > 0 at every stage
of the dynamics and for a given q, I does increase with time (see the inset of Fig. S2-b and compare it with that of
Fig. S2-h for UE). Therefore, NG is predominant in TPS-II.

(3) Fig. S2-c and Fig. 1d correspond to TPS-III. LS curve at t = 1000τ (green) is almost overlapped with that at
t = 100τ (cyan), which indicates at the early stage uniform evolution (UE) is predominant. When 1000τ < t < 2500τ ,
LS curves begin to move ‘upwards’ but with no maximum for q ̸= 0 indicating NG is predominant at this stage. When
t > 2500τ , LS curves have maximums at q > 0 indicating SD is predominant at this stage. Therefore, UE, NG and
SD are predominant successively in TPS-III.

(4) Fig. S2-d and Fig. S1-b correspond to TPS-III’ at α = 0.002. When t < 200τ , LS curves move ‘upwards’ but
with no maximum for q ̸= 0 indicating NG is predominant at this stage. When t > 200τ , LS curves have maximums
at q > 0 indicating SD is predominant at this stage. Therefore, NG and SD are predominant successively in TPS-III’
at α = 0.002.

(5) Fig. S2-e and Fig. S1-c correspond to TPS-IV. LS curves show that UE, NG and SD are predominant successively
in TPS-IV at α = 0.002.

(6) Fig. S2-f and Fig. S1-d correspond to TPS-IV’. LS curves show that NG and SD are predominant successively
in TPS-IV’ at α = 0.002.

(7) Fig. S2-g and Fig. 1e correspond to TPS-IV at α = 0.005. LS curves show that UE and SD are predominant
successively in TPS-IV at α = 0.005.

(8) Fig. S2-h and Fig. S1-a correspond to TPS-V. LS curves show that UE is predominant in TPS-V for all α.

III. MECHANISM OF MEAN-CONCENTRATION-MOVING TPS

The key to understand the mechanism of MCM-TPS is to show that the phase separation and chemical reactions
can be decoupled to some extent at the limit of α → 0 and this can be done in the following linear analysis. Linearizing
the dynamical equation (eq. S2) around some given uniform state ϕA = ϕ0 (not necessarily the equilibrium state) or
expressing ϕA(r) as δϕ(r) + ϕ0 leads to the following two equations

∂δϕ(k)

∂t
= −Ak4 −Bk2 − C (S7)

∂ϕ0/∂t = α[aB(ϕ0)− aA(ϕ0)] (S8)
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where δϕ(k) is the Fourier transformation of δϕ(r), A = Db, B = D(1/ϕ0(1 − ϕ0) − 2χ) + bα(aA(ϕ0) + aB(ϕ0))
and C = α(1/ϕ0(1− ϕ0)− 2χ)(aA(ϕ0)(1− ϕ0) + aB(ϕ0)ϕ0). Obviously, the first equation describes the initial phase
separation dynamics coupled with chemical reaction while the second equation describes the dynamics of the mean
concentration ϕ0 driven by the chemical reaction. At the limit α → 0, it is easy to show that these two equations are
approximately independent during a short time period ∆t and, thus, the phase separation and chemical reaction can
be seen as being decoupled during ∆t.

IV. DERIVATION OF EQ. (3) IN THE MAIN TEXT AND EQUIVALENT TEMPERATURE OF LIGHT

The photo reversible reaction Z ↔ Z∗ actually consists of three photo reactions. (I) The molecule in its ground state
Z absorbs a photon and transforms into the excited state Z∗: ν + Z → Z∗; (II) The excited state Z∗ spontaneously
transforms into the ground state by emitting a photon in a random direction: Z∗ → Z + ν; (III) The excited state
absorbs a photon, transits to the ground state and emits two photons in the same direction with the absorbed one:
ν + Z∗ → Z + 2ν [5]. Obviously, the angular frequency of photons in the above three processes is determined
by the energy gap between Z and Z∗ as ω = ∆E/h̄. For simplicity, we assume that Z and Z∗ share the same
multiplicity such that the coefficient of absorption, B′, and the coefficient of stimulated emission, B, are the same,
i.e., B = B′gZ/gZ∗ = B0 with gZ and gZ∗ the mulplicities of Z and Z∗, respectively.

