SUPPORTING INFORMATION

Untangling product selectivity on clean low indexed rutile TiO₂ surfaces using first-principles calculations

Anum Shahid Malik, Lisa A. Fredin*

Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.

*lafredin@lehigh.edu

This SI is divided into three parts.

- 1. PCET mechanism/ Free energy profile calculation details.
- 2. Step-free free energies.
- 3. Optimized structures.

SECTION I

We characterized the OER mechanism on /four TiO₂ low-index Miller surfaces (110), (101), (010), and (001) slabs. We considered the 4-step proton-coupled electron-transfer mechanism and the intermediates OH*, O*, and OOH*.¹ In what follows we use the O^(d) and O^(p) to represent the dangling and peroxo O* intermediate i.e. 2^{nd} step of oxygen evolution reaction. The most stable form of O* intermediate species varies with the material.^{1,2} The structures of the TiO₂ (110), (101), (010), and (001) surfaces are shown in Figure S1 and in Figures S2-S5.

Figure S1. Rutile TiO₂ low-index Miller facets.

1. PCET mechanism

The four-step PCET mechanism starts with $* + H_2O$ as the initial state of the catalysts. The reaction steps are as follows:

1	
$* + 2H_2O \rightarrow OH^* + H_2O + \frac{1}{2}H_2$	(1)
$OH^* + H_2O \rightarrow O^* + H_2O + 2(\frac{1}{2}) H_2$	(2)
$O^* + H_2O \rightarrow OOH^* + 3(\frac{1}{2}) H_2$	(3)
$OOH^* \rightarrow * + O_2(g) + 4(\frac{1}{2}) H_2$	(4)

2. Free energy calculation scheme for oxygen evolution reaction (OER)

The details of the determination of Gibbs's free energy changes for Steps 1-4 are given below.

$\Delta O_{H^*} = O O $	$\Delta G_1 = \Delta G_{OH*} - eU + \Delta G_H + (pH)$	(5)
---	--	-----

$\Delta G_2 = \Delta G_{O*} - \Delta G_{OH*} - eU + \Delta G_H + (pH)$	(6)
$\Lambda G_{2} = \Lambda G_{0} = \Lambda G_{0} = eII + \Lambda G_{1} + (nH)$	(7)

$$\Delta G_4 = 4.92 \text{ (eV)} - \Delta G_{OOH^*} - eU + \Delta G_H^+ \text{ (pH)}$$
(8)

Where U is the potential measured against normal hydrogen electrode (NHE) at standard conditions (T = 298.15 K, P =1 bar, pH = 0). The free energy change of the protons relative to the above-specified electrode at non-zero pH is represented by Nernst equation as ΔG_{H^+} (pH) = -kT ln(10) × pH. The sum of $\Delta G_{1.4}$ is fixed to the negative of experimental Gibbs free energy of formation of two water molecules -2 Δ

 $G_{OH_2} = 4 \times 1.23 = 4.92$ eV in order to avoid the calculation of the O₂ bond energy, which is difficult to determine accurately within GGA-DFT. The Gibbs free energies of eqs 5-8 depend on the adsorption energies of OH*, O*, and OOH*. The Gibbs free energy differences of these intermediates include zero-point energy (ZPE) and entropy corrections accordingly, $\Delta G_i = \Delta E + \Delta ZPE - T\Delta S_i$ and energy differences ΔE_i considered relative to H_2O and H_2 (at U = 0 and pH = 0) as $\Delta E_{OH^*} = E (OH^*) - E (*) - [E (H_2O) - \frac{1}{2} E (H_2)]$ (9) $\Delta E_{O*} = E(O*) - E(*) - [E(H_2O) - E(H_2)]$ (10) $\Delta E_{OOH*} = E (OOH*) - E (*) - [2E (H_2O) - 3\frac{1}{2}E (H_2)]$ (11)The theoretical Overpotential is defined as: $\eta = \max \left[\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4 \right] / e - 1.23 [V]$ (12) $\Delta \mathbf{G} = \Delta \mathbf{E} + \Delta \mathbf{Z} \mathbf{P} \mathbf{E} - \mathbf{T} \Delta \mathbf{S}$ is calculated as follows: ΔE is the reaction energy that we get from density functional theory (DFT). \triangle ZPE and \triangle S are the differences in zero-point

Table S1. Differences in Zero-Point Energies, ΔZPE , and the Change in Entropy ΔS for Intermediates.

energies, and the change in entropy respectively, which we get from references ^{1,2}.

