Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting information:

Multi-scale computational investigation of Ag-doped two-dimensional Zn-based MOF for

storage and release of small NO and CO bioactive molecules

Shabnam Naderlou^{a,*} Morteza Vahedpour^a, Douglas M. Franz^b

^{a.} Department of Chemistry, University of Zanjan (ZNU), P.O. Box 38791-45371, Zanjan, Iran

^{b.} Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tempa,

FL 33620-5250, USA

* Corresponding author. *E-mail address*: <u>sh.naderlou@znu.ac.ir</u> and <u>sh.naderloo68@gmail.com</u>.

Table S1 Structural properties of	of MOFs
-----------------------------------	---------

Term	symmetry	a	b	с	α	β	γ	Pore dimeter	AV (cm ³ .g ⁻¹)	NAV (cm ³ .g ⁻¹)	ASA (m ² .g ⁻¹)	NASA (m ² .g ⁻¹)
(Zn)MOF-470	P -3 1 c	16.7057	16.7057	14.3418	90	90	120	14.89123	3.223	0	13825.3	0
Ag-(Zn)MOF-470	P -3 1 c	16.7057	16.7057	14.3418	90	90	120	13.45286	2.569	0	13308.8	0

Table S2 Morse potential non-bonded parameters for interactions of H_2 , NO, CO, Ag and H_2O with MOF atoms (see the Figure S1 for the definition rules of atom types).

Term	D/k _B (K)	α (Å-1)	r (Å)	Term	D/k _B (K)	α (Å-1)	r (Å)
N_no-C1	92.15	1.12	4.07	C_co-C1	178.91	1.47	3.8
N_no-C2	78.49	2.09	3.2	C_co-C2	78.33	1.88	3.78
N_no-C3	86.07	1.28	3.79	C_co-C3	54.53	1.46	4.12
N_no-C4	102.12	1.32	3.69	C_co-C4	168.36	1.41	3.81
N_no-C5	96.01	1.28	3.8	C_co-C5	73.94	1.55	3.95
N_no-C8	53.43	2.87	3.13	C_co-C8	95.65	1.76	3.72
N_no-C9	81.45	1.43	3.62	C_co-C9	185.13	1.69	3.5
N_no-H3	15.51	2.31	3.14	C_co-H3	23.59	1.52	3.68
N_no-H4	60.61	1.43	3.39	C_co-H4	28.35	2.07	3.21
N_no-H9	45.95	1.58	3.45	C_co-H9	23.81	1.11	4
N_no-O2	120.58	1.63	3.28	C_co-O2	107.08	1.2	4.01
N_no-O3	58.68	1.09	4.36	C_co-O3	35.14	1.52	4.02
N_no-Zn2	80.77	2.05	2.85	C_co-Zn2	31.16	1.59	4.1
O_no-C1	63.4	1.51	4.12	O_co-C1	181	1.57	3.71
O_no-C2	41.38	2.17	3.8	O_co-C2	147.85	1.38	3.98
O_no-C3	64.47	1.7	4	O_co-C3	112.43	1.68	3.81
O_no-C4	60.51	1.6	4.14	O_co-C4	53.64	1.62	4.13
O_no-C5	64.03	1.55	4.2	O_co-C5	76.16	1.78	3.84
O_no-C8	183.43	1.28	4.08	O_co-C8	61.41	1.65	4.04
O_no-C9	146.46	1.62	3.8	O_co-C9	50.94	1.59	4.23
O_no-H3	47.9	1.23	3.79	O_co-H3	27.88	1.5	3.76
O_no-H4	10.08	1.34	4.15	O_co-H4	21.81	2.04	3.34
O_no-H9	18.79	1.27	4.13	O_co-H9	6.66	1.2	4.48
O_no-O2	230.37	1.77	3.35	O_co-O2	37.18	1.76	3.89
O_no-O3	68.18	2.19	3.46	O_co-O3	73.1	1.55	3.95
O_no-Zn2	6.95	1.34	4.28	O_co-Zn2	132.83	1.55	3.71
N_no-N_no ^b	120.18	1.1	3.97	C_co-C_co ^b	69.04	1.37	3.89
N_no-O_no b	104.46	1.36	3.91	C_co-O_co ^b	59.92	1.61	3.84
O_no-O_no ^b	113.99	1.36	3.71	O_co-O_co ^b	48.61	2	3.38
H_h2-C1	24.84	1.87	3.75	Ag-N_no	567.94	2.48	2.67
H_h2-C2	29.98	1.7	3.74	Ag-O_no	694.17	1.45	3.47
H_h2-C3	31.73	1.6	3.7	Ag-C_co	456.87	2.799	2.69
H_h2-C4	30.19	1.76	3.63	Ag-O_co	529.26	1.48	3.46
H_h2-C5	24.84	1.75	3.75	Ag-C1	31.54	1.34	4.37

