Supporting Information

Nucleophilic Substitution Reactions of Microsolvated Hydroperoxide

Anion HOO⁻(NH₃)_n with Methyl Chloride and Comparison Between

Ammonia and Water as Solvent

Yang Hu, Xiangyu Wu, Jing Xie*

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory

of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and

Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

Table of Contents

Figure S1. Structures of HOO⁻(NH₃)_{n=0-3}S4Figure S2. Potential energy profile of (top) HOO⁻ + CH₃Cl \rightarrow CH₃OOH + Cl⁻ reactionS5and (bottom) NH₂⁻ + CH₃Cl \rightarrow CH₃NH₂ + Cl⁻ reaction.S5Figure S3. Potential energy profile of HOO⁻(NH₃) + CH₃Cl \rightarrow CH₃OOH + NH₃ + Cl⁻S6and NH₂⁻(HOOH) + CH₃Cl \rightarrow CH₃NH₂ + HOOH + Cl⁻ reaction.S6Figure S4. Potential energy profile of HOO⁻(NH₃)₂ + CH₃Cl \rightarrow CH₃OOH + 2NH₃ + Cl⁻ and NH₂⁻(HOOH)(NH₃) + CH₃Cl \rightarrow CH₃NH₂ + HOOH + NH₃ + Cl⁻ reaction.S7

Figure S5. Potential energy profile of $HOO^{-}(NH_3)_3 + CH_3Cl \rightarrow CH_3OOH + 3NH_3 + Cl^{-} and NH_2^{-}(HOOH)(NH_3)_2 + CH_3Cl \rightarrow CH_3NH_2 + HOOH + 2NH_3 + Cl^{-} reaction. S8$

Figure S6. Structures of the stationary points for $HOO^{-}(NH_3)_{n=0-3} + CH_3Cl$ reactions. S10

Figure S7. Intrinsic reaction coordinates (IRC) calculation of 2aTS-1, 2aTS-2, 2bTS-1, 2bTS-2 transition states of HOO⁻ $(NH_3)_2$ + CH₃Cl reactions. S11 Figure S8. Intrinsic reaction coordinates (IRC) calculation of 3aTS-1, 3aTS-2 and 3bTS transition states of HOO⁻ $(NH_3)_3 + CH_3Cl$ reactions. S12 Figure S9. Potential energy profile of HOO⁻(NH₃)(H₂O) + CH₃Cl \rightarrow CH₃OOH + NH₃ + H₂O + Cl⁻ and NH₂⁻(HOOH)(H₂O) + CH₃Cl \rightarrow CH₃NH₂ + HOOH + NH₃ + Cl⁻, and $HO^{-}(HOOH)(NH_3) + CH_3Cl \rightarrow CH_3OH + HOOH + NH_3 + Cl^{-}$ reaction. S13 Figure S10. Structures of the stationary points for $HOO^{-}(NH_{3})(H_{2}O) + CH_{3}Cl$. S14 Figure S11. Correlations between relative barrier heights of $HOO^{-}(sol)_n + CH_3Cl$ reactions and relative HOMO level of nucleophiles. S15 **Table S1.** Reaction energetics (kcal/mol) of HOO⁻(NH₃) + CH₃Cl S_N ² reactions in relative to the most stable reactants. S16 **Table S2.** Reaction energetics (kcal/mol) of HOO⁻ $(NH_3)_2$ + CH₃Cl S_N2 reactions in relative to the most stable reactants. S17 Table S3. Reaction energetics (kcal/mol) of HOO⁻(NH₃)₃ + CH₃Cl S_N 2 reactions in relative to the most stable reactants. S18 **Table S4.** Reaction energetics (kcal/mol) of HOO⁻(NH₃)(H₂O) + CH₃Cl S_N 2 reactions in relative to the most stable reactants. S19 Table S5. Calculated energies (kcal/mol) of the stationary points relative to the reactants for the $HOO^{-}(NH_3)_n + CH_3Cl$ reactions. S20 Table S6. Calculated energies (kcal/mol) of the stationary points relative to the reactants for the $NH_2^{-}(HOOH)_{0,1}(NH_3)_{n-1} + CH_3Cl$ reactions. S21 **Table S7**. Overall barriers of HOO⁻- S_N ² and NH₂⁻- S_N ² pathway and their differences of $HOO^{-}(NH_3)_{n=0-3} + CH_3Cl$. S22 Table S8. Internal barriers of HOO⁻-S_N2 and NH₂⁻-S_N2 pathway and their differences of $HOO^{-}(NH_3)_{n=0-3} + CH_3Cl$. S22 Table S9. Activation strain and energy decomposition analyses (kcal/mol) for the interaction between the anions and the solvent of the HOO⁻(sol) (sol = NH_3 , H_2O) and $NH_2^{-}(H_2O_2)(NH_3)_{n-1}$ complexes. S23 Table S10. Energy (in eV) of the HOMO orbitals of the $HOO^{-}(NH_3)_n(H_2O)_m$ and $HO^{-}(NH_3)_n(H_2O)_m$ using MP2/6-311++G(d,p) method. S24 Table S11 Selected bond distances (Å) of inv-S_N2-TS structures for Y⁻(NH₃)_n(H₂O)_m $+ CH_3Cl$ reactions. S25

Table S12 NPA charge distributions of inv- S_N 2-TS structures for $X^-(NH_3)_n(H_2O)_m + CH_3Cl$ reactions.S26

Table S13. Formation energy (kcal/mol) of $HOO^{-}(sol)_n$ anions with sol as NH_3 and H_2O .S27

Table S14. The binding energy (kcal/mol) of $NH_2^{-}(H_2O_2)(NH_3)_{n-1}$ as calculated by energy difference between nucleophiles and corresponding solvent molecules. S28

Table S15. Energies of inv-S_N2 transition states for $HOO^{-}(sol)_n + CH_3Cl$ reactions inrelative to the most stable reactants.S29

Figures

Figure S1. Structures of HOO⁻(NH₃)_{n=0-3} isomers as optimized with MP2/6-311++G(d,p) method. Relative energies ΔE (in kcal/mol) computed with CCSD(T)/aug-cc-pVTZ//MP2/6-311++G(d,p) method are shown for isomers of HOO⁻(NH₃)₂.