$$\begin{array}{ccc} (\Delta ZPE - T\Delta S)_{OH^{*}} & (\Delta ZPE - T\Delta S)_{O}^{(d)} /_{OOH^{*}} & (\Delta ZPE - T\Delta S)_{O}^{(p)} /_{OOH^{*}} \\ +0.40 & -0.30 / +0.32 & -0.37 / +0.39 \end{array}$$

SECTION II

1. Step Free energies of oxygen evolution reaction (OER) intermediates:

The standard hydrogen electrode potential at pH = 0 is equal to ~1.23 and ~0.40 V at pH = 14.1 Accordingly, the threshold values for 1e⁻, 2e⁻, and 4e⁻ processes are as given in (Table S2) referenced from.² We used Nernst's equation,^{3,4} for the free energy correction at a given pH

$$\Delta G_{pH}(pH) = 2.30 \times pH \times k_BT$$

Based on these pH values we calculated the step-free and free energies relative to the resting state '* + $2H_2O$ ' at pH =0 the free energy data is provided in the main text in table 1 and step-free energies are shown in (Table S3) and at pH= 14 shown in (Table S4 and S5) respectively.

Table S2: Values of Standard Hydrogen Potential at pH = 0/14

L

(13)

Table S3. Step-free energies relative to the resting state '* + $2H_2O$ ' for (ΔE^*), 'OH* (ΔE_{OH*}), $O^{(d)}(\Delta E_O^{(d)})$, $O^{(p)}(\Delta E_O^{(p)})$, OOH* (ΔE_{OOH*}), and $O_2(\Delta E_{O2})$ and overpotentials 'η' through four-, two- and one-electron ($O_{2/}H_2O_2$ /•OH evolution) processes for all systems. The bold characters marked are rate-limiting steps.

Mechanism	ΔE _{OH*}	$\Delta E_{O}^{(d)}$	$\Delta E_{O}^{(p)}$	ΔE_{OOH^*}	ΔE_{O2}
001 ^(d)	2.59	2.50	_	0.51	-0.26
001 ^(p)	2.59	_	2.10	0.91	- 0.26
101 ^(d)	1.73	2.83	_	0.49	-0.13
101 ^(p)	1.73	_	2.25	1.07	- 0.13
110 ^(d)	1.59	2.86	_	- 0.39	0.86
110 ^(p)	1.59	_	2.02	0.45	0.86
010 ^(d)	0.64	2.66	_	-0.56	2.18
010 ^(p)	0.64	_	1.09	1.01	2.18

Table S4. Step-free energies at pH=14 relative to the resting state '* + $2H_2O$ '

Mechanism pH (14)	ΔE _{OH*}	$\Delta E_{O}^{(d)}$	$\Delta E_0^{(p)}$	ΔE _{OOH*}	ΔE_{O2}
001 ^(d)	1.76	1.67	_	- 0.32	-1.09
001 ^(p)	1.76	_	1.27	0.08	-1.09
101 ^(d)	0.90	2.00	_	-0.34	-0.96
101 ^{(p}	0.90	_	2.35	-0.34	-0.96
110 ^(d)	0.76	2.03	_	-1.22	0.03
110 ^(p)	0.76	_	1.19	-0.38	0.03
010 ^(d)	- 0.19	1.83	_	-1.39	1.35
010 ^(p)	- 0.19	_	0.26	0.18	1.35

Table S5: Free energies relative to the resting state ' $+ 2H_2O$ ' at pH= 14.

Mechanism	AGou			AGaan	ΔG_{o2}	Product	RDS	η (V)	η (V)	η (V)
pH (14)		200	200	2000H*	- 02	Trouuct	N.D. 5	1e-	2e-	4e-
001 ^(d)	2.16	3.53	_	3.53	1.60	•OH	OH*	1.76	-	_
001 ^(p)	2.16	_	3.06	3.53	1.60	•OH [_]	OH*	1.76	_	_
101 ^(d)	1.30	3.00	_	2.98	1.60	H_2O_2	O*	_	0.77	1.30
101 ^(p)	1.30	_	2.35	2.98	1.60	H_2O_2	OH*	_	0.37	0.90
110 ^(d)	1.16	2.89	_	1.99	1.60	H_2O_2	O*	-	0.80	1.33
110 ^(p)	1.16	_	1.98	1.99	1.60	H_2O_2	OH*	_	0.23	0.76
010 ^(d)	0.21	1.74	_	0.67	1.60	O ₂	O*	_	_	1.13
010 ^(p)	0.21	_	0.10	0.67	1.60	O ₂	O ₂	_	_	0.53

SECTION III

1. DoS Calculations for all the surfaces.

Figure S6. Plotted DoS for $TiO_2(010)$, (001), (110) and (101) surface. E_g represents the band gap value whereas Fermi energy level E_F lies at 0 eV.