Even though the frequency of photons that can be uniquely determined by ∆E, the sources of these photons can be
different carrying different entropies determined by the temperature of the source (see the next section). In this work,
we consider two different light sources: one is from a hot blackbody with the temperature Tb and another comes from
the background radiant lights of the surrounding environment with the temperature Ts. Ts is also the temperature
of the system. For a given point of the system (see Figure S4), it is assumed lights from the blackbody occupies a
solid angle of Ωb while the radiant lights occupies Ωs = 4π − Ωb. We introduce solid angles for the following two
considerations. First, lights from the external light source usually don’t shine on the system in all directions. Second,
introdution of the solid angles and the two temperatures (Tb and Tr) is one of possible ways to create two thermal
baths corresponding to Tb and Tr which allows the system to stay out-of-equilibrium. In this work, we set Ωb = 0.0046
and the reason why we choose this parameter such small is that kr mentioned in the paragraph between eq.(7) and
eq.(8) in the main text should not be very large in order to obtain dissipative structures. And the inner energy of
transition state M is chosen as 120kBTs because the common energy of UV light ,say wavelength λ ≈ 400nm, is about
120kBT with T the room temperature 298K.

FIG. S4. A demonstration on the introduction of solid angles.
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According to the above setting, the transition rates for the above three processes can be written as,

rI = B0ϕZ [ITb,Ωb
(ω) + ITs,Ωs

(ω)] = B0ϕZ
h̄ω3

π2c3
[

γ

e
h̄ω

kBTb − 1
+

1− γ

e
h̄ω

kBTs − 1
]

rII = AϕZ∗ = B0ϕZ∗
h̄ω3

π2c3
[γ + (1− γ)]

rIII = B0ϕZ∗
h̄ω3

π2c3
[

γ

e
h̄ω

kBTb − 1
+

1− γ

e
h̄ω

kBTs − 1
]

where B0 is the coefficient of stimulated emission, γ = Ωb/4π and IT,Ω(ω) =
Ω

4π3c3
h̄ω3

eh̄ω/kB/T−1
. Note that normally,

ITb
will be much bigger than ITs . These three rates contribute to a change in ϕZ as follow,

ϕ̇Z = rII + rIII − rI =
∑

x={b,s}

B0ITx,Ωx
(ω)(ϕZ∗e

h̄ω
kBTx − ϕZ) (S9)

Therefore, we have derived eq. (3) in the main text and similar results are obtained by Meszéna before [6].
Equivalent temperature of light.–In the above equations, the light source is a blackbody but usually the specific

radiation intensity of the light source I(ω) might not satisfy the distribution h̄ω3

π2c3[eh̄ω/kB/T−1]
. However, by solving

the equation I(ω) = h̄ω3c3

π2[eh̄ω/kB/T−1]
, one can obtain the equivalent temperature of the light source [7, 8]

T (ω) =
h̄ω

kB
[ln(1 +

h̄ω3

π2I(ω)
)]−1. (S10)

Thanks to this equivalent temperature, the formulation in the main text is still applicable for all kinds of light sources
by simply replacing Tb with T (ω) in ITb,Ω(ω).

The advantage of using blackbody light source instead of ordinary light source is that the background radiation
or heat can be easily considered by another blackbody source but with the system temperature and the solid angle
4π−Ω and, in this way, the light source and the background radiation (heat) from the environment can be formulated
in the same way.

V. QUANTUM YIELDS OF A → B AND B → A REACTIONS

Consider a light source with solid angle Ωb and the reactions A ⇀↽ A∗ ⇀↽ B∗ ⇀↽ B with A∗ and B∗ the excited
states of A and B, respectively. If the energy gap and energy barrier between A∗ and B∗ are both small, then these
two excited states can be effectively represented by a single state M and the above reactions can be further simplified
to A ⇀↽ M ⇀↽ B. The reaction rate of component A follows,

ϕ̇A = rAII + rAIII − rAI , (S11)

where

rAI = BAϕZ [ITb,Ωb
(ωA) + ITs,Ωs(ωA)] = BAϕZ

h̄ω3
A

π2c3
[

γ

e
h̄ωA
kBTb − 1

+
1− γ

e
h̄ωA
kBTs − 1

]

rAII = AϕM = BAϕM
h̄ω3

A

π2c3
[γ + (1− γ)]

rAIII = BAϕM
h̄ω3

A

π2c3
[

γ

e
h̄ωA
kBTb − 1

+
1− γ

e
h̄ωA
kBTs − 1

]

with γ = Ωb/4π and the reaction rate of B is similar.
Therefore, like the diabatic situation in Penocchio et al.’s work[9], the quantum yield ΦA of the light reaction