Potential Energy Profiles (PESs)

Note: For following PESs, the relative electronic energy (in kcal/mol) and enthalpy values at 298.15 K that computed at CCSD(T) level of theory are present. Color code: H, white; C, blue; N, purple; O, red; Cl, green.

Figure S2. Potential energy profile of (top) $HOO^- + CH_3Cl \rightarrow CH_3OOH + Cl^-$ reaction and (bottom) $NH_2^- + CH_3Cl \rightarrow CH_3NH_2 + Cl^-$ reaction.

Figure S3. Potential energy profile of HOO⁻(NH₃) + CH₃Cl \rightarrow CH₃OOH + NH₃ + Cl⁻ and NH₂⁻(HOOH) + CH₃Cl \rightarrow CH₃NH₂ + HOOH + Cl⁻ reaction.

Figure S4. Potential energy profile of HOO⁻(NH₃)₂ + CH₃Cl \rightarrow CH₃OOH + 2NH₃ + Cl⁻ and NH₂⁻(HOOH)(NH₃) + CH₃Cl \rightarrow CH₃NH₂ + HOOH + NH₃ + Cl⁻ reaction.

Figure S5. Potential energy profile of HOO⁻(NH₃)₃ + CH₃Cl \rightarrow CH₃OOH + 3NH₃ + Cl⁻ and NH₂⁻(HOOH)(NH₃)₂ + CH₃Cl \rightarrow CH₃NH₂ + HOOH + 2NH₃ + Cl⁻ reaction.

2bPC-1

S9

Figure S6. Structures of the stationary points for $HOO^{-}(NH_3)_{n=0-3} + CH_3Cl$ reactions optimized at MP2/6-311++G(d,p) level of theory. Color code: H, white; C, blue; N, purple; O, red; Cl, green.

Figure S7. Intrinsic reaction coordinates (IRC) calculation of 2aTS-1, 2aTS-2, 2bTS-1, 2bTS-2 transition states of $HOO^{-}(NH_3)_2 + CH_3Cl$ reactions using MP2/6-311++G(d,p) method. Color code: H, white; C, blue; N, purple; O, red; Cl, green.

Figure S8. Intrinsic reaction coordinates (IRC) calculation of 3aTS-1, 3aTS-2 and 3bTS transition states of $HOO^{-}(NH_3)_3 + CH_3Cl$ reactions using MP2/6-311++G(d,p) method. Color code: H, white; C, blue; N, purple; O, red; Cl, green.

Figure S9. Potential energy profile of HOO⁻(NH₃)(H₂O) + CH₃Cl \rightarrow CH₃OOH + NH₃ + H₂O + Cl⁻ and NH₂⁻(HOOH)(H₂O) + CH₃Cl \rightarrow CH₃NH₂ + HOOH + NH₃ + Cl⁻, and HO⁻(HOOH)(NH₃) + CH₃Cl \rightarrow CH₃OH + HOOH + NH₃ + Cl⁻ reaction.

Figure S10. Structures of the stationary points for $HOO^{-}(NH_3)(H_2O) + CH_3Cl$ optimized at MP2/6-311++G(d,p) level of theory. Color code: H, white; C, blue; N, purple; O, red; Cl, green.

Figure S11. Correlations between relative barrier heights of $HOO^{-}(sol)_n + CH_3Cl$ reactions and relative HOMO level of nucleophiles. Color code: for sol = NH_3 , $HOO^{-}-S_N2$ path, black, $NH_2^{-}-S_N2$ pathway, red; for sol = H_2O , $HOO^{-}-S_N2$ path, blue, $HO^{-}-S_N2$ pathway, green.

Table S1. Reaction energetics (kcal/mol) of HOO-(NH3) + CH3Cl SN2 reactions in relative to the most stable reactants. Values are givenby CCSD(T)/aug-cc-pVTZ//MP2/6-311++G(d,p) method.

Attacking Nucleophile	Products	ΔΕ	Δ (E+ZPE)	ΔH(298.15K)	ΔG(298.15K)	
HOO ⁻ (NH ₃)	$CH_3OOH + Cl^- + NH_3$	-30.5	-29.4	-28.9	-35.1	(1a)
	$CH_3OOH(NH_3) + Cl^-$	-39.3	-36.2	-35.9	-34.1	(1a')
	CH ₃ OOH + Cl ⁻ (NH ₃)	-39.5	-37.5	-37.5	-38.0	(1a'')
	$(CH_3OOH)Cl^- + NH_3$	-50.8	-49.1	-49.1	-48.1	(1a''')
$\mathbf{NH_2}^{-}(\mathbf{H_2O_2})$	$CH_3NH_2+Cl^-+H_2O_2$	-25.2	-23.2	-23.0	-28.9	(1b)
	$(CH_3NH_2)Cl^- + H_2O_2$	-37.1	-34.5	-34.6	-34.7	(1b')
	$\mathrm{CH_3NH_2(H_2O_2)} + \mathrm{Cl^-}$	-37.2	-33.3	-33.2	-30.7	(1b'')
	$CH_3NH_2 + Cl^-(H_2O_2)$	-49.4	-46.8	-47.2	-46.8	(1b''')

