Supporting Information: Influence of heat transfer and wetting angle on condensable fluid flow through nanoporous anodic alumina membranes

Thomas Loimer,^{*,†} Stepan K. Podgolin,[‡] Javad Sodagar-Abardeh,[†] Dmitrii Petukhov,^{*,¶} and Andrei A. Eliseev[‡]

†Institute of Fluid Mechanics and Heat Transfer, TU Wien, Austria

Department of Materials Science, Lomonosov Moscow State University, Russia

 ¶Department of Chemistry, Lomonosov Moscow State University, Russia

E-mail: thomas.loimer@tuwien.ac.at; di.petukhov@gmail.com Phone: +43 1 58801 32233

List of Figures

S1	Experimental cell	S-3
S2	Permeance versus relative upstream pressure for a pore size of 18 nm . Contact	
	angle of 0° and boundary conditions: adiabatic, diabatic, $T_1 - T_2 = 0.7(T_1 - T_2)$	
	$T_{2,adiabatic}$). Flow of (a) isobutane and (b) freen 142b	S-4
S3	Permeance versus relative upstream pressure for a pore size of 18 nm . Contact	
	angles of 0°, 10°, 30°, 60°, and 80°, boundary condition $T_1 - T_2 = 0.7(T_1 - T_2)$	
	$T_{2,adiabatic}$). Flow of (a) isobutane and (b) freen 142b	S-4
S4	Permeance versus relative upstream pressure for a pore size of 60 nm . Contact	
	angle of 0° and boundary conditions: adiabatic, diabatic, $T_1 - T_2 = 0.7(T_1 - T_2)$	
	$T_{2,adiabatic}$). Flow of (a) isobutane and (b) freen 142b	S-5
S5	Permeance versus relative upstream pressure for a pore size of 60 nm . Contact	
	angles of 0°, 10°, 30°, 60°, and 80°, boundary condition $T_1 - T_2 = 0.7(T_1 - T_2)$	
	$T_{2,\text{adiabatic}}$). Flow of (a) isobutane and (b) freen 142b	S-5

Figure S1: Experimental cell.

Figure S2: Permeance versus relative upstream pressure for a pore size of 18 nm. Contact angle of 0° and boundary conditions: adiabatic, diabatic, $T_1 - T_2 = 0.7(T_1 - T_{2,adiabatic})$. Flow of (a) isobutane and (b) freon 142b.

Figure S3: Permeance versus relative upstream pressure for a pore size of 18 nm. Contact angles of 0°, 10°, 30°, 60°, and 80°, boundary condition $T_1 - T_2 = 0.7(T_1 - T_{2,adiabatic})$. Flow of (a) isobutane and (b) freen 142b.

Figure S4: Permeance versus relative upstream pressure for a pore size of 60 nm. Contact angle of 0° and boundary conditions: adiabatic, diabatic, $T_1 - T_2 = 0.7(T_1 - T_{2,adiabatic})$. Flow of (a) isobutane and (b) freon 142b.

Figure S5: Permeance versus relative upstream pressure for a pore size of 60 nm. Contact angles of 0°, 10°, 30°, 60°, and 80°, boundary condition $T_1 - T_2 = 0.7(T_1 - T_{2,adiabatic})$. Flow of (a) isobutane and (b) freen 142b.