Stabilization Eu²⁺ in Li₂B₄O₇ with BO₃ Network through U⁶⁺ Co-doping and Defect Engineering

Annu Balhara^{1,2}, Santosh K. Gupta^{1,2*}, G.D. Patra^{1,3}, Brindaban Modak,^{1,4}, J. Prakash,^{1,5} K. Sudarshan,^{1,2} M. Mohapatra^{1,2}

¹Homi Bhabha National Institute, Anushaktinagar, Mumbai – 400094, India ²Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India

³Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India

⁴Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India ⁵Materials Group, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India

*To whom correspondence should be addressed. Electronic mail: *santoshg@barc.gov.in/ santufrnd@gmail.com (SKG)

Figure S1: SEM images of doped (0.5% Eu^{3+} and 0.5% U^{6+}) and co-doped (2.0% Eu^{3+} and 0.5 to 2.0% U^{6+}) samples of LTB.

Figure S2: Photoluminescence emission spectra of doped (0.5% Eu³⁺ and 0.5% U⁶⁺) and codoped (2.0% Eu³⁺ and 0.5 to 2.0% U⁶⁺) LTB samples.

Figure S3: Photoluminescence emission spectra of 2% Eu^{3+} and 0.5% U^{6+} co-doped LTB samples annealed in air and a reducing atmosphere (92% Ar + 8% H₂).

Figure S4: Photoluminescence emission spectra of LTB:0.5% Eu³⁺ annealed in air and a reducing atmosphere (92% Ar + 8% H₂).

Figure S5:ESR spectra of LTB pure sample at 100 K recorded at low gain and high gain.

The resonance signal in the pure LTB sample gets saturated at a higher gain of 4×10^4 . Therefore, the ESR spectra for pure LTB was obtained at a lower gain value of 2×10^3 .

Table S1: Recent Borate based luminescent materials having divelent europium ion(2020-22)

System	Flux	Temperature	Remarks	Ref.
Eu ²⁺ single- dopedK ₂ SrCa(PO ₄) _{2x} (BO ₃) _x white phosphors	97%N ₂ /3%H ₂	1400 °C for 4 h	Very high temperature is needed	[1]
LiSrB ₉ O ₁₅ :Eu ³⁺ /Eu ²⁺	Self-reduction	800°C	Self reduction is triggered by BO ₄ network	[2]
SrAl ₂ O ₄ :Eu ²⁺ ,Dy ³⁺ borate glass	under carbon reduction atmosphere	1500 °C for 1 h	Very high temperature is needed	[3]
Eu ²⁺ : NaBa ₄ (BO ₃) ₃ co-doped with different cations Dy ³⁺ , Ho ³⁺ and Nd ³⁺	95%N ₂ +5%H ₂	900 °C for 8 h	-	[4]
Eu ²⁺ - dopedBa ₃ Lu(BO ₃) ₃ p hosphor	10% H ₂ + 90% N ₂	1250 °C for 6 h	Very high temperature as well as higher hydrogen flux	[5]
Eu ²⁺ , Dy ³⁺ : NaSr ₄ (BO ₃) ₃	under a reductive atmosphere	880 °C for 8 h	-	[6]
KSr ₄ B ₃ O ₉ : Eu ²⁺	N ₂ /H ₂	900 °C for 10 h	High temperature is needed	[7]
LiSr ₄ (BO ₃) ₃ :Eu ²⁺ , Dy ³⁺	5% H ₂ and 95% N ₂	950 °C for 8 h	High temperature is needed	[8]
NaBaB ₉ O ₁₅ :Eu ²⁺	under the reducing atmosphere	725 °C for 30 h	High thermal duration of more than a day is required	[9]
Sr_{3-x-} yB ₂ O ₆ :xEu ²⁺ ,yRE ³⁺ (RE = Nd, Gd, Dy)	5%H ₂ -95%N ₂	1280–1310 °C for 5–20 h	High temperature and time is needed	[10]
Sr ₆ (BO ₃) ₃ BN ₂ :Eu ²⁺	Covered corundum crucible	1300 °C, for 12 h	High temperature is needed	[11]
Eu^{2+}/Eu^{3+} doped strontium borates: SrB_4O_7 , SrB_2O_4 and $Sr_3(BO_3)_2$	Covering the crucibles with a lid	Pre-calcined at 700 °C for 5 h and further heat- treated at 850 °C for 5 h	-	[12]
Ba ₃ ScB ₃ O ₉ :Eu ²⁺ phosphor	H ₂ (20%) and N ₂ (80%)	1150 °C for 6 h	Very high hydrogen flux	[13]
Ca[B ₈ O ₁₁ (OH) ₄]: Eu		350 °C for 12 h	Hydroxyl ion may affect the PL	[14]
Sr[B ₈ O ₁₁ (OH) ₄]:Eu ²⁺	No reducing atm. used	350 °C for 12 h	Self reduction	[15]
Eu ²⁺ in SrB ₄ O ₇	Covered	850 °C for	-	[16]