Attacking Nucleophile Products ΔE Δ (E+ZPE) ΔH(298.15K) ΔG(298.15K) **HOO**⁻(NH₃)₂ $CH_3OOH + Cl - + 2NH_3$ -18.2 -17.4 -31.7 -17.3 (2a) -20.6 -20.0 -19.3 -27.8 $CH_3OOH+Cl^-+(NH_3)_2$ (2a') $CH_3OOH(NH_3) + Cl^- + NH_3$ -26.1 -25.0 -24.5 -30.7 (2a'') -26.3 $CH_3OOH + Cl^{-}(NH_3) + NH_3$ -26.4 -26.1 -34.6 (2a''') CH₃OOH(NH₃)₂+Cl⁻ -34.0 -30.7 -30.8 -27.0 (2a'''') $CH_3OOH(NH_3) + Cl^{-}(NH_3)$ -35.2 -33.1 -33.2 -33.6 (2a''''') $CH_3OOH + Cl^{-}(NH_3)_2$ -35.6 -34.0 -34.0 -34.5 (2a''''') -12.1 -12.0 -11.6 -25.6 $NH_2^{-}(H_2O_2)(NH_3)$ $CH_{3}NH_{2} + Cl^{-} + H_{2}O_{2} + NH_{3}$ (2b) -17.7 -16.1 -15.7 -22.5 CH₃NH₂(NH₃)+Cl⁻+HOOH (2b') -21.1 -18.9 -18.8 -25.2 $CH_3NH_2 + Cl^- + (NH_3)(H_2O_2)$ (2b'') -21.1 -20.1 -20.2 -28.5 $CH_{3}NH_{2} + Cl^{-}(NH_{3}) + H_{2}O_{2}$ (2b''') -22.0 -27.3 $CH_3NH_2(H_2O_2)+Cl^-+NH_3$ -24.1 -21.8 (2b'''') $CH_{3}NH_{2}(H_{2}O_{2})(NH_{3}) + Cl^{-}$ -30.9 -27.2 -27.2 -24.0 (2b''''') -33.1 -30.1 -30.5 -30.2 (2b''''') $CH_{3}NH_{2}(H_{2}O_{2}) + Cl^{-}(NH_{3})$ -36.3 -35.6 -35.7 -43.4 (2b''''') $CH_{3}NH_{2} + Cl^{-}(H_{2}O_{2}) + NH_{3}$ -41.9 -39.7 -39.9 -40.4 (2b'''''') $CH_3NH_2(NH_3) + Cl^{-}(H_2O_2)$ -44.6 -42.4 -42.6 -41.9 (2b'''''') $CH_{3}NH_{2}+Cl^{-}(NH_{3})(H_{2}O_{2})$

Table S2. Reaction energetics (kcal/mol) of HOO⁻(NH₃)₂ + CH₃Cl S_N2 reactions in relative to the most stable reactants. Values are given by CCSD(T)/aug-cc-pVTZ//MP2/6-311++G(d,p) method.

Table S3. Reaction energetics (kcal/mol) of HOO⁻(NH₃)₃ + CH₃Cl S_N ² reactions in relative to the most stable reactants. Values are given by CCSD(T)/aug-cc-pVTZ//MP2/6-311++G(d,p) method.

Attacking Nucleophile	Products	ΔΕ	Δ (E+ZPE)	ΔH(298.15K)	ΔG(298.15K)	
HOO ⁻ (NH ₃) ₃	$CH_3OOH + Cl^- + 3NH_3$	-7.4	-10.2	-8.9	-33.4	(3a)
	$CH_3OOH(NH_3) + Cl^- + 2NH_3$	-16.2	-16.9	-16.0	-32.4	(3a')
	$CH_3OOH + Cl^-(NH_3) + 2NH_3$	-16.5	-18.3	-17.6	-36.3	(3a'')
	CH ₃ OOH+Cl ⁻ +(NH ₃) ₃	-18.3	-17.0	-16.8	-24.2	(3a''')
	$CH_3OOH(NH_3)_2 + Cl^- + NH_3$	-24.1	-22.7	-22.3	-28.8	(3a'''')
	$CH_3OOH(NH_3) + Cl^-(NH_3) + NH_3$	-25.3	-25.0	-24.6	-35.4	(3a''''')
	$CH_3OOH + Cl^-(NH_3)_2 + NH_3$	-25.7	-26.0	-25.4	-36.3	(3a''''')
	CH ₃ OOH(NH ₃) ₃ +Cl ⁻	-29.9	-27.1	-26.7	-24.8	(3a'''''')
	CH ₃ OOH(NH ₃) ₂ + Cl ⁻ (NH ₃)	-33.1	-30.8	-30.9	-31.7	(3a'''''')
	$CH_3OOH(NH_3) + CI^{-}(NH_3)_2$	-34.5	-32.7	-32.5	-35.3	(3a'''''')
	$CH_3OOH + Cl^-(NH_3)_3$	-36.0	-34.2	-34.1	-34.6	(3a'''''')
NH₂ ⁻ (H ₂ O ₂)(NH ₃) ₂	$CH_3NH_2+Cl^-+H_2O_2+2NH_3$	-2.2	-4.0	-3.1	-27.3	(3b)
	$CH_3NH_2(NH_3) + Cl^- + H_2O_2 + NH_3$	-7.7	-8.1	-7.2	-24.3	(3b')
	$CH_{3}NH_{2}(H_{2}O_{2})+Cl^{-}+2NH_{3}$	-14.1	-14.0	-13.3	-29.1	(3b'')
	$CH_{3}NH_{2}(NH_{3})_{2}+Cl^{-}+H_{2}O_{2}$	-15.1	-13.4	-13.0	-20.5	(3b''')
	$CH_3NH_2 + Cl^- + (NH_3)_2(H_2O_2)$	-18.9	-16.5	-16.5	-23.7	(3b'''')
	$CH_3NH_2 + Cl^{-}(NH_3)_2 + H_2O_2$	-20.5	-19.8	-19.6	-30.2	(3b''''')
	$CH_3NH_2 + Cl^-(H_2O_2) + 2NH_3$	-26.4	-27.5	-27.2	-45.2	(3b''''')
	$CH_{3}NH_{2}(H_{2}O_{2})(NH_{3})_{2} + Cl^{-}$	-28.3	-24.5	-24.5	-22.1	(3b''''')
	$CH_3NH_2(NH_3) + Cl^-(H_2O_2) + NH_3$	-32.0	-31.7	-31.4	-42.1	(3b'''''')
	$CH_3NH_2(H_2O_2) + Cl^-(NH_3)_2$	-32.4	-29.8	-29.8	-31.9	(3b'''''')
	$CH_3NH_2(NH_3)_2 + Cl^-(H_2O_2)$	-39.4	-37.0	-37.2	-38.3	(3b'''''')
	CH ₃ NH ₂ +Cl ⁻ (NH ₃) ₂ (H ₂ O ₂)	-45.0	-42.1	-42.5	-41.6	(3b'''''')

