The reducibility and oxidation states of oxide-supported rhenium: Experimental and theoretical investigations

Kah Wei Ting,^a Shinya Mine,^a Abdellah Ait El Fakir,^a Pengfei Du,^a Lingcong Li,^a S. M. A. Hakim Siddiki,^b Takashi Toyao,^{*a} Ken-ichi Shimizu^{*a}

^a Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Hokkaido 001-0021, Japan

^b Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan

*Corresponding authors Takashi Toyao, Ken-ichi Shimizu E-mail: toyao@cat.hokudai.ac.jp, kshimizu@cat.hokudai.ac.jp

Supplementary data

Figure S1. The side view of (a) $Re_1/TiO_2(101)$, (b) $Re_3/TiO_2(101)$, (c) $Re_{13}/TiO_2(101)$, and (d) $Re_{20}/TiO_2(101)$, and (e) Re(0001) slab models used for DFT calculations. The atoms described by ball and stick represent the relaxed layer, and the atoms described by line represent the fixed layer.

Figure S2. STEM images of Re/TiO₂ after the reduction at 500 °C under a flow of H₂.

Figure S3. STEM images of Re/SiO₂ after the reduction at 500 °C under a flow of H₂.

Figure S4. STEM images of Re/Al₂O₃ after the reduction at 500 °C under a flow of H₂.

Figure S5. STEM images of Re/MgO after the reduction at 500 $^{\circ}$ C under a flow of H₂.

Figure S6. STEM images of Re/V_2O_5 after the reduction at 500 °C under a flow of H₂.

Figure S7. STEM images of Re/ZrO₂ after the reduction at 500 $^{\circ}$ C under a flow of H₂.

Figure S8. STEM images of Re/TiO₂ without H₂ reduction.

Figure S9. STEM images of Re/TiO₂ after the reduction at 300 °C under a flow of H₂.

Figure S10. STEM images of Re/TiO₂ after the reduction at 700 $^{\circ}$ C under a flow of H₂.

Figure S11. STEM images of Re/TiO₂ after the reduction at 900 °C under a flow of H₂.

Table S1: Data for LCF of *in situ* Re L₁-edge XANES spectra of Re(5)/TiO₂. LCF was performed over a fitting range of -20 to 30 eV relative to the absorption edge (E₀) using Re powder (Re⁰), ReO₂ (Re⁴⁺), ReO₃ (Re⁶⁺), and NH₄ReO₄ (Re⁷⁺) as standards.

Reduction temp. (°C)	R-factor	Re ⁷⁺ (%)	Re ⁶⁺ (%)	Re ⁴⁺ (%)	Re ⁰ (%)
100	0.00299	84 ± 9	8 ± 4.7	< 1	8 ± 2.2
200	0.00232	80 ± 8.1	6 ± 4.2	6 ± 6.6	7 ± 1.9
300	0.00179	1 ± 8.2	< 1	47 ± 6.8	51 ± 2.0
400	0.00204	6 ± 8.6	< 1	23 ± 7.1	72 ± 2.1
500	0.00186	8 ± 8.2	< 1	14 ± 6.8	78 ± 2.0
600	0.00160	7 ± 7.6	< 1	16 ± 6.3	78 ± 1.8
700	0.00095	12 ± 5.7	< 1	5 ± 4.6	83 ± 1.4

Table S2: Data for LCF of *in situ* Re L₁-edge XANES spectra of Re(5)/ZrO₂. LCF was performed over a fitting range of -20 to 30 eV relative to the absorption edge (E₀) using Re powder (Re⁰), ReO₂ (Re⁴⁺), ReO₃ (Re⁶⁺), and NH₄ReO₄ (Re⁷⁺) as standards.

Reduction temp. (°C)	R-factor	Re ⁷⁺ (%)	Re ⁶⁺ (%)	Re ⁴⁺ (%)	Re ⁰ (%)
100	0.00360	59 ± 11	10 ± 5.6	31 ± 8.6	< 1
200	0.00249	60 ± 8.9	17 ± 4.7	23 ± 7.3	< 1
300	0.00116	4 ± 6.9	< 1	71 ± 5.6	25 ± 1.6
400	0.00143	3 ± 7.8	< 1	45 ± 6.3	52 ± 1.8
500	0.00230	3 ± 9.8	< 1	36 ± 8.0	61 ± 2.2
600	0.00373	< 1	< 1	27 ± 10	73 ± 2.9
700	0.00331	2.5 ± 12	< 1	23 ± 9.6	74 ± 2.7

Table S3: Data for LCF of *in situ* Re L₁-edge XANES spectra of Re(5)/SiO₂. LCF was performed over a fitting range of -20 to 30 eV relative to the absorption edge (E₀) using Re powder (Re⁰), ReO₂ (Re⁴⁺), ReO₃ (Re⁶⁺), and NH₄ReO₄ (Re⁷⁺) as standards.