A → B should be as follow,

ΦA =
rBII + rBIII

rAII + rAIII + rBII + rBIII
(S12)

=

BB

( h̄ω3
B

π2c3

)[
1 + γ

e
h̄ωB
kBTb −1

+ 1−γ

e
h̄ωB
kBTs −1

]
BA

( h̄ω3
A

π2c3

)[
1 + γ

e
h̄ωA
kBTb −1

+ 1−γ

e
h̄ωA
kBTs −1

]
+BB

( h̄ω3
B

π2c3

)[
1 + γ

e
h̄ωB
kBTb −1

+ 1−γ

e
h̄ωB
kBTs −1

] , (S13)
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and ΦB for B → A is similar.
When BA = BB and ωA ≈ ωB , ΦA ≈ ΦB ≈ 1

2 .

VI. ENTROPY PRODUCTION OF THE PHOTO REACTION

Since the total entropy productions of the reactions A ↔ M and B ↔ M take the same form, it is sufficient to only
consider A ↔ M .
Total entropy production consists of three parts: (i) the entropy production ṠI due to the light (with ωA =

(EM − EA)/h̄) absorption and emission; (ii) the entropy production ṠII due to the change of the system’s entropy;

and (iii) ṠIII the entropy production of the environment due to the heat released from the system. Note that in
evaluating (iii) the heat due to the photon emission should be excluded.

We divide the concentration change of A into two parts as ϕ̇A = ϕ̇D
A + ϕ̇ν,b

A + ϕ̇ν,s
A where the superscript D denotes

the change due to the diffusion of chemicals. ϕ̇ν,b
A = B0ITb,Ωb

(ωA)[ϕMe
EM−EA

kBTb − ϕA] and it is similar for for ϕ̇ν,s
A/M .

Then we have

ṠI = ρ0

∫
dr[ϕ̇ν,b

A

EM − EA

Tb
+ ϕ̇ν,s

A

EM − EA

Ts
+ ϕ̇ν,b

B

EM − EB

Tb
+ ϕ̇ν,s

B

EM − EB

Ts
]. (S14)

ṠII consists of two parts as follow,

ṠII = ρ0

∫
dr

∑
X

δS[ϕA/B/M ]

δϕX
(ϕ̇D

X + ϕ̇ν,b
X + ϕ̇ν,s

X )

= ρ0

∫
dr

∑
X

δS[ϕA/B/M ]

δϕX
ϕ̇D
X + ρ0

∫
dr

∑
X

δS[ϕA/B/M ]

δϕX
(ϕ̇ν,b

X + ϕ̇ν,s
X )

= ρ0

∫
dr[(lnϕM − lnϕA)ϕ̇

D
A + (lnϕM − lnϕB)ϕ̇

D
B ] + ρ0

∫
dr

∑
X={A,B}

(lnϕM − lnϕX)(ϕν,b
X + ϕ̇ν,s

X ) (S15)

where the free energy of the system F = H[ϕA/B/M ]− TsS[ϕA/B/M ].
Similarly,

ṠIII = −ρ0
Ts

∫
dr

∑
X

δH[ϕA/B/M ]

δϕX
ϕ̇D
X (S16)

where the entropy increase of the environment due to the heat released from the system related with photo reaction
has been excluded since it has been included in ṠI .

Collecting ν terms in eqs. (S11-S12), we have the total entropy production due to photo reactions as follow,

Ṡν = ρ0kB

∫
dr

∑
x={b,s}

{B0ITx(ωA)[lnϕM − lnϕA

+
∆EMA

kBTx
](ϕMe

∆EMA
kBTx − ϕA) +B0ITx

(ωB)[lnϕM

− lnϕB +
∆EMB

kBTx
](ϕMe

∆EMB
kBTx − ϕB).}.

Therefore, we have derived eq. (10) in the main text.
Collecting D terms in eqs. (S12-S13) leads to eq. (11) in the main text.
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