Attacking Nucleophile	Products	ΔΕ	Δ (E+ZPE)	ΔH(298.15K)	ΔG(298.15K)	
HOO ⁻ (H ₂ O)(NH ₃)	CH ₃ OOH+Cl ⁻ +NH ₃ +H ₂ O	-6.7	-8.5	-7.3	-21.6	(1_1a)
	CH ₃ OOH+Cl ⁻ (NH ₃)+H ₂ O	15.7	-16.6	-15.9	-24.5	(1_1a')
	CH ₃ OOH+Cl ⁻ (H ₂ O)+NH ₃	-21.9	-22.4	-22.0	-30.6	(1_1a'')
	CH ₃ OOH(H ₂ O)+Cl ⁻ (NH ₃)	-23.2	-21.9	-21.7	-22.0	(1_1a''')
	CH ₃ OOH(NH ₃)(H ₂ O)+Cl ⁻	-25.0	-22.1	-21.9	-18.6	(1_1a''''')
	CH ₃ OOH+Cl ⁻ (NH ₃)(H ₂ O)	-30.0	-29.3	-28.7	-32.1	(1_1a''''')
	CH ₃ OOH(NH ₃)+Cl ⁻ (H ₂ O)	-30.7	-29.2	-29.1	-29.6	(1_1a'''''')
NH₂ ⁻ (H ₂ O ₂)(H ₂ O)	$CH_3NH_2+H_2O+H_2O_2+Cl^-$	-1.4	-2.3	-1.4	-15.4	(1_1b)
	CH ₃ NH ₂ +Cl ⁻ (H ₂ O)+HOOH	-16.7	-16.2	-16.2	-24.5	(1_1b')
	$CH_3NH_2(H_2O)(H_2O_2)+Cl^-$	-22.1	-18.7	-18.6	-15.4	(1_1b'')
	CH ₃ NH ₂ +Cl ⁻ (H ₂ O ₂)+H ₂ O	-25.6	-25.9	-25.6	-33.3	(1_1b''')
	$CH_3NH_2(H_2O_2)+Cl^-(H_2O)$	-28.6	-26.3	-26.4	-26.2	(1_1b'''')
	$CH_3NH_2(H_2O)+Cl^-(H_2O_2)$	-34.8	-32.9	-32.9	-34.2	(1_1b''''')
	CH ₃ NH ₂ +Cl ⁻ (H ₂ O)(H ₂ O ₂)	-39.5	-37.3	-37.6	-36.7	(1_1b''''')
HO ⁻ (H ₂ O ₂)(NH ₃)	CH ₃ OH+NH ₃ + H ₂ O ₂ +Cl ⁻	0.6	-0.2	0.7	-14.1	(1_1c)
	CH ₃ OH+Cl ⁻ (NH ₃)+HOOH	-8.5	-8.3	-8.0	-17.0	(1_1c')
	CH ₃ OH(H ₂ O ₂)+Cl ⁻ (NH ₃)	-16.6	-14.6	-14.4	-15.5	(1_1c'')
	CH ₃ OH(NH ₃)(H ₂ O ₂)+Cl ⁻	-18.3	-14.9	-14.6	-11.7	(1_1c''')
	CH ₃ OH+Cl ⁻ (H ₂ O ₂)+NH ₃	-23.7	-23.8	-23.5	-32.0	(1_1c'''')
	CH ₃ OH(NH ₃)+Cl ⁻ (H ₂ O ₂)	-30.6	-29.0	-28.8	-31.2	(1_1c''''')
	CH ₃ OH+Cl ⁻ (NH ₃)(H ₂ O ₂)	-32.0	-30.5	-30.3	-30.5	(1_1c''''')

Table S4. Reaction energetics (kcal/mol) of HOO⁻(NH₃)(H₂O) + CH₃Cl S_N 2 reactions in relative to the most stable reactants. Values are given by CCSD(T)/aug-cc-pVTZ//MP2/6-311++G(d,p) method.