Reduction temp. (°C)	R-factor	Re ⁷⁺ (%)	Re ⁶⁺ (%)	Re4+ (%)	Re ⁰ (%)
100	0.00184	87 ± 1.3	1 ± 2.7	< 1	6 ± 1.5
200	0.00153	86 ± 1.1	2 ± 2.4	< 1	7 ± 1.4
300	0.00078	17 ± 0.8	< 1	16 ± 3.0	6 ± 1.0
400	0.00151	2 ± 1.1	< 1	12 ± 4.1	8 ± 1.4
500	0.00119	< 1	< 1	10 ± 3.6	8 ± 1.2
600	0.00155	< 1	< 1	9 ± 4.2	8.4 ± 1.4
700	0.00188	< 1	< 1	9.2 ± 4.6	8.4 ± 1.5

Table S4: Data for LCF of *in situ* Re L₁-edge XANES spectra of Re(5)/V₂O₅. LCF was performed over a fitting range of -20 to 30 eV relative to the absorption edge (E₀) using Re powder (Re⁰), ReO₂ (Re⁴⁺), ReO₃ (Re⁶⁺), and NH₄ReO₄ (Re⁷⁺) as standards.

Reduction temp. (°C)	R-factor	Re ⁷⁺ (%)	Re ⁶⁺ (%)	Re ⁴⁺ (%)	Re ⁰ (%)
100	0.00032	97 ± 0.6	< 1	2 ± 2.4	< 1
200	0.00046	94 ± 0.7	< 1	4 ± 2.9	< 1
300	0.00075	69 ± 0.9	2.7 ± 2.3	12 ± 3.8	16 ± 1.1
400	0.00304	< 1	< 1	< 1	1
500	0.00570	< 1	< 1	< 1	1
600	0.00190	< 1	< 1	< 1	1

Table S5: Data for LCF of *in situ* Re L₁-edge XANES spectra of Re(5)/Al₂O₃. LCF was performed over a fitting range of -20 to 30 eV relative to the absorption edge (E₀) using Re powder (Re⁰), ReO₂ (Re⁴⁺), ReO₃ (Re⁶⁺), and NH₄ReO₄ (Re⁷⁺) as standards.

Reduction temp. (°C)	R-factor	Re ⁷⁺ (%)	Re ⁶⁺ (%)	Re ⁴⁺ (%)	Re ⁰ (%)
100	0.00183	95 ± 1.3	57 ± 2.3	< 1	3 ± 1.4
200	0.00177	90 ± 1.3	78 ± 2.2	< 1	5 ± 1.4
300	0.00156	76 ± 1.2	9 ± 2.1	12 ± 3.5	5 ± 1.3
400	0.00095	3 ± 0.9	< 1	26 ± 2.7	71 ± 0.9
500	0.00220	2 ± 1.4	< 1	25 ± 3.9	72 ± 1.5
600	0.00519	2 ± 2.1	< 1	25 ± 5.9	72 ± 2.2
700	0.00816	2 ± 2.5	< 1	25 ± 7.3	73 ± 2.7

Table S6: Data for LCF of *in situ* Re L₁-edge XANES spectra of Re(5)/MgO. LCF was performed over a fitting range of -20 to 30 eV relative to the absorption edge (E₀) using Re powder (Re⁰), ReO₂ (Re⁴⁺), ReO₃ (Re⁶⁺), and NH₄ReO₄ (Re⁷⁺) as standards.

Reduction temp. (°C)	R-factor	Re ⁷⁺ (%)	Re ⁶⁺ (%)	Re ⁴⁺ (%)	Re ⁰ (%)
100	0.00183	95 ± 1.3	57 ± 2.3	< 1	3 ± 1.4
200	0.00177	90 ± 1.3	78 ± 2.2	< 1	5 ± 1.4
300	0.00156	76 ± 1.2	9 ± 2.1	12 ± 3.5	5 ± 1.3
400	0.00095	3 ± 0.9	< 1	26 ± 2.7	71 ± 0.9
500	0.00220	2 ± 1.4	< 1	25 ± 3.9	72 ± 1.5
600	0.00519	2 ± 2.1	< 1	25 ± 5.9	72 ± 2.2
700	0.00816	2 ± 2.5	< 1	25 ± 7.3	73 ± 2.7

Figure S12: Comparison of experimental and LCF XANES spectra for Re(5)/TiO₂ treated at 100 °C, 500 °C and 700 °C reduction temperature. Component fraction of each standard is also included for ease of reference.

Figure S13. FTIR spectra of CO adsorbed on unreduced and H₂-reduced Re(5)/ZrO₂ and Re(5)/Al₂O₃ catalysts. Each sample was pretreated (if applicable) under a flow of 10% H₂/He (100 mL min⁻¹) for 30 min, exposed to a flow of 1% CO/He (100 mL min⁻¹) for 5 min, and purged with He for 5 min.

Model	Formal oxidation state of Re	(Average) Bader charge of Re
ReO ₂	4	1.85
Re ₁ /TiO ₂ (101)	0	0.79
Re ₃ /TiO ₂ (101)	0	0.40
Re ₁₃ /TiO ₂ (101)	0	0.14
Re ₂₀ /TiO ₂ (101)	0	0.13
Re(0001)	0	0.00

Table S7. Summary of formal oxidation states, Bader charges for Re species.