Computational investigation of α-SiO₂ surfaces as a support for Pd

C.J. Lombard,^a C.G.C.E. van Sittert,^{a*} J.N. Mugo,^b C. Perry^c and D.J. Willock^{d*}

^a Laboratory for Applied Molecular Modelling, Research Focus Area: Chemical Resource Beneficiation, North-West University, Private Bag X6001, Potchefstroom, 252

^b Johnson Matthey Technology Center, Belasis Avenue, Billingham TS23 1LH, United Kingdom

^c Johnson Matthey Technology Center, Blount's Court, Sonning Common, Reading RG4 9NH, United Kingdom

^d Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT[,] Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom

Supplementary Information

S1. Water reference structure molecular dynamics

The calculation of water adsorption energy and the surface energy of hydroxylated surfaces requires a reference state for the water molecule. In this work we compare results using a gas phase water reference and a liquid phase water reference.

For the liquid phase 64 molecules of water were placed in a cubic simulation box with a side length of 12.4 Å with the water molecules placed in a regular 4×4×4 array. This produces a system with the expected density of liquid water of 1.00 g cm⁻³. The periodic water model was first subjected to a high temperature (T=500 K) molecular dynamics (MD) simulation, using an NVE ensemble to maintain the density. For this phase of the calculation the TIP4P^{1,2} potential in the DL-POLY³ package was used with a 1 fs timestep. After 20 ps equilibration (velocity scaling) the simulation switched into the designated ensemble for a further 30 ps. This was sufficient to produce a randomised hydrogen bonded network model. The resulting structure was then used as input for a CASTEP MD simulation run using the NVT ensemble with a Nose-Hoover thermostat. The functional and basis set cut-off were the same as used for the SiO₂ slab calculations (PBE, *E_{cut}* = 700 eV) and TS dispersion corrections were included. The MD calculations were carried out at the Γ-point (k sample (1×1×1)). This DFT MD was run at a simulation temperature of 300 K for a total run time of 3.5 ps. Figure S1 shows the temperature and potential energy of the system as a function of time over the DFT MD calculation. It can be seen that after an initial sharp drop the calculated potential energy fluctuates around a constant value and the calculated temperature remains

Figure S1. a) Temperature and b) potential energy as a function of time over the DFT molecular dynamics simulation for 64 water molecules at a density of 1.00 g cm^{-3} .

well within ± 50 K of the target temperature. To obtain the water reference energy 14 structures were taken at regular intervals from the trajectory of the simulation between 1 ps and 3.5 ps. Each structure was optimised using a fixed cell procedure and the same convergence criteria as used for simulation of the silica bulk and slab models. This gave liquid water reference energies of -472.0026 \pm 0.0074 eV for the PBE functional alone and -472.1507 \pm 0.0052 eV when dispersion is included. The error estimates here are the standard deviations calculated from the 14 optimised structure energies.

References

- 1W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, Comparison of simple potential functions for simulating liquid water, *The Journal of Chemical Physics*, 1983, **79**, 926–935.
- 2J. L. F. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, *The Journal of Chemical Physics*, 2005, **123**, 234505.

31. T. Todorov, W. Smith, K. Trachenko and M. T. Dove, DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism, *J. Mater. Chem.*, 2006, **16**, 1911.