Table S5. Calculated energies (kcal/mol) of the stationary points relative to the reactants for the HOO⁻(NH₃)_n + CH₃Cl reactions given by CCSD(T)/aug-cc-pVTZ//MP2/6-311++G(d,p) method.

	ΔE	$\Delta E + ZPE$	ΔH(298.15K)	ΔG(298.15K)
		n = 0		
$HOO^- + CH_3Cl$	0.0	0.0	0.0	0.0
0aRC-1	-16.3	-15.3	-15.3	-7.6
0aRC-2	-15.8	-14.9	-14.7	-7.4
0aTS	-13.9	-13.2	-13.5	-4.8
0aPC	-65.6	-62.6	-63.3	-53.5
$CH_{3}OOH + Cl^{-}$	-45.3	-42.9	-43.1	-40.4
		n = 1		
$HOO^{-}(NH_3) + CH_3Cl$	0.0	0.0	0.0	0.0
1aRC	-14.3	-13.1	-12.7	-5.0
1aTS	-10.2	-8.7	-8.9	0.5
1aPC-1	-60.2	-57.0	-57.0	-47.6
1aPC-2	-58.7	-55.6	-55.5	-47.5
$CH_3NH_2 + NH_3 + Cl^-$	-30.5	-29.4	-28.9	-35.1
		n = 2		
$HOO^{-}(NH_3)_2 + CH_3Cl$	0.0	0.0	0.0	0.0
2aRC-1	-13.0	-12.2	-11.7	-4.3
2aRC-2	-12.6	-11.9	-11.2	-3.7
2aRC-3	-12.3	-11.7	-10.9	-4.0
2aRC-4	-9.7	-9.0	-8.3	-0.2
2aTS-1	-7.2	-5.9	-6.0	4.2
2aTS-2	-4.5	-3.6	-3.5	6.2
2aPC-1	-56.2	-52.2	-52.8	-40.4
2aPC-2	-54.0	-51.0	-51.0	-41.5
$CH_3NH_2+2NH_3+Cl^-$	-17.3	-18.2	-17.4	-31.7
		n = 3		
$HOO^{-}(NH_3)_3 + CH_3Cl$	0.0	0.0	0.0	0.0
3aRC-1	-13.0	-11.7	-11.5	-2.9
3aRC-2	-12.8	-11.9	-11.1	-4.1
3aTS-1	-6.4	-4.8	-5.1	4.4
3aTS-2	-5.2	-3.9	-3.8	5.4
3aPC-1	-53.0	-50.3	-50.0	-40.7
3aPC-2	-53.0	-49.1	-49.5	-38.7
3aPC-3	-53.0	-49.1	-49.5	-38.7
3aPC-4	-52.8	-48.9	-49.4	-38.5
$CH_3NH_2+3NH_3+Cl^-$	-7.4	-10.2	-8.9	-33.4

	ΔΕ	$\Delta E + ZPE$	ΔH(298.15K)	ΔG(298.15K)
	n=	= 0		
$NH_2^- + CH_3Cl$	0.0	0.0	0.0	0.0
0bRC-1	-14.6	-13.4	-13.6	-7.0
0bTS-1	-13.6	-12.5	-13.1	-5.0
0bPC-1	-80.3	-74.9	-75.8	-67.9
$CH_3NH_2 + Cl^-$	-68.5	-63.6	-64.2	-62.1
	n =	= 1		
NH ₂ ⁻ (HOOH)+CH ₃ Cl	0.0	0.0	0.0	0.0
1bRC-1	-11.6	-10.8	-10.4	-2.8
1bTS-1	-2.8	-2.0	-2.0	6.9
1bPC-1	-63.8	-59.1	-59.3	-49.9
$CH_3NH_2 + HOOH + Cl^-$	-27.9	-25.8	-25.3	-32.3
	n =	= 2		
$NH_2^{-}(HOOH)(NH_3) + CH_3Cl$	0.0	0.0	0.0	0.0
2bRC-1	-19.8	-18.4	-17.6	-10.1
2bRC-2	-10.3	-9.5	-9.5	-0.2
2bTS-1	-2.9	-1.2	-1.9	9.9
2bTS-2	-2.1	-1.5	-2.1	10.0
1bPC-1	-65.0	-59.5	-60.1	-48.9
1bPC-2	-58.0	-53.0	-53.9	-42.1
$CH_3NH_2 + HOOH + NH_3 + Cl^-$	-18.8	-18.2	-17.6	-32.3
	n =	= 3		
$NH_2^{-}(HOOH)(NH_3)_2 + CH_3Cl$	0.0	0.0	0.0	0.0
3bRC-1	-21.8	-20.2	-19.7	-11.4
3bTS-1	-2.1	-0.1	-1.1	12.8
3bPC-1	-66.2	-60.6	-61.4	-48.7
$CH_3NH_2 + HOOH + 2NH_3 + Cl^-$	-10.2	-11.2	-10.5	-33.8

Table S6. Calculated energies (kcal/mol) of the stationary points relative to the reactants for the $NH_2^{-}(HOOH)_{0,1}(NH_3)_{n-1} + CH_3Cl$ reactions given by CCSD(T)/aug-cc-pVTZ//MP2/6-311++G(d,p) method.

n	$\Delta E^{\ddagger}_{HOO}$	$\Delta E^{\ddagger}_{NH2}$	$\Delta \Delta E^{\ddagger}$	$\Delta H^{\ddagger}_{HOO}$	$\Delta H^{\ddagger}_{NH2}$	$\Delta \Delta H^{\ddagger}$	$\Delta G^{\ddagger}_{HOO}$	$\Delta G^{\ddagger}_{\rm NH2-}$	$\Delta \Delta G^{\ddagger}$
0	-13.9	-13.6	0.2	-13.5	-13.1	0.4	-4.8	-5.0	-0.2
1	-10.2	-0.1	10.0	-8.9	0.3	9.1	0.5	10.3	9.8
2	-7.2	3.8	11.0	-6.0	4.1	10.1	4.2	16.6	12.5
3	-6.4	5.9	12.3	-5.1	6.4	11.4	4.4	19.2	14.8

Table S7. Overall barriers of $HOO^{-}-S_N2$ and $NH_2^{-}-S_N2$ pathway and their differences of $HOO^{-}(NH_3)_{n=0-3} + CH_3Cl$.