Table S6: Bader charges of the OH*, dangling $O^{(d)}$, peroxo $O^{(p)}$, and OOH* intermediates. BC(OH*), BC($O^{(d)}$), BC($O^{(p)}$), and BC(OOH*) are the Bader charges (BC) of the OER intermediates; O^{s} is the charge on surface oxygen where $O^{(p)}$ denotes adsorbed peroxo specie. Note that the O 1s core electrons are not included in the electron count as they are treated with pseudopotentials.

Intermediates	B	C (OH ³	*)	BC (O ^(d))	B	BC (O ^(p)))		BC (0) OOH*)	
/ Surfaces	Ti	0	Η	Ti	O ^(d)	Ti	Os	O ^(p)	Ti	0	0	Η
001	7.84	7.12	0.36	7.87	6.57	7.91	6.62	6.44	7.87	6.40	6.55	0.33
101	7.84	7.08	0.34	7.84	6.55	7.86	6.53	6.62	7.85	6.22	6.39	0.33
110	7.82	7.08	0.33	7.84	6.53	7.87	6.67	6.43	7.81	6.22	6.41	0.38
010	7.85	7.09	0.35	7.85	6.82	7.87	6.59	6.46	7.84	6.48	6.66	0.35

Table S7: Bond lengths of all optimized intermediates OH^* , dangling $O^{(d)}$, peroxo $O^{(p)}$, and OOH^* given in (Å).

Intermediates	Ol	H*	$\mathbf{O}^{(d)}$	C	(p)		OOH*	
/ Surfaces	Ti-O	О-Н	Ti-O ^(d)	Ti-O ^(p)	$O^{(p)}$ - O^s	Ti-O	0-0	O- H
001	1.847	0.973	1.835	1.917	1.425	2.039	1.406	0.984
101	1.800	0.993	1.646	1.911	1.451	1.923	1.461	0.982
110	1.790	0.976	1.654	1.905	1.467	2.264	1.353	0.989
010	1.785	0.987	2.095	2.073	1.462	2.188	1.327	0.977

2. Formation energies of oxygen evolution reaction (OER) intermediates:

We calculated the formation energies (Table S8) of all the studied systems and their intermediates. The formation of each unit cell structure from the constituent standard states of Ti, O_2 , and H_2 were used. So that for each bare surface the formation energy is:

$$\Delta E_{F}^{(TiO_{2})n} = E_{(TiO_{2})n} n E_{Ti} - \frac{n}{2} E_{O_{2}}$$
(14)

Where, $E_{TiO_{2}}$ is the DFT total energy of the system TiO₂, E_{Ti} and $E_{O_{2}}$ are DFT energies of metallic Ti and O₂ molecule.

Table 38: Formation energies of all the surfaces (ΔE^*_F) and intermediates OH* (ΔE^{OH}_F) , dangling O^(d) (ΔE^{OF}_F) , peroxo O^(p) (ΔE^{OF}_F) , and OOH* (ΔE^{OH}_F) given in eV/atom.

Intermediates / Surfaces	ΔE_F^* eV/atom	ΔE_{F}^{OH*} eV/atom	$\Delta E^{O}_{F}^{(d)}$ eV/atom	$\Delta E^{O}_{F}^{(p)}$ eV/atom	ΔE_{F}^{OOH} *
001	- 2.16	- 2.14	- 2.13	- 2.13	- 2.11
101	-2.16	-2.14	-2.13	-2.14	-2.12
110	-2.24	-2.21	-2.21	-2.21	-2.20
010	-2.24	-2.22	-2.21	-2.22	-2.20

References:

- Valdés, Á.; Qu, Z.-W.; Kroes, G.-J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and Photo-Oxidation of Water on TiO₂ Surface. *The Journal of Physical Chemistry C* 2008, *112* (26), 9872–9879. https://doi.org/10.1021/jp711929d.
- (2) Malik, A. S.; Liu, T.; Dupuis, M.; Li, R.; Li, C. Water Oxidation on TiO₂: A Comparative DFT Study of 1e⁻, 2e⁻, and 4e⁻ Processes on Rutile, Anatase, and Brookite. *The Journal of Physical Chemistry C* 2020, *124* (15), 8094–8100. https://doi.org/10.1021/acs.jpcc.9b11450.
- (3) Feiner, A.-S.; McEvoy, A. J. The Nernst Equation. J Chem Educ 1994, 71 (6), 493.
- Walczak, M. M.; Dryer, D. A.; Jacobson, D. D.; Foss, M. G.; Flynn, N. T. PH Dependent Redox Couple: An Illustration of the Nernst Equation. *J Chem Educ* 1997, 74 (10), 1195.