	crucibles	another 5 h		
$Ce^{3+}-Eu^{2+}$ in	5% H ₂ /95% N ₂	1000 °C for 3 h	High temperature is	[17]
LiSr ₄ (BO ₃) ₃ phospho			needed	
rs				
LTB:Eu2+	8% H2+92%	750 оС	Low flux	This
	Ar		Lower temperature	work
			U ⁶⁺ assisted Co-	
			doping ass	

Table S2:The calculated g values for pure LTB, doped (0.5% Eu³⁺ and 0.5% U⁶⁺) and codoped (2.0% Eu³⁺ and 0.5 to 2.0% U⁶⁺) LTB samples at both room temperature (rt) and 100 K.

	Frequency (GHz)	$H_1(mT)$	\mathbf{g}_1	H ₂ (mT)	\mathbf{g}_2
LTB pure - RT	9.437	304.42	2.2158	-	-
LTB-0.5%Eu- RT	9.437	326.67	2.0649	-	-
LTB-0.5%U- RT	9.437	304.43	2.2157	-	-
LTB-0.5%U-2%Eu- RT	9.437	344.83	1.9561	156.36	4.3140
LTB-1%U-2%Eu- RT	9.437	334.15	2.0187	156.4	4.3129
LTB-2%U-2%Eu- RT	9.437	342.57	1.9690	160.62	4.1996
LTB pure - 100 K	9.435	306.94	2.1972	-	-
LTB-0.5%Eu- 100 K	9.435	311.64	2.1640	-	-
LTB-0.5%U- 100 K	9.435	308.89	2.1833	-	-
LTB-0.5%U-2%Eu-100 K	9.435	303.82	2.2197	148.48	4.5420
LTB-1%U-2%Eu-100 K	9.435	306.18	2.2026	148.58	4.5389
LTB-2%U-2%Eu-100 K	9.435	308.46	2.1863	156.47	4.3101

The 'g' value of free-electron is ~2.0023, but the shift in the 'g' value occurs depending on the environment and the spin-orbit coupling. The 'g' value or the resonance position is specific for a given radical present in a particular environment. The energy required for the spin transition is related to the applied magnetic field (B), g-factor, and the constant β_e , called the Bohr Magneton:

 $hv = g\beta_e B....(1)$

Where 'v' is the frequency of microwave radiation and 'h' is the Planck's constant. The 'g' values are calculated using the above equation 1.

The ESR spectra were recorded in X-band of the microwave region with a frequency of ~9.43 GHz for both at room temperature and 100 K. The attenuation was kept as 15 dB.

Figure S6:ESR spectra of (a) LTB (b) 0.5% Eu³⁺ doped LTB (c) 0.5% U⁶⁺ doped LTB (d) 2% Eu³⁺ and 0.5% U⁶⁺ doped LTB (e) 2% Eu³⁺ and 1% U⁶⁺ doped LTB and (f) 2% Eu³⁺ and 2% U⁶⁺ doped LTB, at room temperature and 100 K.