Note: $\Delta \Delta E^{\ddagger}_{ovr} = \Delta E^{\ddagger}_{ovr, NH2} - \Delta E^{\ddagger}_{ovr, HOO}$

Table S8. Internal barriers of HOO⁻- S_N^2 and NH_2^- - S_N^2 pathway and their differences of HOO⁻(NH_3)_{n=0-3} + CH_3Cl .

										_
n	$\Delta E^{\ddagger}_{int HOO}$ -	$\Delta E^{\ddagger}_{int NH2}$	$\Delta \Delta E^{\ddagger}_{int}$	$\Delta H^{\ddagger}_{int HOO}$	$\Delta H^{\ddagger}_{int NH2}$	$\Delta \Delta H^{\ddagger}_{int}$	$\Delta G^{\ddagger}_{int HOO}$ -	$\Delta G^{\ddagger}_{int NH2}$ -	$\Delta\Delta G^{\ddagger}_{int}$	Note:
0	2.4	1.0	-1.4	1.8	0.5	-1.3	2.7	2.0	-0.7	$\Delta \Delta E^{\ddagger}$
1	4.1	8.8	4.7	3.9	8.4	4.5	5.5	9.8	4.3	int
2	5.8	16.9	11.1	2.3	15.7	13.4	4.4	20.1	15.7	$= \Delta E^{\ddagger}$
3	6.6	19.7	13.1	6.1	18.6	12.5	7.3	24.1	16.8	int,
										- NH2-

 $-\Delta E^{\ddagger}_{\text{int,HOO-}}$

n	$\Delta E_{binding}$	ΔE_{def}	ΔE_{int}	ΔE_{Pauli}	$\Delta V_{elastic}$	ΔE_{oi}
1 HOO ⁻ (NH ₃)	-8.44	3.68	-12.12	40.88	-31.05	-21.95
2 HOO ⁻ (NH ₃) ₂	-18.43	3.47	-21.91	51.42	-45.47	-27.86
3 HOO ⁻ (NH ₃) ₃	-24.15	2.99	-27.14	51.35	-49.82	-28.67
1 HOO ⁻ (H ₂ O)	-34.25	21.62	-55.87	50.88	-75.91	-30.84
2 HOO ⁻ (H ₂ O) ₂	-36.49	9.39	-45.88	74.27	-78.68	-41.47
3 HOO ⁻ (H ₂ O) ₃	-48.39	10.34	-58.73	90.28	-96.68	-52.33
$1 \text{ NH}_2^{-}(\text{H}_2\text{O}_2)$	-36.57	19.16	-55.73	61.65	-82.36	-35.02
2 $NH_2^{-}(H_2O_2)(NH_3)$	-42.63	20.63	-63.26	69.58	-92.33	-40.50
$3 \text{ NH}_2^{-}(\text{H}_2\text{O}_2)(\text{NH}_3)_2$	-47.08	22.01	-69.09	71.26	-97.95	-42.41

Table S9. Activation strain and energy decomposition analyses (kcal/mol) for the interaction between the anions and the solvent of the HOO⁻(sol) (sol = NH_3 , H_2O) and $NH_2^{-}(H_2O_2)(NH_3)_{n-1}$ complexes. (ADF¹, HF/TZ2P)

Fragmented method: $HOO^{-}(NH_3)_n \rightarrow HOO^{-} + (NH_3)_n$ $HOO^{-}(H_2O)_n \rightarrow HOO^{-} + (H_2O)_n$ $NH_2^{-}(H_2O_2)(NH_3)_n \rightarrow NH_2^{-} + (H_2O_2)(NH_3)_n$

For HOO⁻(NH₃)_n and NH₂⁻(H₂O₂)(NH₃)_{n-1}, the interaction between solvent molecules and the anion of the former is N-H···OOH⁻, and the latter is N-H···NH₂⁻ and O-H···NH₂⁻. The more polarized Y^{δ -}-H^{δ +} bond in the NH₂⁻(H₂O₂)(NH₃)_{n-1} results in a favorable interaction.

Nucleanhile	HOMO	Nucleanhile	HOMO Nucleophile		HOMO	Nucleanhile	НОМО
Nucleophile	Energy	Nucleophile	Energy	Nucleophile	Energy	Nucleopine	Energy
HOO-	-3.1	$\rm NH_2^-$	-1.3	HOO-	-3.1	HO [_]	-2.9
HOO ⁻ (NH ₃)	-3.9	NH ₂ -(HOOH)	-3.5	HOO-(H ₂ O)	-5.4	HO-(HOOH)	-5.4
HOO ⁻ (NH ₃) ₂	-4.6	NH ₂ ⁻ (HOOH)(NH ₃)	-4.0	HOO ⁻ (H ₂ O) ₂	-5.6	HO ⁻ (HOOH)(H ₂ O)	-6.5
HOO ⁻ (NH ₃) ₃	-4.8	NH ₂ ⁻ (HOOH)(NH ₃) ₂	-4.4	HOO ⁻ (H ₂ O) ₃	-6.0	HO ⁻ (HOOH)(H ₂ O) ₂	-6.9
HOO ⁻ (NH ₃)(H ₂ O)	-5.2	NH ₂ ⁻ (HOOH)(H ₂ O)	-4.6			HO ⁻ (HOOH)(NH ₃)	-6.1

