Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supporting information for

Matrix-isolation and cryosolution-VCD spectra of α pinene as benchmark for anharmonic vibrational spectra calculations

Nora M. Kreienborg,^a Qin Yang,^b Corina H. Pollok,^a Julien Bloino,^{*b} Christian Merten^{*a}

a)	Ruhr Universität Bochum
	Fakultät für Chemie und Biochemie, Organische Chemie II
	Universitätsstraße 150
	44801 Bochum, Germany
	christian.merten@ruhr-uni-bochum.de www.mertenlab.de
b)	Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa, Italy julien.bloino@sns.it

1.	Additional Figures	2
2.	Effect of Large Amplitude Motions on Spectra of α-Pinene	4
3.	Additional Figures for β-Pinene	6

1. Additional Figures

Figure S1. Enlarged view of the fingerprint range of the experimental spectra of α -pinene.

Figure S2. Solvent effect on the IR and VCD spectra of α -pinene (B3PW91D3)

2. Effect of Large Amplitude Motions on Spectra of α-Pinene

Figure. S3. Comparison of the experimental and calculated spectra obtained at the B3PW91D3 / jun-cc-pVTZ / IEFPCM(Xe) level of theory and considering all modes.

Figure. S4. Comparison of the experimental and calculated spectra obtained at the B3PW91D3 / jun-cc-pVTZ / IEF-PCM(Xe) level of theory after removal of contributions from large amplitude motions (modes 2, 4, 5).

Figure. S5. Comparison of the experimental and calculated spectra obtained with the hybrid scheme and juncc-pVTZ/IEF-PCM(Xe), considering all modes.

Figure. S6. Comparison of the experimental and calculated spectra obtained with the hybrid scheme and juncc-pVTZ/IEF-PCM(Xe) after removal of contributions from large amplitude motions (modes 2, 4, 5).

3. Additional Figures for β-Pinene

Figure S7. Comparison of the experimental spectra of β -pinene in different environments.

Figure. S8. Comparison of the experimental and calculated spectra of β -pinene obtained with the hybrid scheme and jun-cc-pVTZ/IEF-PCM(Xe), considering all modes.

Figure. S9. Comparison of the experimental and calculated spectra of β -pinene obtained with the hybrid scheme and jun-cc-pVTZ/IEF-PCM(Xe) after removal of contributions from large amplitude motions (modes 2, 3, 4, 5).