H_h2-C8	57.65	2.13	3.5	Ag-C2	64.77	1.51	3.85
H_h2-C9	35.86	2.21	3.6	Ag-C3	86.09	1.74	3.42
H_h2-H3	8.7	2.03	3.54	Ag-C4	50.64	1.73	3.6
H_h2-H4	8.7	1.91	3.54	Ag-C5	104.94	1.38	3.87
H_h2-H9	8.2	1.94	3.63	Ag-C8	115.69	1.49	3.69
H_h2-O2	29.52	2.07	3.83	Ag-C9	59.81	1.92	3.41
H_h2-O3	74.64	1.87	3.53	Ag-H3	41.37	2.1	2.96
H_h2-Zn2	16.22	1.84	3.82	Ag-H4	31.54	1.34	4.37
H_h2-H_h2 a	11.85	1.5	3.55	Ag-H9	53.37	1.55	3.42
H_w-C1	12.4	1.86	3.54	Ag-O2	86.62	1.49	3.63
H_w-C2	19.94	1.65	3.42	Ag-O3	74.19	1.97	3.28
H_w-C3	28.56	1.55	3.33	Ag-Zn2	77.11	2.37	3.48
H_w-C4	27.49	1.65	3.48	Ag-Ag	72.67	2.33	3.31
H_w-C5	35.04	1.85	3.22	Ag-H_w ^b	47.69	2.06	2.85
H_w-C8	12.73	2.5	2.99	Ag-O_w ^b	42.67	2.38	3.06
H_w-C9	19.73	2.37	2.94				
H_w-H3	9.88	1.65	3.92				
H_w-H4	9.88	1.65	3.92				
H_w-H9	15.88	1.01	4.11				
H_w-O2	148.32	1.57	2.7				
H_w-O3	5.82	1.26	3.21				
H_w-Zn2	110.98	1.43	3.32				
O_w-C1	50.32	1.64	3.71				
O_w-C2	100.32	1.84	3.41				
O_w-C3	240.32	1.24	3.21				
O_w-C4	240.32	1.24	3.21				
O_w-C5	180.32	1.24	3.71				
O_w-C8	73.42	1.22	3.32				
O_w-C9	65.61	1.41	3.63				
O_w-H3	40.07	1.65	3.52				
O_w-H4	40.07	1.65	3.52				
O_w-H9	50.21	1.15	3.21				
O_w-O2	158.87	1.43	3.58				
O_w-O3	110.85	2.02	3.22				
O_w-Zn2	92.26	2.23	2.89				
O_w-H_w ^b	25.55	1.87	2.76				
O_w-O_w ^b	146.17	1.73	2.96				
H_w-H_w ^b	59.87	1.31	3.31				
N_no-H_w ^b	47.68	1.91	2.74				
O_no-H_w ^b	60.29	1.85	2.76				
O_no-O_w ^b	62.08	1.56	4.11				
N_no-O_w ^b	74.08	1.48	3.54				

a. b.

Force field parameters for H_h2-H_h2 were taken from the study of Ghosh et. al (1) All of the fist-principles calculations for dimer molecules were carried out using CCSD(T)/aug-cc-pVQZ method.

1.Ghosh S, Singh JK. Int J Hydrog Energy. 2019;44(3).

Table S3 Comparison of diffusion coefficients of NO and CO in (Zn)MOF-470 and Ag-(Zn)MOF-470 computed from short (1000 ps) and long (2500 ps) simulation runs in the fixed mode of Ag atoms (D in 10^{-9} m²s⁻¹) and related β values at 310K and 1 bar.