- [1] J. Zhao, X. Wu, Y. Zhang, K. Li, J. Yu, H. Wang, B. Li, Design of K₂SrCa(PO4)_{2-x}(BO₃)_x:Eu²⁺ phosphors with full-visible spectrum by crystal structure modification, Journal of Luminescence 251 (2022) 119273.
- [2] P. Fan, Z. He, Y. Chen, X. He, C. Huang, Q. Miao, Q. Zhang, X. Liu, L. Li, Co-existence and unique coemission properties of Eu³⁺/Eu²⁺ and Sm³⁺/Sm²⁺ in LiSrB₉O₁₅ host lattice, Journal of Luminescence 251 (2022) 119169.
- [3] S. Gültekin, S. Yıldırım, O. Yılmaz, İ.Ç. Keskin, M.İ. Katı, E. Çelik, Structural and optical properties of SrAl₂O₄: Eu²⁺/Dy³⁺ phosphors synthesized by flame spray pyrolysis technique, Journal of Luminescence 206 (2019) 59-69.
- [4] R. Li, H. Li, C. Chang, Z. Sun, Enhanced afterglow behavior of a new Eu²⁺: NaBa₄(BO₃)₃ yellow phosphor co-doped with different cations Dy³⁺, Ho³⁺ and Nd³⁺, Ceramics international 48 (2022) 8914-8920.
- [5] Z. Tang, F. Du, H. Liu, Z. Leng, X. Sun, H. Xie, M. Que, Y. Wang, Eu²⁺-Doped Layered Double Borate Phosphor with Ultrawide Near-Infrared Spectral Distribution in Response to Ultraviolet–Blue Light Excitation, Advanced Optical Materials 10 (2022) 2102204.
- [6] R. Li, H. Li, C. Chang, Photoluminescence and afterglow behavior of a new orange long-lasting borate phosphor Eu²⁺, Dy³⁺: NaSr₄(BO₃)₃, Journal of Luminescence 243 (2022) 118659.
- [7] Q. Lv, X. Ma, Y. Dong, Y. Li, B. Shao, C. Wang, S. Yang, C. Wang, Ratiometric optical thermometer with high-sensitive temperature sensing based on tunable luminescence of Ce³⁺-Eu²⁺ in KSr4B₃O₉ phosphors, Advanced Powder Technology 33 (2022) 103769.
- [8] R. Li, H. Cao, H. Li, D. Zhang, C. Chang, Polychromatic luminescence of LiSr₄(BO₃)₃:Eu²⁺, Dy³⁺ persistent phosphors, Ceramics international 48 (2022) 20546-20554.
- [9] Y. Zhuo, S. Hariyani, J. Zhong, J. Brgoch, Creating a Green-Emitting Phosphor through Selective Rare-Earth Site Preference in NaBaB₉O₁₅:Eu²⁺, Chemistry of Materials 33 (2021) 3304-3311.
- [10] K.-W. Chae, T.-R. Park, C. Cheon, II, J.S. Kim, Persistent luminescence of RE^{3+} co-doped $Sr_{3}B_{2}O_{6}$:Eu²⁺ yellow phosphors (RE = Nd, Gd, Dy), Journal of Luminescence 194 (2018) 649-655.
- [11] S.G. Jantz, R. Erdmann, S. Hariyani, J. Brgoch, H.A. Höppe, Sr₆(BO₃)₃BN₂: An Oxido–Nitrido– Borate Phosphor Featuring BN₂ Dumbbells, Chemistry of Materials 32 (2020) 8587-8594.
- [12] T. Zheng, M. Runowski, P. Woźny, S. Lis, Influence of matrix on the luminescence properties of Eu²⁺/Eu³⁺ doped strontium borates: SrB₄O₇, SrB₂O₄ and Sr₃(BO₃)₂, exhibiting multicolor tunable emission, Journal of Alloys and Compounds 822 (2020) 153511.
- [13] S. Lai, T. Hu, M.S. Molokeev, Z. Xia, Photoluminescence tuning in Ba₃ScB₃O₉:Eu²⁺ phosphor by crystal-site engineering, Physics Open 8 (2021) 100077.
- [14] P. Liang, W.-L. Lian, Z.-H. Liu, Ca[B₈O₁₁(OH)₄]: Eu²⁺ A Highly Efficient Deep Blue-Emitting Phosphor Prepared by Low-Temperature Self-reduction, Chemistry – A European Journal 27 (2021) 13819-13827.
- [15] P. Liang, W.-L. Lian, Z.-H. Liu, Highly efficient blue-emitting phosphor of $Sr[B_8O_{11}(OH)_4]$: Eu²⁺ prepared by a self-reduction method, Chemical Communications 57 (2021) 3371-3374.
- [16] T. Zheng, M. Runowski, P. Rodríguez-Hernández, A. Muñoz, F.J. Manjón, M. Sójka, M. Suta, E. Zych, S. Lis, V. Lavín, Pressure-driven configurational crossover between 4f⁷ and 4f₆5d¹ States Giant enhancement of narrow Eu²⁺ UV-Emission lines in SrB₄O₇ for luminescence manometry, Acta Materialia 231 (2022) 117886.
- [17] C. Li, B. Chen, D. Deng, M. Wu, H. Yu, H. Li, C. Shen, L. Wang, S. Xu, Ratiometric optical thermometer with high-sensitive temperature sensing based on synergetic luminescence of Ce³⁺-Eu²⁺ in LiSr₄(BO₃)₃ phosphors, Journal of Alloys and Compounds 838 (2020) 155675.