 $\textbf{Table S10}. \ Energy \ (in \ eV) \ of \ the \ HOMO \ orbitals \ of \ the \ HOO^-(NH_3)_n(H_2O)_m \ and \ HO^-(NH_3)_n(H_2O)_m \ using \ MP2/6-311++G(d,p) \ method.$

Table S11 Selected bond distances (Å) of inv-S_N2-TS structures for $Y^{-}(NH_3)_n(H_2O)_m + CH_3Cl$ reactions as optimized by MP2/6-311++G(d,p) method.

inv-S _N 2 transition structure	$r(X_{Nu}-C)^{\ddagger}$	$r(C-Cl)^{\ddagger}$	$(X_{Nu}-C)^{\ddagger}$	%(CCl) [‡]	%L‡	%AS [‡]
$\mathbf{H}_{2}\mathbf{N}^{-}\cdots\mathbf{C}\mathbf{H}_{3}\cdots\mathbf{C}\mathbf{l}$	2.340	2.043	59.8	15.0	74.9	44.8
$HOO^{-}\cdots CH_{3}\cdots Cl$	2.117	2.071	49.6	16.6	66.2	33.0
HO ⁻ ···CH ₃ ···Cl	2.158	2.090	51.8	17.7	69.4	34.1
$(H_3N)HOO^-\cdots CH_3\cdots CI$	2.067	2.104	46.1	18.5	64.5	27.6
$(H_3N)_2HOO^-\cdots CH_3\cdots Cl$	2.034	2.130	43.7	19.9	63.7	23.8
$(H_3N)_3HOO^-\cdots CH_3\cdots CI$	2.028	2.139	43.3	20.4	63.8	22.9
$(HOOH)H_2N^-\cdots CH_3\cdots CI$	2.216	2.143	51.4	20.7	72.0	30.7
(H ₃ N)(HOOH) $H_2N^-\cdots CH_3\cdots Cl$	2.246	2.120	53.4	19.4	72.8	34.0
$(H_3N)_2(HOOH)H_2N^-\cdots CH_3\cdots CI$	2.225	2.117	52.0	19.2	71.2	32.8
$(H_3N)(H_2O)HOO^-\cdots CH_3\cdots CI$	1.989	2.168	40.6	22.1	62.6	18.5
$(HOOH)(H_2O)H_2N^-\cdots CH_3\cdots CI$	2.207	2.137	50.8	20.3	71.1	30.4
$(HOOH)(H_3N)HO^-\cdots CH_3\cdots CI$	1.991	2.210	40.0	24.4	64.5	15.6

Note: The calculated O–C bond length in CH₃OOH is 1.412 Å, O–C bond length in CH₃OH is 1.422 Å, N–C bond length in CH₃NH₂ is 1.470 Å, C–Cl bond length in CH₃Cl is 1.760 Å.

inv-S _N 2 transition structure	X_{Nu}	$q(X_{Nu})$	q(C)	q(Cl)	q(CH ₃)	%L‡	Δq (Cl-O/N)
HO ⁻ ····CH ₃ ····Cl	Ο	-1.221	-0.164	-0.538	0.381	69.4	0.683
$H_2N^-\cdots CH_3\cdots Cl$	Ν	-1.379	-0.239	-0.482	0.321	74.9	0.897
HOO ⁻ ····CH ₃ ····Cl	0	-0.652	-0.177	-0.513	0.374	66.2	0.138
$(H_3N)HOO^-\cdots CH_3\cdots CI$	0	-0.654	-0.154	-0.547	0.395	64.5	0.107
$(H_3N)_2HOO^-\cdots CH_3\cdots CI$	0	-0.661	-0.134	-0.571	0.414	63.7	0.090
$(H_3N)_3HOO^-\cdots CH_3\cdots CI$	0	-0.668	-0.133	-0.580	0.419	63.8	0.088
$(\text{HOOH})\mathbf{H}_{2}\mathbf{N}^{-}\cdots \mathbf{C}\mathbf{H}_{3}\cdots \mathbf{C}\mathbf{l}$	Ν	-1.315	-0.197	-0.567	0.357	72.0	0.748
(H ₃ N)(HOOH) $H_2N^-\cdots CH_3\cdots CI$	Ν	-1.312	-0.206	-0.546	0.347	72.8	0.766
$(H_3N)_2(HOOH)H_2N^-\cdots CH_3\cdots CI$	Ν	-1.312	-0.202	-0.547	0.357	71.2	0.765
$(H_3N)(H_2O)HOO^-\cdots CH_3\cdots CI$	0	-0.635	-0.117	-0.606	0.432	62.6	0.029
$(HOOH)(H_2O)H_2N^-\cdots CH_3\cdots CI$	Ν	-1.301	-0.196	-0.566	0.361	71.1	0.735
$(HOOH)(H_3N)HO^-\cdots CH_3\cdots CI$	0	-1.171	-0.098	-0.645	0.442	64.5	0.526

Table S12 NPA charge distributions of inv-S_N2-TS structures for $X^{-}(NH_3)_n(H_2O)_m + CH_3Cl$ reactions.