MD time	NO		Ag-fix-NO		СО		Ag-fixed-CO	
	β	D	β	D	β	D	β	D
Short-run	0.99	6.90	1.00	1.81	0.98	9.49	.0.96	2.17
Long-run	0.93	6.90	0.91	1.75	0.94	9.51	0.98	2.15

Table S4 The binding energies from first-principles calculations and Morse potential fitting for Ag, H_2 , NO, Co, and H_2O with four cluster models(Frag-1, 2, 3, and 4 refers to the models of a, b, e, and d of Figure 2).

E (kcal.mol ⁻¹)		First-Pr	rinciples		Morse Potential			
	Frag-1	Frag-2	Frag-3	Frag-4	Frag-1	Frag-2	Frag-3	Frag-4
Ag	-3.61	-4.03	-	-5.62	-3.95	-4.26	-	-5.34
H2	-0.701	-0.853	-0.923	-2.00	-0.713	-0.850	-0.928	-2.06
NO	-1.71	-1.26	-0.47	-4.96	-1.66	-1.03	-0.42	-4.93
СО	-1.01	-1.35	-1.56	-3.8	-1.06	-1.39	-1.27	-3.5

Figure S1 The structures of H_2 , NO, CO, and H_2O molecules and (Zn)BTTB with label of atom types used for non-bonded interactions.

Figure S2 Comparison of the MSD of NO (a,b) and CO (c,d) in (Zn)MOF-470 and Ag-(Zn)MOF-470 computed from short (1000 ps) and long (2500 ps) simulation runs. The dashed and the solid lines correspond to the long and short runs, respectively.

Figure S3 Potential energies of H_2 with fragments of MOF structure derived from the first-principles calculations and force field fitting: (a) parallel to the plane of frag-1, (b) vertical to the plane frag-1, (c) vertical to the plane of frag-2, (d) vertical to the plane of frag-3, and (e) parallel to the plane of frag-4.

Figure S4 Potential energies of Ag with fragments of MOF structure derived from the firstprinciples calculations and force field fitting: (a) frag-1, (b) frag-2 and (c) frag-4.

Figure S5 Potential energies of NO with fragments of MOF structure derived from the first-principles calculations and force field fitting: (a) parallel to the plane of frag-1, (b) vertical N-side to the plane frag-1, (c) vertical O-side to the plane of frag-1, (d) parallel to the plane of frag-2, (e) vertical N-side to the plane frag-2, (f) vertical O-side to the plane of frag-2, (g) parallel to the plane of frag-3, and (h) parallel to the plane of frag-4.

Figure S6 Potential energies of CO with fragments of MOF structure derived from the first-principles calculations and force field fitting: (a) parallel to the plane of frag-1, (b) vertical C-side to the plane frag-1, (c) vertical O-side to the plane of frag-1, (d) parallel to the plane of frag-2, (e) parallel to the plane of frag-3, and (f) parallel to the plane of frag-4.

Figure S7 Potential energies of H_2O with fragments of MOF structure derived from the firstprinciples calculations and force field fitting: (a) G1 and G2 configurations of H_2O with frag-1, (b) G1 and G2 configurations of H_2O with frag-2, (c) G1 and G2 configurations of H_2O with frag-3, (d) G1 and G2 configurations of H_2O with frag-4.

Figure S8 Potential energies of five possible configurations of NO-NO dimer (G1, G2, G3, G4, and G5) derived from the first-principles calculations and force field fitting.

Figure S9 Potential energies of five possible configurations of CO-CO dimer (G1, G2, G3, G4, and G5) derived from the first-principles calculations and force field fitting.

Figure S10 Potential energies of four possible configurations of NO-H₂O dimer (G1, G2, G3, and G4) derived from the first-principles calculations and force field fitting.

Figure S11 Potential energies of four possible configurations of CO-H₂O dimer (G1, G2, G3, and G4) derived from the first-principles calculations and force field fitting.

Figure S12 Potential energies of two configurations of Ag-H₂O dimer (G1, G2) derived from the first-principles calculations and force field fitting.

Figure S13 Potential energies of three configurations of H₂O-H₂O dimer (G1, G2, and G3) derived from the first-principles calculations and force field fitting

Figure S14 The RDFs from the simulations between (a) O_w and Ag atoms in the fixed and mobile modes, (b) N_n and C_c with O_w in (Zn)MOF-470 and Ag-(Zn)MOF-470 structures, and (c) Zn2 and mobile Ag atoms for NO and CO guest molecules.