n		$^{\mathrm{a}}\Delta E_{\mathrm{f}}$	ΔH_{f}	$\Delta G_{ m f}$		ΔE_{f}	$\Delta H_{ m f}$	$\Delta G_{ m f}$	$^{c}\Delta\Delta E_{f}$	$\Delta \Delta H_{\rm f}$	$\Delta\Delta G_{ m f}$
0	HOO-	0	0	0							
					$Sol = H_2O$						
1	^b HOO ⁻ (H ₂ O)	-27.1	-25.8	-16.5	$HO^{-}(H_2O_2)$	-27.1	-25.8	-16.5	0	0	0
2	$HOO^{-}(H_2O)_2$	-46.3	-43.5	-25.9	$HO^{-}(H_2O_2)(H_2O)$	-46.8	-43.7	-27.0	0.5	0.2	1.1
3	$HOO^{-}(H_2O)_3$	-64.1	-59.3	-30.4	$HO^{-}(H_2O_2)(H_2O)_2$	-65.1	-60.1	-32.1	1.0	0.8	1.7
$Sol = NH_3$											
1	HOO-(NH ₃)	-14.8	-14.2	-5.4	$NH_{2}-(H_{2}O_{2})$	-12.1	-11.9	-2.1	-2.7	-2.3	-3.3
2	$HOO^{-}(NH_3)_2$	-28.0	-25.6	-8.7	$NH_{2}^{-}(H_{2}O_{2})(NH_{3})$	-21.2	-19.6	-2.1	-6.8	-6	-6.6
3	HOO-(NH ₃) ₃	-37.9	-34.2	-7.0	$NH_2^{-}(H_2O_2)(NH_3)_2$	-29.9	-26.7	-0.6	-8	-7.5	-6.4
					$Sol = (NH_3)(H_2O)$)					
	HOO-(NH ₃)(H ₂ O)	-37.2	-34.7	-18.3	$NH_{2}(H_{2}O_{2})(H_{2}O)$	-29.6	-28.1	-10.3	-7.6	-6.6	-8
					$HO^{-}(H_2O_2)(NH_3)$	-38.6	-35.8	-18.9	1.4	1.1	0.6

Table S13. Formation energy (kcal/mol) of HOO⁻(sol)_n anions with sol as NH₃ and H₂O using CCSD(T)/aug-cc-pVTZ//MP2/6-311++G(d,p) level of theory.

Note:

^aThe $\Delta E_{\rm f}$ is calculated as energy difference between the solvated species and the reactants HOO⁻ + n(sol)

^bThe optimized structure of HOO⁻(H₂O) is HO⁻(H₂O₂).

 $^{\circ}\Delta\Delta E_{\rm f} = \Delta E_{\rm f}({\rm HOO^{-}}) - \Delta E_{\rm f}({\rm HO^{-}}) \text{ or } \Delta E_{\rm f}({\rm HOO^{-}}) - \Delta E_{\rm f}({\rm NH}_{2}^{-})$

_				
		ΔE	ΔH	ΔG
n		$NH_{2}^{-} + nH_{2}O_{2} +$	$(n-1)NH_3 \rightarrow NH_2$	$-(H_2O_2)(NH_3)_{n-1}$
1	$NH_{2}^{-}(H_{2}O_{2})$	-40.5	-38.9	-29.9
2	NH ₂ ⁻ (H ₂ O ₂)(NH ₃)	-49.7	-46.6	-29.9
3	NH ₂ ⁻ (H ₂ O ₂)(NH ₃) ₂	-58.3	-53.7	-28.4

Table S14. The binding energy (kcal/mol) of $NH_2^{-}(H_2O_2)(NH_3)_{n-1}$ as calculated by energy difference between nucleophiles and corresponding solvent molecules. The CCSD(T)/aug-cc-pVTZ//MP2/6-311++G(d,p) level of theory was used.

n	Nu	ΔE^{\ddagger}	ΔH^{\ddagger}	ΔG^{\ddagger}	Nu	ΔE^{\ddagger}	ΔH^{\ddagger}	ΔG^{\ddagger}			
$HOO^{-}(H_2O)_n + CH_3Cl$ reaction											
0	HOO-	-13.9	-13.4	-4.8	HO^{-}	-14.1	-14.0	-6.8			
1	HOO ⁻	-5.2	-4.4	3.6	HO^{-}	-2.1	-1.0	7.8			
2	HOO-	-1.0	0.2	10.2	HO^{-}	1.8	2.9	14.2			
3	HOO-	2.4	3.5	13.5	HO^{-}	6.1	7.8	19.6			
$HOO^{-}(NH_3)_n + CH_3Cl$ reaction											
1	HOO ⁻	-10.8	-9.9	0.4	$\mathrm{NH_2}^-$	-0.1	0.3	10.3			
2	HOO-	-7.8	-6.7	3.9	$\mathrm{NH_2}^-$	3.8	4.1	16.6			
3	HOO-	-7.0	-5.9	5.7	$\mathrm{NH_2}^-$	5.9	6.4	19.2			
$HOO^{-}(NH_3)(H_2O) + CH_3Cl$ reaction											
	HOO-	-2.5	-1.6	7.3							
	$\mathrm{NH_2}^-$	11.4	10.9	21.5							
	HO^{-}	2.2	3.3	13.1							

Table S15. Energies of inv- $S_N 2$ transition states for HOO⁻(sol)_n + CH₃Cl reactions in relative to the most stable reactants.

Reference

1 E.J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, C.R. Jacob, H. Jacobsen, L. Jensen, J.W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, P.H.T. Philipsen, D. Post, C.C. Pye, W. Ravenek, J.I. Rodríguez, P. Ros, P.R.T. Schipper, H. van Schoot, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev, ADF2020, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, URL: <u>http://www.scm.com</u>.